Skip to main content

Identifying Essential Proteins by Purifying Protein Interaction Networks

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9683))

Included in the following conference series:

Abstract

Identification of essential proteins based on protein interaction network (PIN) is a very important and hot topic in the post genome era. In this paper, we propose a new method to identify essential proteins based on the purified PIN by using gene expression profiles and subcellular location information. The basic idea behind the proposed purifying method is that two proteins can physically interact with each other only if they appear together at the same subcellular location and are active together at least at a time point in the cell cycle. The original static PIN is marked as S-PIN and the final PIN purified by our method is marked as TS-PIN. To evaluate whether the constructed TS-PIN is more suitable to being used in the identification of essential proteins, six network-based essential protein discovery methods (DC, EC, SC, BC, CC, and IC) are applied on it to identify essential proteins. It is the same way with S-PIN and NF-APIN. NF-APIN is a dynamic PIN constructed by using gene expression data and S-PIN. The experimental results on the protein interaction network of S.cerevisiae shows that all the six network-based methods achieve better results when being applied on TS-PIN than that being applied on S-PIN and NF-APIN.

Y Pan—This work was supported in part by the National Natural Science Foundation of China under Grants (No.61370024, No.61232001, and No.61428209) and the Program for New Century Excellent Talents in University(NCET-12-0547).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winzeler, E.A., Shoemaker, D.D., Astromo, A., Liang, H., Anderson, K., et al.: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999)

    Article  Google Scholar 

  2. Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., et al.: Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

    Article  Google Scholar 

  3. Giaever, G., Chu, A.M., Ni, L., et al.: Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896), 387–391 (2002)

    Article  Google Scholar 

  4. Cullen, L.M., Arndt, G.M.: Genome-wide screening for gene function using RNAi in mammalian cells. Immunol. Cell Biol. 83(3), 217–223 (2005)

    Article  Google Scholar 

  5. Roemer, T., Jiang, B., Davison, J., et al.: Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol. Microbiol. 50(1), 167–181 (2003)

    Article  Google Scholar 

  6. Jeong, H., Mason, S.P., Barabási, A.L., et al.: Lethality and centrality in protein networks. Nature 411(6833), 41–44 (2001)

    Article  Google Scholar 

  7. Lin, C.C., Juan, H.F., Hsiang, J.T., et al.: Essential Core of Protein − Protein Interaction Network in Escherichia coli. J. Proteome Res. 8(4), 1925–1931 (2009)

    Article  Google Scholar 

  8. Liang, H., Li, W.H.: Gene essentiality, gene duplicability and protein connectivity in human and mouse. Trends Genet. 23(8), 375–378 (2007)

    Article  MathSciNet  Google Scholar 

  9. Zhao, B., Wang, J., Li, M., et al.: Prediction of essential proteins based on overlapping essential modules. IEEE Trans. Nanobiosci. 13(4), 415–424 (2014)

    Article  Google Scholar 

  10. Li, M., Wang, J.X., Wang, H., et al.: Identification of essential proteins from weighted protein–protein interaction networks. J. Bioinform. Comput. Biol. 11(03), 1341002 (2013)

    Article  Google Scholar 

  11. Joy, M.P., Brock, A., Ingber, D.E., et al.: High-betweenness proteins in the yeast protein interaction network. BioMed. Res. Int. 2005(2), 96–103 (2005)

    Google Scholar 

  12. Wuchty, S., Stadler, P.F.: Centers of complex networks. J. Theor. Biol. 223(1), 45–53 (2003)

    Article  MathSciNet  Google Scholar 

  13. Estrada, E., Rodríguez-Velázquez, J.A.: Subgraph centrality in complex networks. Phy. Rev. E 71(5), 056103 (2005)

    Article  MathSciNet  Google Scholar 

  14. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)

    Article  Google Scholar 

  15. Stevenson, K., Zelen, M.: Rethinking centrality: methods and examples. Soc. Netw. 11(1), 1–37 (1989)

    Article  MathSciNet  Google Scholar 

  16. Yu, H., Kim, P.M., Sprecher, E., et al.: The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 3(4), e59 (2007)

    Article  MathSciNet  Google Scholar 

  17. Lin, C.Y., Chin, C.H., Wu, H.H., et al.: Hubba: hub objects analyzer—a framework of interactome hubs identification for network biology. Nucleic Acids Res. 36(suppl 2), W438–W443 (2008)

    Article  Google Scholar 

  18. Li, M., Wang, J., Chen, X., et al.: A local average connectivity-based method for identifying essential proteins from the network level. Comput. Biol. Chem. 35(3), 143–150 (2011)

    Article  MathSciNet  Google Scholar 

  19. Wang, J., Li, M., Wang, H., et al.: Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(4), 1070–1080 (2012)

    Article  Google Scholar 

  20. Von Mering, C., Krause, R., Snel, B., et al.: Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417(6887), 399–403 (2002)

    Article  Google Scholar 

  21. Brohee, S., Van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinform. 7(1), 488 (2006)

    Article  Google Scholar 

  22. Tang, X., Wang, J., Liu, B., et al.: A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinform. 12(1), 339 (2011)

    Article  Google Scholar 

  23. Wang, J., Peng, X., Li, M., et al.: Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics 13(2), 301–312 (2013)

    Article  Google Scholar 

  24. Xiao, Q., Wang, J., Peng, X., et al.: Detecting protein complexes from active protein interaction networks constructed with dynamic gene expression profiles. Proteome Sci. 11(suppl 1), S20 (2013)

    Article  Google Scholar 

  25. Li, M., Zhang, H., Wang, J., et al.: A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Syst. Biol. 6(1), 15 (2012)

    Article  Google Scholar 

  26. Li, M., Zheng, R., Zhang, H., et al.: Effective identification of essential proteins based on priori knowledge, network topology and gene expressions. Methods 67(3), 325–333 (2014)

    Article  Google Scholar 

  27. Tang, X., Wang, J., Zhong, J., Pan, Y.: Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(2), 407–418 (2014)

    Article  Google Scholar 

  28. Kim, W.: Prediction of essential proteins using topological properties in GO-pruned PPI network based on machine learning methods. Tsinghua Sci. Technol. 17(6), 645–658 (2012)

    Article  Google Scholar 

  29. Peng, W., Wang, J., Cheng, Y., et al.: UDoNC: an algorithm for identifying essential proteins based on protein domains and protein-protein interaction networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(2), 276–288 (2015)

    Article  Google Scholar 

  30. Peng, W., Wang, J., Wang, W., et al.: Iteration method for predicting essential proteins based on orthology and protein-protein interaction networks. BMC Syst. Biol. 6(1), 87 (2012)

    Article  Google Scholar 

  31. Li, M., Lu, Y., Niu, Z., et al.: United complex centrality for identification of essential proteins from PPI networks (2015). doi:10.1109/TCBB.2015.2394487

    Google Scholar 

  32. Ren, J., Wang, J., Li, M., et al.: Discovering essential proteins based on PPI network and protein complex. Int. J. Data Mining Bioinform. 12(1), 24–43 (2015)

    Article  MathSciNet  Google Scholar 

  33. Przytycka, T.M., Singh, M., Slonim, D.K.: Toward the dynamic interaction: it’s about time. Brief Bioinform. 11, 15–29 (2010)

    Article  Google Scholar 

  34. Wu, F.X., Xia, Z.H., Mu, L.: Finding significantly expresses genes from timecourse expression profiles. Int. J. Bioinform. Res. Appl. 5(1), 50–63 (2009)

    Article  Google Scholar 

  35. Binder, J.X., Pletscher-Frankild, S., Tsafou, K., et al.: COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database, 2014: bau012 (2014)

    Google Scholar 

  36. Xenarios, I., Rice, D.W., Salwinski, L., et al.: DIP: the database of interacting proteins. Nucleic Acids Res. 28(1), 289–291 (2000)

    Article  Google Scholar 

  37. Mewes, H.W., Frishman, D., Mayer, K.F.X., et al.: MIPS: analysis and annotation of proteins from whole genomes in 2005. Nucleic Acids Res. 34(suppl 1), D169–D172 (2006)

    Article  Google Scholar 

  38. Cherry, J.M., Adler, C., Ball, C., et al.: SGD: Saccharomyces genome database. Nucleic Acids Res. 26(1), 73–79 (1998)

    Article  Google Scholar 

  39. Zhang, R., Ou, H.Y., Zhang, C.T.: DEG: a database of essential genes. Nucleic Acids Res. 32(suppl 1), D271–D272 (2004)

    Article  Google Scholar 

  40. Saccharom yces Genome Deletion Project. http://www.sequence.stanford.edu/group/yeast_deletion_project

  41. Tu, B.P., Kudlicki, A., Rowicka, M., et al.: Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310(5751), 1152–1158 (2005)

    Article  Google Scholar 

  42. Holman, A.G., Davis, P.J., Foster, J.M., et al.: Computational prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi. BMC Microbiol. 9(1), 243 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Li or Yi Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, M., Chen, X., Ni, P., Wang, J., Pan, Y. (2016). Identifying Essential Proteins by Purifying Protein Interaction Networks. In: Bourgeois, A., Skums, P., Wan, X., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2016. Lecture Notes in Computer Science(), vol 9683. Springer, Cham. https://doi.org/10.1007/978-3-319-38782-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38782-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38781-9

  • Online ISBN: 978-3-319-38782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics