
Operating System Compositor and Hardware
Usage to Enhance Graphical Performance

in Web Runtimes

Antti Peuhkurinen1(B), Andrey Fedorov1, and Kari Systä2

1 Huawei Technologies Oy, Helsinki, Finland
{antti.peuhkurinen,andrey.fedorov}@huawei.com

2 Tampere University of Technology, Tampere, Finland
kari.systa@tut.fi

Abstract. Web runtimes are an essential part of the modern operating
systems and their role will further grow in the future.Many web run-
time implementations need to support multiple platforms and the design
choices are driven by portability instead of optimized use of the under-
lying hardware.Thus, the implementations do not fully utilize the GPU
and other graphics hardware.The consequence is reduced performance
and increased power consumption. In this paper, we describe a way to
improve the graphical performance of Chromium web runtime dramati-
cally. In addition, the implementation aspects are discussed.

Keywords: Graphics · Web runtimes · Performance

1 Introduction

Performance of the graphics rendering in web runtimes becomes more important
when the web applications get more visual and dynamic. Many design decisions
in current web runtimes aim at portability and are done before the current
enablers like graphical processing units were common. In addition, some of the
design decisions have been made poorly in the very beginning in the web run-
times. Examples include the design of the graphical scene graph and lack of using
shared buffers between the processes.

In this paper we describe design and prototype of a web runtime that can use
the latest hardware enablers to achieve maximum performance. The proposed
design is suitable also to other web runtime implementations. Details of tex-
ture compression algorithms, driver level buffer update synchronization, display
hardware, hardware compositor and graphics processing unit internal design are
beyond the scope of this paper.

The rest of this paper is structured as follows. Section 2 discusses background
of this work, including a typical architecture designs in mobile terminals and
an introduction to the prototype we are implementing. Section 3 describes the
principles of the prototype we have implemented, together with an overview

c© Springer International Publishing Switzerland 2016
A. Bozzon et al. (Eds.): ICWE 2016, LNCS 9671, pp. 381–388, 2016.
DOI: 10.1007/978-3-319-38791-8 23



382 A. Peuhkurinen et al.

of the implementation. Section 4 discusses lessons we have learned during the
testing of the implemented prototype. Section 5 concludes the paper with some
final remarks.

2 Background

Figure 1 we show an example from common graphics pipeline where output of
two applications are rendered by the operating system compositor to the device
screen. With an operating system compositor we mean the lowest level graphical
compositor that combines graphics and visuals from several running applications
to a single display. For example, in a mobile device the status bar, user interface
of the running applications and pop-up notifications are most probably output
of different processes. Initially the applications draw to their own frame buffers.
The application’s frame buffers are then moved through a ring buffer to the
compositor process. Ring buffering is used to create double or triple buffering.
With multiple buffers the application can draw to a frame buffer simultaneously
with a compositor reading another frame buffer from same ring buffer without
blocking happening. This ensures fast throughput.

Fig. 1. Common graphics pipeline from application to display controller

The compositor process is responsible of moving the application surface data
to the display controller. The connection between a compositor and a display con-
troller is done either with a straight hardware composition in the display controller
or with a second ring buffer between the compositor and the display controller. In
simplest case the content of a frame buffer can be directly copied to a certain area
of a display frame buffer. Ring buffer is used in cases where the compositor process
needs to process the application frame buffer and enable simultaneous and non-
blocking operation of the display controller.

In our earlier research, we have created a prototype of a 3D volume manager
which serves in a similar function as a traditional window manager and operating
system compositor but works in a 3D context [1–3]. One of the key contributions
of that research was the graphics protocol between the applications and the
operating system compositor.

Figure 2 shows the new pipeline that was enabled by our earlier work. In our
pipeline application can have multiple shared buffers in use without need of an



Operating System Compositor and Hardware 383

Fig. 2. Single pass compositor and zero copy GPU buffers

intermediate ring buffering. In addition, application can map it’s buffer straightly
to specific area on display. In this paper, we call a buffer which had a copying
removed between processes as a zero copy buffer. The zero copy means in this
context that the application does not need to copy the buffer to the compositor,
but instead the compositor can use the same shared buffer straightly. In addition,
the compositor buffers can be mapped to be exact part of a display which can
relax the graphics pipeline even more. When a buffer is mapped to a certain
display area we say that the buffer is using a hardware layer.

In the research reported in this paper we wanted to study feasibility of this
protocol with an existing web runtime. One suitable web runtime candidate for
the research was the Chromium web runtime. Chromium has a multi-process
architecture and moves graphical data between it’s processes. The Chromium’s
development roadmap did not have any similar work planned so we saw this as
a good area to continue our research [6].

To make the Chromium to use our graphics pipeline, several technological
aspects related to the operating system compositor required some special consid-
erations. To begin with, an attention must be paid to management of graphics
drawing within the web runtime. We need to control the textures and their life
time, format and transformation. Moreover, when creating the textures we need
to control the amount of needed buffers and use of hardware layers. All these
elements are addressed in the following.

Figure 3 depicts typical processes running in Chromium. In the internal
graphics processing of Chromium it is normal to copy graphical data from a
process to another. In addition, Chromium composites most of it’s own graphi-
cal data to a surface given by the operating system compositor. Chromium treats
this as the main interface to adapt to different operating systems and hardware.
In some custom cases, like video playing, Chromium can use platform specific
adaptations for better performance.

3 Implementation

3.1 Graphics Protocol

In our earlier prototype applications were able to move their graphical scene
to the operating system compositor. Instead of each application drawing them-
selves to single rectangular frame buffers, the applications moved their textures



384 A. Peuhkurinen et al.

Fig. 3. Default Chromium graphics stack

and texture transformation data to the compositor which then composites the
graphical scene to a final screen buffer [2]. The benefits from this kind of protocol
are the possibility to use directly lower level graphics buffers and the enablers for
more hardware dependent and multi-application (or multi-process) drawing opti-
mization. In addition, when application scene changes it is possible to move only
the changes instead of drawing the whole surface again for the compositor. For
example in case of animation, the graphic libraries can send the transformation
data that is being applied to a texture. This way only the needed transformation
information is sent to the compositor instead of first drawing a texture with the
transformation being applied to it and then sending this whole new texture to
the compositor.

For the transfer of the graphical data over the process boundaries we have
defined four types of objects: (1) a render object combining the other three
object types, (2) a transformation matrix that defines the transformation of the
render object in application space, (3) a mesh that defines the vertex data, and
(4) a texture which is a bitmap.

3.2 Graphics Protocol Data Formats

Figure 4 visualizes the atomic 3D data objects in our graphics protocol and
the objects the following features. (1) The mesh supports shading and texture
UV mapping. Each vertex has X, Y, Z values for position, X, Y, Z values for
normal and U, V values of texture mapping. The prototype presented in this
paper use only rectangular meshes. (2) The textures are based on rectangular



Operating System Compositor and Hardware 385

Fig. 4. Graphics protocol data formats

bitmaps. The textures can be in different formats and have single or multiple
buffers. Textures with multiple buffers can work as a ring buffer. (3) Our Trans-
formation Matrix is a 4× 4 matrix that presents a transformation of the render
object in the application space. Transformation contains location, rotation and
scale. For example the meshes animated with CSS can use transformation matrix
to control the animation instead of full using a series of rasterized bitmaps.
(4) The Render Object connects the above three literals - mesh, texture and
transformation matrix - and makes the combination drawable in the composi-
tor. (5) Application Volume is the cuboid application space where the render
objects of the application can be drawn into. We use a cuboid 3D volume to
replace the old rectangular window from the old 2D application paradigm. This
is because the graphics stack was originally designed for the augmented and
virtual reality 3D application use cases [2].

3.3 Chromium with Enhanced Graphics

Our solution has been depicted in Fig. 5. The main difference to the Chromium’s
default architecture shown earlier in Fig. 3 is that now the processes of a single
Chromium instance can share the buffers between themselves and with the com-
positor. In addition, Chromium can easily map multiple buffers to be hardware
layers. There is no need to composite the website and the Chromium’s user inter-
face to a single framebuffer offered by the compositor anymore. This reduces the
amount of drawing and buffering needed, thus reducing memory usage and GPU
usage.

4 Evaluation

4.1 Power and Performance

The measurements where done by using Huawei P8 device [4]. We tested ver-
sion 45 of Chromium using our own graphics stack against default P8 Android



386 A. Peuhkurinen et al.

Fig. 5. Chromium with enhanced graphics

Chromium. For the initial tests we have used a Chinese website www.taobao.com
as test content [5]. This website has some simple CSS animations, lot of CPU based
text bitmap creation and lot of image data. The test was started by loading the
page completely, then the page was scrolled down for a length of full screen height
for five times waiting 2.0 s between the scrolls and then up five times. We mea-
sured scroll times and speeds so that they would as similar as possible in repeated
tests. During the testing we measured the CPU, GPU load and clock speeds, mem-
ory consumption and total voltage over and amperes drawn from the battery.
Agilent 66319D power supply was used as a battery replacement in our testing.
Clock speeds and load where measured with sysfs for memory, CPU and GPU.
During the tests we also took the screen brightness, device temperature, other
processes run and all similar noise factors into account to make the test results
more comparable. We call this test case as Taobao test case.

Figure 6 shows the initial test results from the Taobao test case. The test
results got are averages over the time and ten test runs. The default Chromium
measurements are placed on the left side and our solution’s measurements are
placed on the right side in each twin bar. The measurements show that the CPU
usage is about the same 30 % load with all of the four cores running at 1200 MHz
with both of the tested solutions. The GPU load is slightly smaller with our solu-
tions. The GPU clock speed was between 280–480 MHz with our solution and
280–680 MHz with the default Chromium solution. The memory usage is about
20 % smaller with our solution. The power consumption is 17 % less with our solu-
tion compared to the default Chromium solution. In the drawing performance we
achieved constant 60 frames per second with both of the solutions. It is possible
to show heavier content with our system than with the default Android browser
still achieving the constant maxed frame rate. This is because our system uses the
hardware resources - mainly memory and GPU - more efficiently.

www.taobao.com


Operating System Compositor and Hardware 387

Fig. 6. Test results

4.2 Portability

We believe that our design could be easily ported also to other web runtimes
and operating systems. Most portable component is the underlying composi-
tor technology. To enable the web runtime side enhancements operating system
compositor must have a similar flexible interface to access the hardware capa-
bilities and to move the application graphical scene to the compositor side. The
implementation of the compositor is done top of standard interfaces found from
Android compatible hardware. This makes the compositor code portable to other
up-to-date platforms. However, the portability of our concrete browser related
code is Chromium specific but the general idea behind the changes is easy to
adopt also in other web runtimes than Chromium. When porting the technol-
ogy to other web runtimes it is essential to understand where the web runtime is
allocating buffers and how it is managing them internally and between processes.

4.3 Robustness

Robustness of the implementation is being tested currently. It seems that we do
not have any major flaws in the design and implementation. We have discovered
some small corner cases during the implementation and fixed them.

4.4 Security

When using a GPU it is always possible to introduce flaws in security when
multiple processes access the GPU memory at the same time like shown for
example by Lee et al. [8]. Our design has not removed this threat completely but
it makes it smaller. This is because the web runtime processes are using the GPU
much more less than in the earlier web runtime implementation. This means
that most of the GPU usage takes place in the operating system compositor. In
the operating system compositor we have a better control from the GPU usage
because the compositor is one of the vendor controlled system applications. This
isolation enhances the security and makes the overall security better.



388 A. Peuhkurinen et al.

5 Conclusions

For the success of the web application paradigm the performance and power
usage improvements in the web runtime graphics processing are essential. In
this paper, we have presented a novel operating system compositor which enables
web runtime to use the hardware capabilities more efficiently. With this system
we have measured clear power saving and optimized resource usage in a normal
web runtime usage scenario. To create a production ready system more detail
testing is needed to find out possible corner cases needing more polishing. We
will continue this work to enhance the graphical performance of the Chromium
browser even more. Next we focus to test the system overall robustness and do
some more performance improvements at the same time.

References

1. Peuhkurinen, A., Mikkonen, T., Terho, M.: Using RDF Data as Basis for 3D Window
Management in Mobile Devices. MobiWIS, Niagara Falls (2011)

2. Peuhkurinen, A., Mikkonen, T.: Three-dimensional volume managers replacing win-
dow managers in augmented reality application paradigm. Poster presented at
Mobilesoft, Florence (2015)

3. Peuhkurinen, A.: Method for Displaying a 3D Scene on a Screen. US Patent
US20140313197

4. Huawei P8 Mobile Phone. https://en.wikipedia.org/wiki/Huawei P8. Accessed 13
Feb 2016

5. Taobao Website. https://www.taobao.com/. Accessed 15 Feb 2016
6. Chromium Graphics Roadmap. https://www.chromium.org/developers/design-

documents/gpu-accelerated-compositing-in-chrome/gpu-architecture-roadmap.
Accessed 13 Feb 2016

7. Android Graphics Components. https://source.android.com/devices/graphics/#
android graphics components. Accessed 14 Feb 2016

8. Lee, S., Kim, W., Kim, J., Kim, J.: Stealing webpages rendered on your browser by
exploiting GPU vulnerabilities. In: IEEE Symposium on Security and Privacy, San
Jose (2014)

https://en.wikipedia.org/wiki/Huawei_P8
https://www.taobao.com/
https://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome/gpu-architecture-roadmap
https://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome/gpu-architecture-roadmap
https://source.android.com/devices/graphics/#android_graphics_components
https://source.android.com/devices/graphics/#android_graphics_components

	Operating System Compositor and Hardware Usage to Enhance Graphical Performance in Web Runtimes
	1 Introduction
	2 Background
	3 Implementation
	3.1 Graphics Protocol
	3.2 Graphics Protocol Data Formats
	3.3 Chromium with Enhanced Graphics

	4 Evaluation
	4.1 Power and Performance
	4.2 Portability
	4.3 Robustness
	4.4 Security

	5 Conclusions
	References


