Skip to main content

Improved Survey Propagation on Graphics Processing Units

  • Conference paper
  • First Online:
Book cover Green, Pervasive, and Cloud Computing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9663))

  • 787 Accesses

Abstract

The development of graphic processing units (GPUs) ensures a significant improvement in parallel computing performance. However, it also leads to an unprecedented level of complexity in algorithm design because of its physical architecture. In this paper, we propose an improved survey propagation (SP) algorithm to solve the Boolean satisfiability problem on GPUs. SP is a CPU-based incomplete algorithm that can solve hard instances of k-CNF problems with large numbers of variables. In accordance with the analysis on NVIDIA Kepler GPU architecture, a more efficient algorithm is designed with methods of changing data flow, parallel computing, and hiding communication. For NVIDIA K20c and Intel Xeon CPU E5-2650, our proposed algorithm can obtain speed 4.76 times faster than its CPU counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achlioptas, D., Moore, C.: Random k-SAT: two moments suffice to cross a sharp threshold. SIAM J. Comput. 36(3), 740–762 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Braunstein, A., Mézard, M., Weigt, M., Zecchina, R.: Constraint satisfaction by survey propagation. In: Computational Complexity and Statistical Physics, p. 107 (2005)

    Google Scholar 

  3. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random Struct. Algorithms 27(2), 201–226 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Braunstein, A., Zecchina, R.: Survey propagation as local equilibrium equations. J. Stat. Mech. Theory Exp. 2004(06), P06007 (2004)

    Article  MATH  Google Scholar 

  5. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM (1971)

    Google Scholar 

  6. Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)

    MATH  Google Scholar 

  7. Fujii, H., Fujimoto, N.: GPU acceleration of BCP procedure for SAT algorithms. IPSJ SIG Notes 8, 1–6 (2012)

    Google Scholar 

  8. Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Levin, L.A.: Average case complete problems. SIAM J. Comput. 15(1), 285–286 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luo, Z., Liu, H.: Cellular genetic algorithms and local search for 3-SAT problem on graphic hardware. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp. 2988–2992. IEEE (2006)

    Google Scholar 

  11. Manolios, P., Zhang, Y.: Implementing survey propagation on graphics processing units. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 311–324. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability problems. Science 297(5582), 812–815 (2002)

    Article  Google Scholar 

  13. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Burlington (2014)

    MATH  Google Scholar 

  14. Tao, T., Xuejun, Y., Yisong, L.: Locality analysis and optimization for stream programs based on iteration sequence. J. Comput. Res. Dev. 6, 027 (2012)

    Google Scholar 

  15. Wang, J.: Average-case computational complexity theory. In: Complexity Theory Retrospective II, pp. 295–328 (1997)

    Google Scholar 

  16. Wen, M., Su, H., Wei, W., Wu, N., Cai, X., Zhang, C.: High efficient sedimentary basin simulations on hybrid CPU-GPU clusters. Cluster Comput. 17(2), 359–369 (2014)

    Article  Google Scholar 

  17. Zhang, H.: SATO: an efficient prepositional prover. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 272–275. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  18. Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a distributed propositional prover and its application to quasigroup problems. J. Symbolic Comput. 21(4), 543–560 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is funded by National Science Foundation of China (number 61303070). Dr. Jingfei Jiang was an academic visitor at University of Manchester. We acknowledge TianHe-1A supercomputing system service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhao, Y., Jiang, J., Wu, P. (2016). Improved Survey Propagation on Graphics Processing Units. In: Huang, X., Xiang, Y., Li, KC. (eds) Green, Pervasive, and Cloud Computing. Lecture Notes in Computer Science(), vol 9663. Springer, Cham. https://doi.org/10.1007/978-3-319-39077-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39077-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39076-5

  • Online ISBN: 978-3-319-39077-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics