Skip to main content

Comparison of Tree-Based Methods for Multi-target Regression on Data Streams

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9607))

Abstract

Single-target regression is a classical data mining task that is popular both in the batch and in the streaming setting. Multi-target regression is an extension of the single-target regression task, in which multiple continuous targets have to be predicted together. Recent studies in the batch setting have shown that global approaches, predicting all of the targets at once, tend to outperform local approaches, predicting each target separately. In this paper, we explore how different local and global tree-based approaches for multi-target regression compare in the streaming setting. Specifically, we apply a local method based on the FIMT-DD algorithm and propose a novel global method, named iSOUP-Tree-MTR. Furthermore, we present an experimental evaluation that is mainly oriented towards exploring the differences between the local and the global approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.eunite.org/eunite/news/Summary%20Competition.pdf.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset.

  3. 3.

    http://mulan.sourceforge.net/datasets-mtr.html.

References

  1. Appice, A., Džeroski, S.: Stepwise induction of multi-target model trees. In: 18th European Conference on Machine Learning, pp. 502–509 (2007)

    Google Scholar 

  2. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: 8th International Symposium on Advances in Intelligent Data Analysis, pp. 249–260 (2009)

    Google Scholar 

  3. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)

    Google Scholar 

  4. Domingos, P., Hulten, G.: Mining high-speed data streams. In: 6th ACM SIGKDD, pp. 71–80. ACM, New York (2000)

    Google Scholar 

  5. Duarte, J., Gama, J.: Ensembles of adaptive model rules from high-speed data streams. In: 3rd International Workshop on Big Data, Streams and Heterogeneous Source Mining, pp. 198–213 (2014)

    Google Scholar 

  6. Fanaee-T, H., Gama, J.: Event labeling combining ensemble detectors and background knowledge. Prog. Artif. Intell. 2, 1–15 (2013)

    Article  Google Scholar 

  7. Gama, J.: Knowledge Discovery from Data Streams. CRC Press, Boca Raton (2010)

    Book  MATH  Google Scholar 

  8. Ikonomovska, E., Gama, J.: Learning model trees from data streams. In: Boulicaut, J.-F., Berthold, M.R., Horváth, T. (eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 52–63. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Ikonomovska, E., Gama, J., Džeroski, S.: Online tree-based ensembles and option trees for regression on evolving data streams. Neurocomputing 150, 458–470 (2015)

    Article  Google Scholar 

  10. Ikonomovska, E., Gama, J., Džeroski, S.: Incremental multi-target model trees for data streams. In: 2011 ACM Symposium on Applied Computing, pp. 988–993. ACM, New York (2011)

    Google Scholar 

  11. Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data streams. Data Min. Knowl. Disc. 23(1), 128–168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Silla Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different application domains. Data Min. Knowl. Disc. 22(1–2), 31–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting structured outputs. Pattern Recognit. 46(3), 817–833 (2013)

    Article  Google Scholar 

  14. Osojnik, A., Panov, P., Džeroski, S.: Multi-label classification via multi-target regression on data streams. In: Japkowicz, N., Matwin, S. (eds.) DS 9356. LNCS, vol. 9356, pp. 170–185. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24282-8_15

    Chapter  Google Scholar 

  15. Oza, N.C., Russel, S.J.: Experimental comparisons of online and batch versions of bagging and boosting. In: 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 359–364. ACM, New York (2001)

    Google Scholar 

  16. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)

    Article  Google Scholar 

  17. Shaker, A., Hüllermeier, E.: IBLStreams: a system for instance-based classification and regression on data streams. Evol. Syst. 3(4), 235–249 (2012)

    Article  Google Scholar 

  18. Stojanova, D., Panov, P., Gjorgjioski, V., Kobler, A., Džeroski, S.: Estimating vegetation height and canopy cover from remotely sensed data with machine learning. Ecol. Inform. 5(4), 256–266 (2010)

    Article  Google Scholar 

  19. Stojanova, D.: Estimating Forest Properties from Remotely Sensed Data by using Machine Learning. Master’s thesis, Jožef Stefan International Postgraduate School, Ljubljana, Slovenia (2009)

    Google Scholar 

  20. Struyf, J., Dzeroski, S.: Constraint based induction of multi-objective regression trees. In: 4th International Workshop on Knowledge Discovery in Inductive Databases, pp. 222–233 (2005)

    Google Scholar 

  21. Xioufis, E.S., Groves, W., Tsoumakas, G., Vlahavas, I.P.: Multi-label classification methods for multi-target regression. CoRR abs/1211.6581 (2012). http://arxiv.org/abs/1211.6581

Download references

Acknowledgments

The authors are supported by The Slovenian Research Agency (Grant P2-0103 and a young researcher grant) and the European Commission (Grants ICT-2013-612944 MAESTRA and ICT-2013-604102 HBP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aljaž Osojnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Osojnik, A., Panov, P., Džeroski, S. (2016). Comparison of Tree-Based Methods for Multi-target Regression on Data Streams. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2015. Lecture Notes in Computer Science(), vol 9607. Springer, Cham. https://doi.org/10.1007/978-3-319-39315-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39315-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39314-8

  • Online ISBN: 978-3-319-39315-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics