Skip to main content

The Method of Hardware Implementation of Fuzzy Systems on FPGA

  • Conference paper
  • First Online:
Book cover Artificial Intelligence and Soft Computing (ICAISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9692))

Included in the following conference series:

Abstract

In this paper a method of implementation of fuzzy system on FPGA devices is presented. The method applies to a class of fuzzy systems which are functionally equivalent to a radial basis function networks. In the paper the example fuzzy system was implemented on the FPGA device with the use of the proposed method. The results confirm a high performance of the obtained fuzzy system. This was achieved at a reasonable consumption of the hardware resources of the FPGA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonio-Mendez, R., de la Cruz-Alejo, J., Peñaloza-Mejia, O.: Fuzzy logic control on FPGA for solar tracking system. In: Ceccarelli, M., Ceccarelli, E.E.H. (eds.) Multibody Mechatronic Systems. Mechanisms and Machine Science, vol. 25, pp. 11–21. Springer, Switzerland (2015)

    Google Scholar 

  2. Aghdam, M.H., Heidari, S.: Feature selection using particle swarm optimization in text categorization. J. Artif. Intell. Soft Comput. Res. 5(4), 231–238 (2015)

    Article  Google Scholar 

  3. Aissat, K., Oulamara, A.: A priori approach of real-time ridesharing problem with intermediate meeting locations. J. Artif. Intell. Soft Comput. Res. 4(4), 287–299 (2014)

    Article  Google Scholar 

  4. Akhtar, Z., Rattani, A., Foresti, G.L.: Temporal analysis of adaptive face recognition. J. Artif. Intell. Soft Comput. Res. 4(4), 243–255 (2014)

    Article  Google Scholar 

  5. Bahoura, M., Park, C.-W.: FPGA-implementation of dynamic time delay neural network for power amplifier behavioral modeling. Analog Integr. Circuits Signal Process. 73, 819–828 (2012)

    Article  Google Scholar 

  6. Bartczuk, Ł.: Gene expression programming in correction modelling of nonlinear dynamic objects. ISAT 2015 – Part I. AISC, vol. 429, pp. 125–134. Springer, Switzerland (2016)

    Google Scholar 

  7. Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for nonlinear fuzzy correction modelling of dynamic objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 169–180. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Bartczuk, Ł., Rutkowska, D.: Medical diagnosis with type-2 fuzzy decision trees. In: Kącki, E., Rudnicki, M., Stempczyńska, J. (eds.) Computers in Medical Activity. AISC, vol. 65, pp. 11–21. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Bartczuk, Ł., Rutkowska, D.: Type-2 fuzzy decision trees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 197–206. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Bas, E.: The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting. J. Artif. Intell. Soft Comput. Res. 6(1), 5–11 (2016)

    Article  Google Scholar 

  11. Bosque, G., del Campo, I., Echanobe, J.: Fuzzy systems, neural networks and neuro-fuzzy systems: a vision on their hardware implementation and platforms over two decades. Eng. Appl. Artif. Intell. 32, 283–331 (2014)

    Article  Google Scholar 

  12. Benzekri, A., Azrar, A.: FPGA-based design process of a fuzzy logic controller for a dual-axis sun tracking system. Arab. J. Sci. Eng. 39, 6109–6123 (2014)

    Article  Google Scholar 

  13. Camargo, E., Aguilar, J.: Advanced supervision of oil wells based on soft computing techniques. J. Artif. Intell. Soft Comput. Res. 4(3), 215–225 (2014)

    Article  Google Scholar 

  14. Chen, M., Ludwig, S.A.: Particle swarm optimization based fuzzy clustering approach to identify optimal number of clusters. J. Artif. Intell. Soft Comput. Res. 4(1), 43–56 (2014)

    Article  Google Scholar 

  15. Cheng, S., Shi, Y., Qin, Q., Zhang, Q., Bai, R.: Population diversity maintenance in brain storm optimization algorithm. J. Artif. Intell. Soft Comput. Res. 4(2), 83–97 (2014)

    Article  Google Scholar 

  16. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks and optimal linear predictors. Signal Process. Image Commun. 156, 559–565 (2000)

    Article  Google Scholar 

  17. Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)

    Google Scholar 

  18. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of the International Joint Conference on Neural Networks 2005, Montreal, pp. 1764–1769 (2005)

    Google Scholar 

  19. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno neuro-fuzzy structures for nonlinear approximation. WSEAS Trans. Syst. 4(9), 1450–1458 (2005)

    Google Scholar 

  20. Cpałka, K., Rutkowski, L.: A new method for designing and reduction of neuro-fuzzy systems. In: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, WCCI 2006), Vancouver, pp. 8510–8516 (2006)

    Google Scholar 

  21. Cpalka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. Nonlinear Anal. Series A Theory Methods Appl. 71, 1659–1672 (2009). Elsevier

    Article  Google Scholar 

  23. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)

    Article  MATH  Google Scholar 

  24. Cpałka, K., Zalasiński, M.: On-line signature verification using vertical signature partitioning. Expert Syst. Appl. 41(9), 4170–4180 (2014)

    Article  Google Scholar 

  25. Cpałka, K., Zalasiński, M., Rutkowski, L.: New method for the on-line signature verification based on horizontal partitioning. Pattern Recognit. 47, 2652–2661 (2014)

    Article  Google Scholar 

  26. Cpałka, K., Łapa, K., Przybył, A., Zalasiń ski, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)

    Article  Google Scholar 

  27. Cpałka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47–56 (2016). http://dx.doi.org/10.1016/j.asoc.2016.02.017

    Article  Google Scholar 

  28. Deliparaschos, K.M., Nenedakis, F.I., Tzafestas, S.G.: Design and implementation of a fast digital fuzzy logic controller using FPGA technology. J. Intell. Robot. Syst. 45, 77–96 (2006)

    Article  Google Scholar 

  29. Dziwiński, P., Bartczuk, Ł., Przybył, A., Avedyan, E.D.: A new algorithm for identification of significant operating points using swarm intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 349–362. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  30. Dziwiński, P., Avedyan, E.D.: A new approach to nonlinear modeling based on significant operating points detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 364–378. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  31. Gałkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions with applications to system identification. Proc. IEEE 73(5), 942–943 (1985)

    Article  Google Scholar 

  32. Gałkowski, T., Rutkowski, L.: Nonparametric fitting of multivariate functions. IEEE Trans. Autom. Control 31(8), 785–787 (1986)

    Article  MATH  Google Scholar 

  33. Gdaim, S., Mtibaa, A., Mimouni, M.F.: Design and experimental implementation of DTC of an induction machine based on fuzzy logic control on FPGA. IEEE Trans. Fuzzy Syst. 23(3), 644–655 (2015)

    Article  Google Scholar 

  34. Gręblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric pattern recognition procedures. Proc. IEEE 69(4), 482–483 (1981)

    Article  Google Scholar 

  35. Li, H., Gupta, M.: Fuzzy Logic and Intelligent Systems, pp. 50–55. Kluwer Academic Publishers, Boston (1995)

    Google Scholar 

  36. Jang, J.S.R., Sun, C.T.: Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans. Neural Netw. 4(1), 156–159 (1993)

    Article  Google Scholar 

  37. Kluska, J., Hajduk, Z.: Hardware implementation of P1-TS fuzzy rule-based systems on FPGA. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 282–293. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  38. Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  39. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)

    Article  MathSciNet  Google Scholar 

  40. Li, X., Er, M.J., Lim, B.S., Zhou, J.H., Gan, O.P., Rutkowski, L.: Fuzzy regression modeling for tool performance prediction and degradation detection. Int. J. Neural Syst. 20(05), 405–419 (2010)

    Article  Google Scholar 

  41. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 217–232. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  42. Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 523–534. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  43. Łapa, K., Zalasiński, M., Cpałka, K.: A new method for designing and complexity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 329–344. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  44. Hassan, M.Y., Sharif, W.F.: Design of FPGA based PID- like fuzzy controller for industrial applications. IAENG Int. J. Comput. Sci. 34(2), 1–7 (2007)

    Google Scholar 

  45. Osowski, S.: Sieci neuronowe w ujeciu algorytmicznym, pp. 160–188. WNT, Warszawa (1996)

    Google Scholar 

  46. Poon, J., Haessig, P., Hwang, J., Celanovic, I.: High-speed hardware-in-the loop platform for rapid prototyping of power electronics systems. In: 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply (CITRES), pp. 420–424 (2010)

    Google Scholar 

  47. Poplawski, M., Bialko, M.: Implementation of fuzzy logic controller in FPGA circuit for guiding electric wheelchair. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 216–222. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  48. Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 697–705. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  49. Rutkowski, L.: Sequential estimates of probability densities by orthogonal series and their application in pattern classification. IEEE Trans. Syst. Man Cybern. 10(12), 918–920 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rutkowski, L.: On nonparametric identification with prediction of time-varying systems. IEEE Trans. Autom. Control 29(1), 58–60 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  51. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Syst. Control Lett. 6(1), 33–35 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rutkowski, L.: Real-time identification of time-varying systems by non-parametric algorithms based on Parzen kernels. Int. J. Syst. Sci. 16(9), 1123–1130 (1985)

    Article  MATH  Google Scholar 

  53. Rutkowski, L.: A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification. IEEE Trans. Circuits Syst. 33(8), 812–818 (1986)

    Article  MATH  Google Scholar 

  54. Rutkowski, L.: Application of multiple Fourier-series to identification of multivariable non-stationary systems. Int. J. Syst. Sci. 20(10), 1993–2002 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans. Neural Netw. 15(4), 811–827 (2004)

    Article  MathSciNet  Google Scholar 

  56. Rutkowski, L., Cpałka, K.: Flexible structures of neuro-fuzzy systems, Quo Vadis Computational Intelligence. Fuzziness and Soft Computing, vol. 54, pp. 479–484. Springer (2000)

    Google Scholar 

  57. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, vol. 76, pp. 85–90. IOS Press, Amsterdam (2002)

    Google Scholar 

  58. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control and Cybern. 31(2), 297–308 (2002)

    MATH  Google Scholar 

  59. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 645–650. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  60. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision Trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)

    Article  Google Scholar 

  61. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the Gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)

    Article  Google Scholar 

  62. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–15 (2014)

    Article  Google Scholar 

  63. Rutkowski, L., Rafajłowicz, E.: On optimal global rate of convergence of some nonparametric identification procedures. IEEE Trans. Autom. Control 34(10), 1089–1091 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  64. Starczewski, J.T., Bartczuk, Ł., Dziwiński, P., Marvuglia, A.: Learning methods for type-2 FLS based on FCM. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS, vol. 6113, pp. 224–231. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  65. Tomera, M.: Porównanie jakości pracy trzech algorytmów typu PID: liniowego, rozmytego i neuronowego. Automatyka, Elektryka, Zakłócenia 6, 59–77 (2011). (in Polish)

    Google Scholar 

  66. Wang, L., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

  67. Xilinx Spartan-6 FPGA User Guides. UG389 v1.5, UG389 v1.2 (2014). http://www.xilinx.com/support/documentation/user_guides/

  68. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 362–367. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  69. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 493–502. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  70. Zalasiński, M., Łapa, K., Cpałka, K.: New algorithm for evolutionary selection of the dynamic signature global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 113–121. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  71. Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using hybrid partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 216–230. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  72. Zalasiński, M., Cpałka, K., Hayashi, Y.: New method for dynamic signature verification based on global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 231–245. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  73. Zalasiński, M., Cpałka, K., Hayashi, Y.: New fast algorithm for the dynamic signature verification using global features values. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 175–188. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  74. Zalasiński, M., Cpałka, K., Er, M.J.: A new method for the dynamic signature verification based on the stable partitions of the signature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 161–174. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

Download references

Acknowledgment

The project was financed by the National Science Centre (Poland) on the basis of the decision number DEC-2012/05/B/ST7/02138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Przybył .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Przybył, A., Er, M.J. (2016). The Method of Hardware Implementation of Fuzzy Systems on FPGA. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9692. Springer, Cham. https://doi.org/10.1007/978-3-319-39378-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39378-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39377-3

  • Online ISBN: 978-3-319-39378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics