Skip to main content

Progression Reconstruction from Unsynchronized Biological Data using Cluster Spanning Trees

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9683))

Abstract

Identifying the progression-order of an unsynchronized set of biological samples is crucial for comprehending the dynamics of the underlying molecular interactions. It is also valuable in many applied problems such as data denoising and synchronization, tumor classification and cell lineage identification. Current methods that attempt solving this problem are ultimately based either on polynomial and piece-wise approximation of the unknown generating function or its reconstruction through the use of spanning trees. Such approaches face difficulty when it is necessary to factor-in complex relationships within the data such as partial ordering or bifurcating or multifurcating progressions. We propose the notion of Cluster Spanning Trees (CST) that can model both linear as well as the aforementioned complex progression relationships in data. Through a number of experiments on synthetic data sets as well as datasets from the cell cycle, cellular differentiation, and phenotypic screening, we show that the proposed CST approach outperforms the previous approaches in reconstructing the temporal progression of the data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amenta, N., Bern, M., Eppstein, D.: The crust and the Β-skeleton: combinatorial curve reconstruction. Graph. Models Image Process. 60(2), 125–135 (1998)

    Article  Google Scholar 

  2. Hastie, T., Stuetzle, W.: Principal curves. J. Am. Stat. Assoc. 84(406), 502–516 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aigner, M., Ziegler, G.M., Erdos, P.: Proofs from THE BOOK, vol. 274. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  4. Kruskal, B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boruvka, O.: Contribution to the solution of a problem of economical construction of electrical networks. Elektronický Obzor 15, 153–154 (1926)

    Google Scholar 

  6. Sokal, R.R.: A statistical method for evaluating systematic relationships. Univ Kans Sci Bull. 38, 1409–1438 (1958)

    Google Scholar 

  7. Székely, G.J., Rizzo, M.L.: Hierarchical clustering via joint between-within distances: extending ward’s minimum variance method. J. Classif. 22, 151–183 (2005)

    Article  Google Scholar 

  8. Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  9. Magwene, P.M., Lizardi, P., Kim, J.: Reconstructing the temporal ordering of biological samples using microarray data. Bioinformatics 19(7), 842–850 (2003)

    Article  Google Scholar 

  10. Qiu, P., Gentles, A.J., Plevritis, S.K.: Discovering biological progression underlying microarray samples. PLoS Comput. Biol. 7, 4 (2011)

    Article  Google Scholar 

  11. Bochner, B.R.: Global phenotypic characterization of bacteria. FEMS microbiology Rev. 33(1), 191–205 (2009)

    Article  MathSciNet  Google Scholar 

  12. Whitfield, M.L., et al.: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13(6), 1977–2000 (2002)

    Article  Google Scholar 

  13. Park, Y., Shackney, S., Schwartz, R.: Network-based inference of cancer progression from microarray data. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(2), 200–212 (2009)

    Article  Google Scholar 

  14. Arreola, L.R., Long, T., Asarnow, D., Suzuki, B.M., Singh, R., Caffrey, C.: Chemical and genetic validation of the Statin drug target for the potential treatment of the Helminth disease. Schistosomiasis PLoS One 9, 1 (2014)

    Google Scholar 

  15. Fitch, W.M.: Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416 (1971)

    Article  Google Scholar 

  16. 1000 Genomes Project Consortium.: A map of human genome variation from population-scale sequencing. Nature 467(7319), 1061–1073 (2010)

    Google Scholar 

  17. Behrends, S., Vehse, K., Scholz, H., Bullerdiek, J., Kazmierczak, B.: Assignment of GUCY1A3, a candidate gene for hypertension, to human chromosome bands 4q31. 1 → q31. 2 by in situ hybridization. Cytogenet. Genome Res. 88(3–4), 204–205 (2000)

    Article  Google Scholar 

  18. Yasuda, K., et al.: Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 40(9), 1092–1097 (2008)

    Article  Google Scholar 

  19. Platt, O.S., et al.: Pain in sickle cell disease: rates and risk factors. N. Engl. J. Med. 325(1), 11–16 (1991)

    Article  Google Scholar 

  20. Allison, A.C.: Protection afforded by sickle-cell trait against subtertian malarial infection. Br. Med. J. 1(4857), 290–294 (1954)

    Article  Google Scholar 

  21. Ehret, G.B., et al.: Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478(7367), 103–109 (2011)

    Article  Google Scholar 

  22. Merrill, G.F.: Cell synchronization. Methods Cell Biol. 57, 229–249 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded in part by the National Science Foundation grant IIS-0644418 and the National Institutes of Health grant 1R01A1089896.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Eshleman, R., Singh, R. (2016). Progression Reconstruction from Unsynchronized Biological Data using Cluster Spanning Trees. In: Bourgeois, A., Skums, P., Wan, X., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2016. Lecture Notes in Computer Science(), vol 9683. Springer, Cham. https://doi.org/10.1007/978-3-319-38782-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38782-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38781-9

  • Online ISBN: 978-3-319-38782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics