Skip to main content

NEMo: An Evolutionary Model with Modularity for PPI Networks

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9683))

Included in the following conference series:

Abstract

Modelling the evolution of biological networks is a major challenge. Biological networks are usually represented as graphs; evolutionary events include addition and removal of vertices and edges, but also duplication of vertices and their associated edges. Since duplication is viewed as a primary driver of genomic evolution, recent work has focused on duplication-based models. Missing from these models is any embodiment of modularity, a widely accepted attribute of biological networks. Some models spontaneously generate modular structures, but none is known to maintain and evolve them.

We describe NEMo (Network Evolution with Modularity), a new model that embodies modularity. NEMo allows modules to emerge and vanish, to fission and merge, all driven by the underlying edge-level events using a duplication-based process. We introduce measures to compare biological networks in terms of their modular structure and use them to compare NEMo and existing duplication-based models and to compare both generated and published networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abi-Haidar, A., et al.: Uncovering protein interaction in abstracts and text using a novel linear model and word proximity networks. Genome Biol. 9(Suppl 2), S11 (2008)

    Article  Google Scholar 

  2. Aittokallio, T.: Module finding approaches for protein interaction networks. In: Li, X.L., Ng, S.K. (eds.) Biological Data Mining in Protein Interaction Networks, pp. 335–353. IGI Publishing, Hershey (2009)

    Chapter  Google Scholar 

  3. Barabási, A.L., Oltvai, Z.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004)

    Article  Google Scholar 

  4. Bhan, A., Galas, D., Dewey, T.: A duplication growth model of gene expression networks. Bioinformatics 18(11), 1486–1493 (2002)

    Article  Google Scholar 

  5. Collins, S., Kemmeren, P., Zhao, X., et al.: Toward a comprehensive atlas of the physical interactive of saccharomyces cerevisiae. Mol. Cell. Proteomics 6(3), 439–450 (2007)

    Article  Google Scholar 

  6. Dittrich, M., et al.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. In: Proceedings of 16th International Conference on Intelligent Systems for Molecular Biology (ISMB 2008), in Bioinformatics, vol. 24, pp. i223–i231 (2008)

    Google Scholar 

  7. Dutkowski, J., Tiuryn, J.: Identification of functional modules from conserved ancestral protein interactions. Bioinformatics 23(13), i149–i158 (2007)

    Article  Google Scholar 

  8. Dutkowski, J., Tiuryn, J.: Phylogeny-guided interaction mapping in seven eukaryotes. BMC Bioinform. 10(1), 393 (2009)

    Article  Google Scholar 

  9. Franceschini, A., et al.: String v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013)

    Article  Google Scholar 

  10. Hao, Y., Zhu, X., Huang, M., Li, M.: Discovering patterns to extract protein-protein interactions from the literature. Bioinformatics 21(15), 3294–3300 (2005)

    Article  Google Scholar 

  11. Hartwell, L., Hopfield, J., Leibler, S., Murray, A.: From molecular to modular cell biology. Nature 402(6761), C47–C52 (1999)

    Article  Google Scholar 

  12. Jin, Y., Turaev, D., Weinmaier, T., Rattei, T., Makse, H.: The evolutionary dynamics of protein-protein interaction networks inferred from the reconstruction of ancient networks. PLoS ONE 8(3), e58134 (2013)

    Article  Google Scholar 

  13. Lynch, M., et al.: The evolutionary fate and consequences of duplicate genes. Science 290(5494), 1151–1254 (2000)

    Article  Google Scholar 

  14. Makino, T., McLysaght, A.: Evolutionary analyses of protein interaction networks. In: Li, X.L., Ng, S.K. (eds.) Biological Data Mining in Protein Interaction Networks, pp. 169–181. IGI Publishing, Hershey (2009)

    Chapter  Google Scholar 

  15. Marcotte, E., Xenarios, I., Eisenberg, D.: Mining literature for protein protein interactions. Bioinformatics 17, 359–363 (2001)

    Article  Google Scholar 

  16. Middendorf, M., Ziv, E., Wiggins, C.: Inferring network mechanisms: the drosophila melanogaster protein interaction network. Proc. Nat. Acad. Sci. USA 102(9), 3192–3197 (2005)

    Article  Google Scholar 

  17. Navlakha, S., Kingsford, C.: Network archaeology: uncovering ancient networks from present-day interactions. PLoS Comput. Biol. 7(4), e1001119 (2011)

    Article  MathSciNet  Google Scholar 

  18. Nepusz, T., Yu, H., Paccanaro, A.: Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9, 471–472 (2012)

    Article  Google Scholar 

  19. Ohno, S.: Evolution by Gene Duplication. Springer, Berlin (1970)

    Book  Google Scholar 

  20. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010)

    Article  Google Scholar 

  21. Peregrin-Alvarez, J., et al.: The modular organisation of protein interactions in escherichia coli. PLoS Comput. Biol. 5(10), e1000523 (2009)

    Article  Google Scholar 

  22. Prasad, T.S.K., et al.: Human protein reference database-2009 update. Nucleic Acids Res. 37, D767–D772 (2009)

    Article  Google Scholar 

  23. Prasad, T., et al.: The human protein reference database-2009 update. Nucleic Acids Res. 37, D767–D772 (2009)

    Article  Google Scholar 

  24. Qian, J., Luscombe, N., Gerstein, M.: Protein family and fold occurrence in genomes: powerlaw behaviour and evolutionary model. J. Mol. Biol. 313, 673–689 (2001)

    Article  Google Scholar 

  25. Radivojac, P., Peng, K., Clark, W., et al.: An integrated approach to inferring gene-disease associations in humans. Proteins 72(3), 1030–1037 (2008)

    Article  Google Scholar 

  26. Sahraeian, S., Yoon, B.J.: A network synthesis model for generating protein interaction network families. PLoS ONE 7(8), e41474 (2012)

    Article  Google Scholar 

  27. Saraph, V., Milenkovi, T.: Magna: maximizing accuracy in global network alignment. Bioinformatics 30(20), 2931–2940 (2014). http://bioinformatics.oxfordjournals.org/content/30/20/2931.abstract

    Article  Google Scholar 

  28. Schlosser, G., Wagner, G.: Modularity in Development and Evolution. University of Chicago Press, Chicago (2004)

    Google Scholar 

  29. Sole, R., Pastor-Satorras, R., Smith, E., Kepler, T.: A model of large-scale proteome evolution. Adv. Complex Syst. 5, 43–54 (2002)

    Article  MATH  Google Scholar 

  30. Sole, R., Valverde, S.: Spontaneous emergence of modularity in cellular networks. J. R. Soc. Interface 5(18), 129–133 (2008)

    Article  Google Scholar 

  31. Szklarczyk, D., et al.: String v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015)

    Article  Google Scholar 

  32. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein-protein interaction networks. Nat. Biotech. 21(6), 697–700 (2003)

    Article  Google Scholar 

  33. Wagner, A.: The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18, 1283–1292 (2001)

    Article  Google Scholar 

  34. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, UK (1994)

    Book  MATH  Google Scholar 

  35. Zhang, X., Moret, B.: Refining transcriptional regulatory networks using network evolutionary models and gene histories. Algorithms Mol. Biol. 5(1), 1 (2010)

    Article  Google Scholar 

  36. Zhang, X., Moret, B.: Refining regulatory networks through phylogenetic transfer of information. ACM/IEEE Trans. Comput. Biol. Bioinf. 9(4), 1032–1045 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

MY wishes to thank Mingfu Shao for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard M. E. Moret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ye, M., Racz, G.C., Jiang, Q., Zhang, X., Moret, B.M.E. (2016). NEMo: An Evolutionary Model with Modularity for PPI Networks. In: Bourgeois, A., Skums, P., Wan, X., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2016. Lecture Notes in Computer Science(), vol 9683. Springer, Cham. https://doi.org/10.1007/978-3-319-38782-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38782-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38781-9

  • Online ISBN: 978-3-319-38782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics