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Abstract. This paper presents how to classify the sensorial information
to set the label of the cells in the occupation grid map of an unknown
environment where several robots are wandering and how to use these
labels to complete a path execution task. Reactive navigation of a mobile
robot needs to identify the objects that encounters in its way towards a
specified goal. The robot does not know the environment but it knows the
position of its goal. The robot needs to build a map during its navigation
to the goal. A pattern classification task is needed to update the state
of the map grid cells as more information is acquired by the sensors.
We propose to use a finite state machine approach to set the correct
label according to the objects in the environment. The occupancy grid
map is crucial to complete the navigation task safely. We have tested our
approach in several scenarios with a varying number of mobile obstacles.
The results show that our method works efficiently in a set of benchmark
scenarios of varying degree of complexity.

1 Introduction

Autonomous navigation in unknown and dynamic environments is classified as
one of the more challenging tasks in the mobile robotic community [4]. This
capability is needed for the robot to navigate safely in environments populated
either by other robots or people. In such an environment, the other robots or
people behave in ways difficult to model and the autonomous robot has to react
in order to guarantee the safety of all the entities sharing the same environ-
ment. Another scenario where safe navigation is required is the development of
autonomous vehicles. Safety also needs to be guaranteed to let the autonomous
vehicles to complete the navigation tasks without colliding among them.

We propose to use an occupancy grid map representation for the unknown
environment. The occupancy grid is a well known approach in mobile robotics
that has shown to be robust even if it shows also several disadvantages [1]. Some
recent works use occupancy grids in the safe navigation context. For example,
Li and Ruichek use it to map urban environments [5]; Wang et al. use it to track
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dynamical objects [9] and Xin et al. use it for representing the dynamic envi-
ronment of an autonomous vehicle [10]. In this paper, we also use an occupancy
grid in a reactive safe navigation task.

We use the information provided by a laser range finder (LRF) to classify
the cells in the occupancy grid and a finite state machine (FSM) to determine
if obstacles are moving or steady.

Rest of this paper is organized as follows: in Sect. 2, we present the main
details of our approach. The implementation details, the tests and the results
are presented in Sect. 3. Finally, our conclusions are presented in Sect. 4.

2 Methodology

2.1 Path Execution Task

The robot considered in this paper has to execute a safe navigation task. The
current position S = (xs, ys) and the goal position coordinates G = (xg, yg) are
known. The environment dimensions W × H are also known.

The mobile robot is provided with proprioceptive and exteroceptive sen-
sors. The proprioceptive sensors are used to compute the current position of the
robot. The exteroceptive sensors let the robot to acquire information about its
surrounding area. In this navigation task, the robot uses a laser range finder
(LRF) to get the measures from the obstacles that are near to it.

A LRF sensor operates by sending a laser beam in a given number L of orien-
tations from the current position of the mobile robot. The time of flight lectures
that the LRF records are used to compute how far the obstacles are. However,
these measurements give no information about the nature of the obstacle.

The robot uses an occupancy grid to represent the information acquired
from the environment during the execution of the path towards its goal. The
occupancy grids were originally proposed by Elfes in [1] and they are widely
used for mobile robot path planning tasks [10]. This approach discretizes the
environment into a grid of cells of some dimensions. Figure 1(a), shows how an
environment is discretized into an occupancy grid and the implicit inaccuracies
in the scenario representation. Essentially, each cell can be labelled as a free
cell or as an obstacle cell (see Fig. 1(b)). If the dimensions are too small, the
representation of a small map can take a lot of memory space and can not be
useful for the planning task. In our case, we discretize the environment as a grid
of cells of dimensions 0.5m × 0.5m. In our work, we use the occupancy grid for
two objectives: (i) to have a partial representation of the explored part of the
scenario and (ii) to ease the planning algorithm when a re-planning is needed.

Using the occupancy grid approach, the mobile robot computes a path from
the start position S to the goal position G by using a A� planning algorithm [7,8].
Initially, the robot does not know any information about the environment, so it
considers that all the map is free space.
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2.2 Occupancy Grid Update

As the robot advances in the execution of its planned path, it needs to update
the current map representation M according to the planned path P and to
the obstacle information obtained from the LRF sensor L. After processing the
current lectures of the LRF sensors, an updated map M ′ and a re-planning
flag frp are computed. This enables the robot to handle the mobile and steady
obstacles present in the environment.

(a) (b)

Fig. 1. (a) Scenario representation using occupancy grids. (b) Cells are labeled as
obstacle cells (in black color) and as free cells (in white color) (Color figure online)

The cells in the maps M and M ′ can be labeled using four possible values:
non explored cell, explored cell, steady obstacle cell, and mobile obstacle cell. The
labeling procedure depends on the computation of two functions:

f1 that serves to determine which cells are occupied by an obstacle, either steady
or mobile obstacle. This function uses the collision points of each of the laser
measures L = {l1, l2, . . . , lL} with L being the maximum number of lectures
taken by the LRF.

f2 that serves to update the label of all the cells inside the polygon formed by
the laser measures to the explored cell status.

For the function f1, we obtain the collision points lj(xj , yj) for each of the
measurements of the LRF. The distance from these points lj(xj , yj) to each
of the center positions ci(xi, yi) of the map grid are computed. If the distance
d(lj, ci) is smaller than the safety radius of the mobile robot r, the function
return 1, otherwise it returns 0 (See Fig. 2).

d(lj , ci) =
√

(xj − xi)2 + (yj − yi)2 = ‖lj − ci‖ (1)

f1 =

⎧⎨
⎩

1 si d(lj , ci) ≤ r

0 si d(lj , ci) > r
(2)

For the function f2, we generate a polygon using the laser collision points
lj(xj , yj) as vertices. If a cell is inside the polygon, f2 takes the value of 1,
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Fig. 2. Computation of f1 function. Steady obstacle cells in black, non explored cells
in white, measurement of the LRF in blue (Color figure online).

otherwise it returns a value of 0. The computation to know if the point ci(xi, yi)
is in inside the polygon is made by tracing a vertical line and counting the
number of intersections with the laser measurement polygon. If there is an odd
number of intersections, the function f2 returns 1, otherwise it returns 0 (See
Fig. 3).

The transition between the states that a cell can have is described via the
FSM diagram in Fig. 4. Note that the combination (f1, f2) = (1, 1) is not rep-
resented there. That is because it can not occur in any state. When f1 is 1, f2
takes automatically the value of zero. All the cells are initially labeled as non
explored cells.

If a cell changes from the state non explored to the state steady obstacle or
from the state explored to the state mobile obstacle; and if this cell is also part
of the planned path P , the frp flag is enabled. If this flag is enabled, the robot
must do a re-planning using the partially known environment.

3 Results

3.1 Implementation Details

The proposed system was developed in a modular form to be able to implement
it in frameworks like ROS (Robot Operating System) or ARIA (Advanced Robot
Interface for Applications). These are the frameworks used by the robots avail-
able at the Laboratory for Vision, Robotics and Artificial Intelligence (LaViRIA)
of the University of Guanajuato: a Husky A200 mobile robot named CompaBot
(in Fig. 5(a)) and a Pioneer 3-AT named XidooBot (in Fig. 5(b)).

3.2 Test Protocol

The tests were performed using a benchmark set of 34 scenarios shown in Fig. 6.
They are available from the motion planning repository [2]. These scenarios are
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Fig. 3. Computation of the f2 function. Explored cells in yellow, non explored cells in
white, LRF measurement polygon in blue (Color figure online).

Fig. 4. State transition diagram for each cell of the occupancy grid.

very similar to those used for real world applications. These set include some
difficult problem like robot traps, narrow corridors, zones with a large density
of obstacles, labyrinths, rooms, etc.

For each of the test scenarios, 3 different navigation tasks were generated, i.e.,
a different start and goal position of the robot were chosen. For each navigation
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(a) (b)

Fig. 5. (a) CompaBot, a Husky A200 mobile robot from Clearpath Robotics Inc. (b)
XidooBot, a Pioneer 3-AT mobile robot designed by Adept MobileRobot.

Fig. 6. Benchmark set of test scenarios from the repository of the Technical University
of Prague [2].

task, both the start and goal position are in the free space of the environment
under use. This procedure was repeated 30 times for each configuration and
navigation task with a number of existing mobile obstacles on stage that was
increased from 0 to 10. For the mobile obstacles, we have used several instances
of the Pioneer 3-AT mobile robot that wander around the free space, simulating
the human-robot interaction in a scenario.
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3.3 Gazebo and RViz Simulation Using ROS

In order to implement the proposed system for safe navigation of mobile robots
in dynamic unknown environments, we implement it on the ROS testbed. This
enable us to implement it in a Husky A200 platform given that this platform is
supported by ROS. The main simulation tools for ROS are Gazebo and RViz.
In the following paragraphs, we describe the main features of these tools:

ROS is a development platform for writing robot software. It is composed of a
collection of tools, libraries and standard messaging protocols that simplify the
robot software development task for different robotic hardware [6].

Gazebo is a robot simulator that is useful for rapid prototyping and test of
robot algorithms. It can be used to design robots and to perform the analysis
of the simulation data in realistic environments. It also offers the capability of
simulation of teams of robots in complex outdoor and indoor environments with
accuracy and efficiency. Another important features of Gazebo are the robust
physics engine and its high quality graphics rendering [3].

RViz is a 3D data visualization tool available in ROS. It can show the sensor
data and the current state of ROS. RViz can be used to visually show the current
state of the robot in a virtual model. It can also be used to display real-time
sensor information, including data from the cameras, the sonar, the infrared
devices and the map representation, for example [6].

3.4 Quantitative Results

Figure 7 shows the success rate for each test scenario. In most of the scenar-
ios under test the success rate is over 90 %. However, we can observe that the
scenarios with narrow corridors and with only one route to access the goal posi-
tion, the system exhibits a low success rate (Fig. 6 scenario 15 - maze, 23 -
square spiral, 26 - tunnel twisted and 27 - tunnel). The factors that cause the
mobile robot failing to reach the goal position is the continuous obstruction of
the mobile obstacles in its route or the presence of an error in the detection and
classification of the mobile obstacles.

3.5 Qualitative Results

Here we present the qualitative results of applying the proposed method in a
Husky A200 mobile robot in the Gazebo simulator. The robot model uses a
LRF with 640 measurements and a vision field of 180◦ in front of the robot.
We show the results in the back and forth test scenario (Fig. 6 scenario 3). The
aforementioned scenario was built in Gazebo using the same size specifications
than in the benchmark set. Figure 8 depicts the component modules of the ROS
implementation. The proposed navigator, labeled as dpn (dynamic planner navi-
gator), publishes the map that is building (/compabot/map) and the robot veloc-
ities (v y ω) to the simulator (/compabot/husky/cmd vel). It also publishes the
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Fig. 7. Result of the success rate (%) vs map. In most scenarios test the success rate
is over 90 %.

Fig. 8. Connection diagram for the ROS implementation of the proposed system.

current position of the mobile robot (/compabot/odom real) and the informa-
tion about its planned path (/compabot/marker), and it gets the laser scan data
(/compabot/scan) from the simulator.

Some aspects of a mobile robot simulation are shown in Fig. 9. In the left
column, we present the Gazebo display output and in the right column we present
the RViz display output. The Gazebo output serves to render the current state of
the virtual world. In our case, it renders the Husky A200 model and the models
of the P3-AT robots that are wandering in the environment. In the RViz output,
we can observe the model of the Husky A200 mobile robot and the executed
path (in yellow), the planned path (in red),the map created by the mobile robot
where the white cells are explored cells. The steady obstacles are represented
using black cells and the moving obstacles are colored using a gray color, We
can observe how the map is evolving to reflect the current knowledge about the
environment.
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t = 33s.

t = 237s.

t = 316s.
back and forth.

Fig. 9. Simulation results for the proposed navigator in Gazebo (in the left) and RViz
(in the right). The timestamp t of each frame is shown below the snapshot.
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4 Conclusions

In this work, we have proposed a cell labeling method for building the map of
a dynamic unknown scenario. The method is based in a Finite State Machine
approach. We have presented the rules that govern the transition for the cell
labels of the occupancy grid map as the robot acquires information from its
sensors. The method was tested using scenarios of different degrees of complexity
and it has shown to be efficient and accurate. For the tests, we have used the
ROS testbed. Future work will include to extend the tests to real robots. The use
of this approach as a part of a simultaneous localization and mapping (SLAM)
method will also be performed.
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