Skip to main content

On the Cross-Domain Reusability of Neural Modules for General Video Game Playing

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 614))

Abstract

We consider a general approach to knowledge transfer in which an agent learning with a neural network adapts how it reuses existing networks as it learns in a new domain. Networks trained for a new domain are able to improve performance by selectively routing activation through previously learned neural structure, regardless of how or for what it was learned. We consider a neuroevolution implementation of the approach with application to reinforcement learning domains. This approach is more general than previous approaches to transfer for reinforcement learning. It is domain-agnostic and requires no prior assumptions about the nature of task relatedness or mappings. We analyze the method’s performance and applicability in high-dimensional Atari 2600 general video game playing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/mgbellemare/Arcade-Learning-Environment/tree/dev.

References

  1. Anderson, M.L.: Neural reuse: a fundamental organizational principle of the brain. Behav. Brain Sci. 33, 245–266 (2010)

    Article  Google Scholar 

  2. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279 (2013)

    Google Scholar 

  3. Braylan, A., Hollenbeck, M., Meyerson, E., Miikkulainen, R.: Frame skip is a powerful parameter for learning to play atari. In: AAAI Workshop on Learning for General Competency in Video Games (2015)

    Google Scholar 

  4. Diestel, R.: Graph Theory, p. 278. Springer, Heidelberg (2005)

    Google Scholar 

  5. Gomez, F.J.: Robust non-linear control through neuroevolution. Technical report, UT Austin (2003)

    Google Scholar 

  6. Gomez, F.J., Miikkulainen, R.: Incremental evolution of complex general behavior. Adapt. Behav. 5.3(5), 317–342 (1997)

    Article  Google Scholar 

  7. Gomez, F.J., Miikkulainen, R.: Active guidance for a finless rocket using neuroevolution. In: Proceedings of GECCO 2003, pp. 2084–2095 (2003)

    Google Scholar 

  8. Gomez, F.J., Schmidhuber, J.: Co-evolving recurrent neurons learn deep memory pomdps. In: Proceedings of GECCO 2005, pp. 491–498 (2005)

    Google Scholar 

  9. Hausknecht, M., Lehman, J., Miikkulainen, R., Stone, P.: A neuroevolution approach to general atari game playing. In: Computational Intelligence and AI in Games (2013)

    Google Scholar 

  10. Hausknecht, M., Stone, P.: The impact of determinism on learning Atari 2600 games. In: AAAI Workshop on Learning for General Competency in Video Games (2015)

    Google Scholar 

  11. Koutník, J., Schmidhuber, J., Gomez, F.: Online evolution of deep convolutional network for vision-based reinforcement learning. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds.) SAB 2014. LNCS, vol. 8575, pp. 260–269. Springer, Heidelberg (2014)

    Google Scholar 

  12. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  MATH  Google Scholar 

  13. Miikkulainen, R., Feasley, E., Johnson, L., Karpov, I., Rajagopalan, P., Rawal, A., Tansey, W.: Multiagent learning through neuroevolution. In: Alippi, C., Bouchon-Meunier, B., Greenwood, G.W., Abbass, H.A., Liu, J. (eds.) WCCI 2012. LNCS, vol. 7311, pp. 24–46. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  15. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning (2013). arXiv:1312.5602

  16. Pan, S.J., Yang, Q.: A survey on transfer learning. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  17. Perez, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S., Couetoux, A., Lee, J., Lim, C., Thompson, T.: The 2014 general video game playing competition. IEEE Trans. Comput. Intell. AI Games (2015)

    Google Scholar 

  18. Schaul, T.: A video game description language for model-based or interactive learning. In: Proceedings of IEEE Conference on Computational Intelligence in Games (CIG 2013), pp. 193–200 (2013)

    Google Scholar 

  19. Schmidhuber, J., Wierstra, D., Gagliolo, M., Gomez, F.J.: Training recurrent networks by Evolino. Neural Comput. 19(3), 757–779 (2007)

    Article  MATH  Google Scholar 

  20. Shultz, T.R., Rivest, F.: Knowledge-based cascade-correlation: using knowledge to speed learning. Connection Sci. 13(1), 43–72 (2001)

    Article  MATH  Google Scholar 

  21. Swarup, S., Ray, S.R.: Cross-domain knowledge transfer using structured representations. In: Proceedings of AAAI, pp. 506–511 (2006)

    Google Scholar 

  22. Talvitie, E., Singh, S.: An experts algorithm for transfer learning. In: Proceedings of IJCAI 2007, pp. 1065–1070 (2007)

    Google Scholar 

  23. Taylor, M.E., Kuhlmann, G., Stone, P.: Autonomous transfer for reinforcement learning. In: Proceedings of AAMAS 2008, pp. 283–290 (2008)

    Google Scholar 

  24. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: a survey. J. Mach. Learn. Res. 10, 1633–1685 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Taylor, M.E., Whiteson, S., Stone, P.: Transfer via inter-task mappings in policy search reinforcement learning. In: Proceedings of AAMAS 2007, pp. 156–163 (2007)

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by NSF grant DBI-0939454, NIH grant R01-GM105042, and an NPSC fellowship sponsored by NSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliot Meyerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Braylan, A., Hollenbeck, M., Meyerson, E., Miikkulainen, R. (2016). On the Cross-Domain Reusability of Neural Modules for General Video Game Playing. In: Cazenave, T., Winands, M., Edelkamp, S., Schiffel, S., Thielscher, M., Togelius, J. (eds) Computer Games. CGW GIGA 2015 2015. Communications in Computer and Information Science, vol 614. Springer, Cham. https://doi.org/10.1007/978-3-319-39402-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39402-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39401-5

  • Online ISBN: 978-3-319-39402-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics