
Xavier Franch

Universitat Politècnica de Catalunya

Barcelona, Spain

e-mail: franch@essi.upc.edu

Lidia López

Universitat Politècnica de Catalunya

Barcelona, Spain

e-mail: llopez@essi.upc.edu

Carlos Cares

Universidad de la Frontera

Temuco, Chile

e-mail: carlos.cares@ceisufro.cl

Daniel Colomer

Universitat Politècnica de Catalunya

Barcelona, Spain

e-mail: dncolomer32@gmail.com

The i* Framework for Goal-Oriented Modeling

Xavier Franch, Lidia López, Carlos Cares, Daniel Colomer

Abstract i* is a widespread framework in the software engineering field that sup-

ports goal-oriented modeling of socio-technical systems and organizations. At its

heart lies a language offering concepts such as actor, dependency, goal and decom-

position. i* models resemble a network of interconnected, autonomous, collabora-

tive and dependable strategic actors. Around this language, several analysis tech-

niques have emerged, e.g. goal satisfaction analysis and metrics computation. In

this work, we present a consolidated version of the i* language based on the most

adopted versions of the language. We define the main constructs of the language

and we articulate them in the form of a metamodel. Then, we implement this version

and a concrete technique, goal satisfaction analysis based on goal propagation, us-

ing ADOxx. Throughout the chapter, we used an example based on open source

software adoption to illustrate the concepts and test the implementation.

1. Introduction

Goal-oriented methods are well-known in the software engineering field since the

early nineties. They are used both in broad areas as requirements engineering (van

Lamsweerde 2001) and organizational modelling (Kavakli 2004), and in more spe-

cific scopes as adaptive system modelling (Bencomo and Belaggoun 2013) and soft-

ware architecture representation (Grau and Franch 2007).

For instance, if we consider goal-oriented requirements engineering, it is recog-

nized that goals play a crucial role for domain understanding and elicitation of stake-

holders’ intentions (Mylopoulos et al 1999). Goals can be formulated at different

levels of abstraction, from strategic concerns to technical issues, and are less volatile

than requirements (van Lamsweerde 2001). Therefore, they can be considered as an

essential artefact in the early phases of requirements engineering, when still alter-

natives are considered and stakeholder intentions do need further discussion. Goal-

oriented methods allow analyzing consequences of decisions, making interrogative

questions and explore solution spaces.

2 Xavier Franch, Lidia López, Carlos Cares, Daniel Colomer

Several goal-oriented approaches include actors in their definition which have

their own intentions and goals. The existence of actors in models makes these meth-

ods agent-oriented (Woodldrige and Cincarini 2001). Agent orientation offers a nat-

ural and powerful means of analyzing, designing, and implementing a diverse range

of software solutions (Jennings et al. 1998). Agents exhibit properties such as au-

tonomy, reactivity, pro-activeness and social ability, which allow representing, an-

alyzing and designing software solutions for agents and multi-agents systems, but

also for all kinds of complex systems that involves cooperation and co-creation of

value (Woodldrige and Cincarini 2001).

The i* framework (Yu 1995) is currently one of the most widespread goal-ori-

ented and agent-oriented modeling and reasoning methods in the field. It supports

the construction of models that represent an organization or socio-technical system,

together with its constituent processes, as an intentional network of actors and de-

pendencies. Reasoning techniques allow checking properties and performing some

kind of qualitative (Giorgini et al. 2002, Horkoff and Yu 2011) and quantitative

(Franch 2006) analysis, or even both (Amyot et al. 2010).

For instance, Horkoff and Yu (2010) show how i* models are adequate to sup-

port early domain exploration through iterative inquiry over captured knowledge.

This favors early system scoping and decision making. Questions that naturally

arise are of the type “what if”, “is this possible”, “if so, who” and “if not, why not”.

A semi-automated algorithm will interact with the stakeholder as required in order

to pose questions and process answers. All in all, i* models are an excellent artifact

in terms of knowledge discovery.

In this book chapter, we will present the i* method in detail. In Section 2, we

provide the historical perspective and present the constructs of the language. In Sec-

tion 3, we propose a metamodel, outline some concepts referring to semantics and

present some analysis technique. In Section 4, we present an implementation of the

method in ADOxx: the metamodel and an analysis technique. Finally, in Section 5

we present the conclusions.

2. Method Description

In this section we provide a historical view of the i* framework including some

references to related work, and then we develop the main concepts of the language

that will be further detailed in the next sections.

2.1. A Tour of the i* Framework Evolution

Figure 1 makes explicit the origins and current state of the i* framework. There are

two approaches that have greatly influenced its shape.

The i* Framework for Goal-Oriented Modeling 3

Figure 1. Genealogy of the i* framework and variants

On the one hand, the KAOS framework (Dardenne et al. 1991, 1993), which was

the first widespread approach to goal-oriented requirements engineering. Its empha-

sis is on semi-formal and formal reasoning about behavioral goals to derive goal

refinements, operationalizations, conflict management and risk analysis. It includes

several concepts that appear in i*: system goal, goal reduction and the notion of

linking a goal to agents, which have the responsibility to accomplish the goals.

On the other hand, the Non-Functional Requirements (NFR) Framework (My-

lopoulos et al. 1992, Chung et al. 2000). It introduces the concept of non-functional

requirement as a system goal that should be satisfied, expressed with the notion of

softgoal. Also, in this proposal appears the concept of justification for selection, in

which softgoals can contribute positively or negatively to the achievement of other

softgoals. The NFR proposal was completed at the year 2000 and since then has

experienced a great adoption by the requirements engineering community. Contrary

to KAOS, the notion of agent was not included in the language.

With respect to these two antecedents, i* proposed a simple but relevant model-

ing perspective (Yu 1993). Conversely to KAOS, where agents are associated to

goals, in i* goals and tasks are linked to agents, conforming dependencies among

4 Xavier Franch, Lidia López, Carlos Cares, Daniel Colomer

system agents, thus the point of view is agent-oriented, in the sense of the individ-

uals, and social-oriented (or context-oriented) in the sense of the dependencies be-

tween agents. In addition, the agents are extended to roles (and positions in some

approaches), altogether becoming actors. Moreover, it identifies many agent con-

ceptual contributions from the artificial intelligence discipline. The main concepts

of i* got consolidated in (Yu and Mylopoulos 1994) and finalized in (Yu 1995),

where the notion of Strategic Dependency and Rationale models are proposed, to-

gether with the final definition of types of intentional elements and types of links.

This version of i* has evolved a bit along time and was updated in the form of a

language guide stored in a wiki document (http://istar.rwth-aachen.de/tiki-view_ar-

ticles.php, 2008) which also included methodological advice. In addition, it is the

basis of an upcoming standard, the iStar1 Standard Core Language Definition2

which will be the result of a community effort to produce an agreed core for the

language to be shared by the researchers in the area for research, education and

technology transfer purposes.

From this seminal version of i*, lots of variants have been formulated. Some just

propose some new construct for a specific purpose (e.g., dealing with delegation

and trust, with security and privacy, etc.) but others proposed major changes which

in fact can be considered as dialects of the seminal version. We refer to GRL and

Tropos.

The Goal-oriented Requirement Language, GRL (2001), is a language used in

goal-oriented modelling and reasoning with non-functional requirements. It has

been strongly influenced by the NFR framework. Its main aim is to specify non-

functional requirements, therefore the emphasis on actors is not as much as in i*:

there is only one type of actor, and actor links are not defined. GRL is part of URN

(User Requirements Notation) (Amyot and Mussbacher 2002) that has been ac-

cepted as standard of ITU-T (International Telecommunication Union-Telecommu-

nication Standardization Sector) (ITUT 2008).

Tropos (Castro et al 2001) is another variant whose main purpose is to comple-

ment the language with methodological guidance. Due to this focus, some simplifi-

cation on the language were made.

2.2. The i* Language

As a consequence of this historical evolution, the constructs of the i* framework

modelling language (from now on, the i* language) are different depending on the

variant adopted. We find several situations:

1 “iStar” is preferred over “i*” because it is better suited for use in search engines.

2 The standard has not still being published at the time of publishing this book.

http://istar.rwth-aachen.de/tiki-view_articles.php
http://istar.rwth-aachen.de/tiki-view_articles.php

The i* Framework for Goal-Oriented Modeling 5

 Core concepts that are included in all the most well-known variants. Among

them, we can mention the general concept of actor and the notion of goal.

 Concepts that are present in a great majority of variants although they may

slightly vary in some details or in the semantic meaning. As examples, we find

types of actors and decomposition links.

 Concepts that are specific of a particular proposal. For instance, the notion of

trust and delegation, beliefs, or the declaration of temporal precedences among

tasks.

In this book chapter, we are going to focus in the first two types of concepts. As

main sources we will use: the seminal PhD thesis by Yu (1995), the wiki version

(2008) and the ongoing version of the standard core (2016).

2.2.1. Actors and actor links

Actors are active, autonomous entities that aim at achieving their goals by exercis-

ing their know-how, in collaboration with other actors (see subsection 2.2.3). They

may be human (e.g. a person, a role played by a person), organizational (e.g., a

company, a department, an agency) or technological (e.g., a software agent, cloud

system, some device). Actors can appear in an i* model without any further catego-

rization (i.e., as general actors) or can be classified into any of the two following

types:

 Role: a role represents an abstract characterization of the behavior of a social

actor within some specialized context or domain of endeavor. For instance, a

project manager or a consultant.

 Agent: an agent is an actor with concrete, physical manifestation. Examples are

a particular organization or person.

Most often, actors do not appear isolated in an i* model, instead they may be linked

through several actor links:

 plays: links an agent to a role. An agent plays a role, committing to take on the

responsibilities of that role. So, a particular person may play the role of project

management for a project.

 is-part-of: links actors of the same type. It represents the classical conceptual

modeling parthood construct, in which one actor of any type is composed of sev-

eral other actors of the same type. For instance, the sales department may be part

of a given organization.

 is-a: links actors of the same type. It represents the typical specialization con-

struct, in which one actor of any type specializes another actor of the same type.

E.g., a programmer role may be specialized into junior and senior programmer

roles.

6 Xavier Franch, Lidia López, Carlos Cares, Daniel Colomer

2.2.2. Intentional elements

Intentionality of actors is made explicit by identifying their intentional elements

inside their boundary. The boundary delineates accurately what is under the actor’s

control; whatever needs that are not inside the boundary, need to be fulfilled in col-

laboration with other actors through dependencies (see subsection 2.2.4).

Inside the boundaries, four types of intentional elements can be declared:

 Goals: a goal represents a state of the world that is sought to be achieved. The

actor only expresses the intention to achieve this goal but not the means to attain

it; these means can be identified later through some type of element links (see

subsection 2.2.3). For instance, a person may have as goal to travel abroad for

holidays.

 Softgoals: a softgoal expresses a goal whose fulfilment is not clear-cut; instead,

its satisfaction condition is subject of interpretation. This subjectivity is the dif-

ference between goals (sometimes called hard goals to make it clearer) and soft-

goals. For this reason, some authors use the term satisficed when talking about

softgoals satisfaction (although we will not use this term). Intentional elements

that help in (or avoid to) attaining a softgoal can be connected to the softgoal

using some other type of element link (see subsection 2.2.3). E.g., a service pro-

vider may have as softgoal to reduce significantly the service provision time next

year, but the concept of “significantly” is not exactly defined.

 Tasks: a task represents an activity whose execution is prescribed according to

some established procedure. Contrary to goals, then, the actor is expressing a

particular way of doing. As example, an open source community may have a task

for reporting a bug in an open source component.

 Resources: a resource stands for a physical or intentional entity that is produced

or provided by the actor. For instance, a project manager may identify a project

plan as valuable asset that she produces.

In this book chapter we will consider only these four types of elements. Still, in the

literature we may find other types of elements proposed, like beliefs or domain as-

sumptions to express a condition on the world that an actor thinks to be true (see

wiki version) and quality constraints to state fit criteria for softgoals (Li et al. 2014).

2.2.3. Intentional element links

Intentional elements in actors are connected using several types of intentional ele-

ment links. This way, actors are able to express complex intentionality in a structure

form, facilitating later analysis.

As happened with types of intentional elements, there is a plethora of proposals

of intentional element link types and furthermore, for the universally agreed ones

(e.g., means-end), different interpretations or restrictions have been formulated. In

this book chapter, use the following ones:

The i* Framework for Goal-Oriented Modeling 7

 Means-end: means-end links offer a way to identify alternative means to achieve

a goal. Typically, the end will be a goal and the means will be a task. For instance,

a traveler may express two different alternatives for the goal of traveling abroad

for holidays: organizing the trip herself, or contacting a travel agency.

 Decomposition: decomposition links allow decomposing complex elements into

simpler ones of the same type with the only exception of resources which are

allowed to appear in task decompositions. While means-end links can be viewed

as a connection between the problem space (the end) and the solution space (the

means), decomposition links do not change the space. Decompositions maybe

AND-, OR- or XOR-decompositions. E.g., a task for scheduling a meeting may

be AND-decomposed into three subtasks: getting availability from participants,

finding a time slot, and communicating the final choice.

 Contribution: contribution links express how intentional elements contribute to

the satisfaction of a softgoal. Contribution can be positive (supporting) or nega-

tive (damaging), and can be an implication or just a connection, yielding to four

types of contribution links (make, help, break, hurt) as shown in Table 1. As

example, if a softgoal is expressing the need of having a secure access control to

some software system, we may have as help contribution link a task to perform

credential analysis, while a hurt contribution link is to have in the system a back-

door available to some designated users.

Table 1. Types of contribution links

 Strength

 Implication Connection

Sign

Posi-

tive

Make (a positive contribution strong

enough to satisfy a softgoal)

Help (a positive contribution not suffi-

cient by itself to satisfy the softgoal)

Nega-

tive

Break (a negative contribution suffi-

cient enough to deny a softgoal)

Hurt (a negative contribution not suffi-

cient by itself to deny the softgoal)

2.2.4. Dependencies

Not just actor links, but also dependencies do connect actors. A dependency is a

relationship between two actors: one of them, named depender, depends for the ac-

complishment of some internal intention on a second actor, named dependee. For

instance, a project manager may depend on a software architect to provide a project

effort assessment in order to come up with the project plan. The dependency may

be established at the level of actors (an actor depends onto another) or at the level

of intentional elements (an intentional element of any kind depend onto another

intentional element); mixed combinations are possible.

The dependency is characterized by an intentional element (dependum) which

represents the reason of dependency. The four types of intentional elements pre-

sented in the previous subsection yield to four types of dependencies:

8 Xavier Franch, Lidia López, Carlos Cares, Daniel Colomer

 Goal dependency: the dependee shall satisfy the goal, and is free to choose how.

For instance, a driver may depend on a car repair service on getting her car re-

paired, without being aware of how the repair is solved.

 Softgoal dependency: the dependee shall sufficiently satisfy the softgoal. A soft-

goal represents a goal that can be partially satisfied, or a goal that requires addi-

tional agreement about how it is satisfied. E.g., an organization hiring some desk

service for providing technical assistance may require timely feedback to cus-

tomers, where the concept of “timely” may be perceived differently by the in-

volved parties.

 Task dependency: the depender requires a dependee to execute a task in a pre-

scribed way. An example could be a project manager asking the project members

to declare their time in the project following some available reporting procedure.

 Resource dependency: the dependee has to make a resource available to the de-

pender. For instance, a traveler may depend on a travel agency to provide a flight

ticket.

Not all combinations of depender-dependum-dependee types are allowed; see met-

amodel in the next section for details.

2.2.5. Model views

The elements presented in the subsections above are articulated to compose an i*

model. It may happen, however, that the resulting model quickly grows and makes

it difficult to embrace all the details. Scalability is a well-known problem with i*

models (see Estrada et al. (2006) and Franch (2010a) for analysis on i* adoption

challenges).

One of the solutions to these problems is the ability to define model views. We

may mention two popular views proposed by Yu (1995):

 Strategic dependency (SD) models. SD models depict a high-level view in which

only actors and dependencies appear.

 Strategic rationale (SR) models. SR models show the boundary of actors with

their intentional elements and links.

Quite often, these two models have been used in a methodological framework that

recommends creating first the SD model of the system to be, and then the SR models

of the different actors that appear. However, this needs not to be the case.

Other proposals exist to structure the information encoded in i* models. For in-

stance, Leite et al. (2007) have proposed Strategic Actor models to show only actors

and their actor links (not including dependencies). More generally, Franch (2010b)

presents a proposal for defining arbitrary modules in order to parcel the complexity

and then create models as a combination of smaller parts. However, in this book

chapter, we work only with SD and SR views.

The i* Framework for Goal-Oriented Modeling 9

3. Method Conceptualization

In this section we present the metamodel that includes the constructs presented in

the previous section, and their graphical representation.

3.1. iStar Metamodel

Figure 2 show a UML class diagram representing the i* language as introduced in

Section 2.2. Restrictions on the use of the constructs are stated textually as integrity

constraints in Table 2.

The structure of the metamodel shows two fundamental abstract classes. First,

IntentionalElement which is used both as internal element inside actors and as de-

pendum for dependencies. Second, DependableNode, to model the fact that depend-

ers and dependees may be intentional elements or actors. The rest of the metamodel

structure is straightforward. Concerning the integrity constraints we remark:

 Softgoals cannot be decomposed; instead, contributions are used to identify

which elements influence the satisfaction of softgoals.

 An intentional element cannot be both a depender and being decomposed.

 When a dependency’s depender is an intentional element, its type needs to be

concordant with that of the dependum; the same happens for the dependum and

the dependee when it is an intentional element.

Figure 2. iStar Metamodel

10 Xavier Franch, Lidia López, Carlos Cares, Daniel Colomer

Table 2. Integrity constraints over the iStar language

Actor links (ActorRelationship)

IC1 The ActorRelationship must connect actors of the same type

IC2 Cycles are not allowed regardless of the ActorRelationship

Intentional Element Links (IELinks)

IC3 MeansEnd can only have tasks as from and goals as to

IC4 When a Decomposition has a goal as to, it can only have goals as from

IC5 When a Decomposition has a task as to, it can only have tasks or resources as from

IC6 It is not allowed Decomposition with a resource or a softgoal as a to

IC7 Contribution can only have softgoals as to

Dependencies

IC8 The depender IE cannot be a to in any IELink

IC9 When the depender IE is a goal, the dependum can be a goal or a task

IC10 When the depender IE is a softgoal, the dependum can only be a softgoal

IC11 When the depender IE is a task, the dependum can be a task or a resource

IC12 When the depender IE is a resource, the dependum can only be a resource

IC13 When a dependum is a goal, the dependee IE can be a goal or a task

IC14 When a dependum is a softgoal, the dependee IE can be only a softgoal

IC15 When a dependum is a task, the dependee IE element can be a task or a resource

IC16 When a dependum is a resource, the dependee IE element can be only a resource

3.2. Graphical representation

As in any other conceptual modeling notation, an important dimension of i* is its

graphical representation. Figure 3 summarizes the symbols used to represent the

language constructs. It is worth to mention that some studies on the adequacy of this

notation exist. Among them, we remark Moody et al.’s (2010) which analyses the

symbols under the lenses of the physics of notation and proposes some changes to

comply with its principles. However, still today the graphical representation

adopted by the community keeps very close to Yu’s original proposal (1995).

In addition, some authors have proposed terminological conventions in order to

write the different model elements. Among them, we will use in this chapter the

proposal by Franch et al. (2007) summarized in Table 3.

Table 3. Terminological conventions for i* model elements

Intentional

type

Terminological convention Example

Goal Object + Passive Verb +

(non-manner Complement), possibly negated

Information kept safe

Softgoal
Goal syntax + Complement of manner Data checked quickly

(Object) + Complement of manner ([element]) Timely[Flight Ticket]

Task Verb + (Object) + (Complement) Answer doubts by mail

Resource (Adjective) + Object + (Qualifier / Modifier) Bug list

The i* Framework for Goal-Oriented Modeling 11

Figure 3. Graphical representation of i* constructs

3.3. Example: Modeling the Adoption of Open Source Software

For illustrating the conceptualization of the framework, we use an example rooted

in the open source software (OSS) field. We want to analyze the consequences for

a company to adopt OSS projects as part of their software development. Adopting

OSS affects far beyond technology, because it requires a change in the organiza-

tional culture and reshaping IT decision-makers mindset. Hence, the way in which

organizations adopt OSS affects and shapes their businesses. López et al. (2015)

present six i* OSS adoption models that describe the different ways in which adopt-

ing organizations can interact with the OSS communities that produce OSS compo-

nents. In this section, we are using one of these strategies, namely OSS integration,

complemented with some goals related to OSS license management. The OSS inte-

gration strategy describes the situation in which an organization is interested in be-

ing part of the OSS community. The management of OSS licenses is orthogonal to

the adoption strategy: OSS adopting organizations need to handle the OSS license

under which the OSS component is released, and sometimes the OSS licenses for

the included OSS components.

12 Xavier Franch, Lidia López, Carlos Cares, Daniel Colomer

Figure 4. Adoption strategy: SD View

Figure 4 shows an excerpt of the SD view for the OSS integration strategy model.

As expected in the SD view, there are agents, roles and dependencies among them.

In this model, the organization adopting the OSS component (OSS Adopter) and

the OSS Community producing it are represented as Agents, in the sense that they

are representing a specific physical organization and the group of individuals and

organizations that are conforming the community. The model also includes the

Regulator Role, in this case we are interested in the behavior related to make or-

ganizations accomplish the law, not including the knowledge about the physical

entity that is playing this role.

If we focus in the OSS Adopter agent, it is involved in several dependencies

of every possible type, either as depender or as dependee:

 Goal dependency: Regulator needs that the OSS adopter be compliance with the

law (Law is complied). As a goal dependency, the depender does not care

about how the dependee is going to fulfill this requirement. In this case, the reg-

ulator is not setting the concrete activities that the OSS adopter needs to do for

being compliance with the law.

 Softgoal dependency: The OSS adopter needs that the quality of the component

will be kept in the next releases (Quality [OSS component]). This depend-

ency is a softgoal because the organization cannot fix a clear-cut satisfaction cri-

terion for the quality of the produced software.

 Task dependency: The OSS community expects that the OSS adopter reports

bugs. The way to report bugs in an OSS community is done using specific tools

defined by the OSS community. Therefore, the OSS adopter (dependee) needs

to follow a specific protocol to fulfill this requirement.

 Resource dependency: The OSS Component dependency represents the code,

which is a physical entity produced by the OSS community.

Figure 5 shows an SR view including part of the rationale of the OSS Adopter

agent related to the fact of contributing to the community. The OSS adopter decides

that they want to take advantage of using OSS components relying part of the

maintenance on the OSS community that produces it. This interest is summarized

by Benefit from co-creation significatively taken, this adoption

The i* Framework for Goal-Oriented Modeling 13

strategy comes with the commitment of the organization to contribute to the OSS

community (OSS community contributed).

Figure 5. SR Diagram

The OSS Adopter rationale contains most kinds of intentional elements and inten-

tional elements links, for example:

 Goal OSS community contributed. In this case, as part of the maintenance

of its product, the organization needs to contribute the OSS community and there

are three different ways to achieve this goal (represented using Means-end link),

represented by the tasks: Report bug, Develop patches and Give support

to activities.

 Some softgoals to identify some goals that do not have a well-defined criteria to

know when is fulfilled. For example, the company wants to take benefit of the

development provided for the community (Benefit from co-creation

significatively taken), but this “significatively” does not have a formula

to be sure that has been achieved. Some of the other intentional elements are

14 Xavier Franch, Lidia López, Carlos Cares, Daniel Colomer

 Task Commit patch AND-decomposed. This task consists of two subtasks. If

the organization is going contribute the community producing code, some of

their developers must get the status of committer in the community (Apply to

be a committer) and adapt their processes to the community practices (Fol-

low OSS community practices).

 contributing positively to this achievement (Adequate OSS involvement,

OSS comp. evolved towards desired features), so Contribution links

qualified as Help are used.

4. Proof of Concept

4.1. OMiLAB iStar Tool metamodel

In order to implement a modelling tool using the ADOxx platform we have adapted

the i* metamodel presented in the previous version into a variant which can be used

as an extension of the ADOxx metamodel (see Figure 6).

The metamodel has a main class __iStar__ that inherits from ADOxx's __D-

contruct__ superclass provided for “graph-based” metamodels. __iStar__ has

two subclasses, namely __iActor__ and __iElement__ which further decom-

pose into specific classes that map directly to a graphical representation for actors

and intentional elements.

The metamodel also contains four specific classes that represent relation classes.

Each of them is mapped into a graphical representation and links to other classes

via the relationships source and target which will determine the source and tar-

get elements that the modeler can use.

We remark that, for the sake of modelling simplicity and tool usability, the con-

cepts of boundary and dependency have been reshaped:

 Boundaries are mapped to a separate graphical construct. In order to avoid

boundaries without actors, the modelling tool displays a warning message for

those boundaries that do not overlap an actor element.

 The explicit concepts of dependum, depender and dependee have been aban-

doned in favor of a Dependency Link relation class that has as a source and

target any __iStar__ element. A dependency link element in the adapted met-

amodel represents only a partial dependency as defined in Figure 6 such as the

relation between a depender and a dependum or a dependum and a dependee.

The constraint regarding the existence of a a dependee and a depender is then

implemented via external coupling (https://www.adoxx.org/live/external-cou-

pling-adoxx-functionalty).

https://www.adoxx.org/live/external-coupling-adoxx-functionalty
https://www.adoxx.org/live/external-coupling-adoxx-functionalty

The i* Framework for Goal-Oriented Modeling 15

Last, it needs to be mentioned that some of the integrity constraints defined in Table

2 are implicit in the variant of the metamodel used to implement the tool, namely

IC3 and IC7. The rest of the constraints are implemented via external coupling using

AdoScript (https://www.adoxx.org/live/adoscript-language-constructs). Addition-

ally we added the following integrity constraints because of the transformation of

the shape of the model:

 IC17 AssociationLinks of type plays must connect and Agent (source) and

a Role (target)

 IC18 If an __iStar__ element is only source of a DependencyLink then the

target element of that same link must be source of another DependencyLink

 IC19 If an __iStar__ element is only target of a DependencyLink then the

source element of that same link must be target of another DependencyLink

 IC20 A Boundary must be overlapped with one and only one actor

Last, the integrity constraint IC1 needs to be rephrased in order to accommodate the

fact that the plays relation has been included as a type of AssociationLink:

 IC1' AssociationLinks of type is-a and is-part-of must connect actors

of the same type

Figure 6. The i* metamodel customized to the ADOxx platform

https://www.adoxx.org/live/adoscript-language-constructs

16 Xavier Franch, Lidia López, Carlos Cares, Daniel Colomer

4.2. Forward Evaluation Algorithm

The reasoning algorithm included in the OMiLAB iStar Tool is an adaptation of the

forward evaluation algorithm defined by Horkoff and Yu (2014). This reasoning

technique can be used for agent-goal model analysis in early requirements engineer-

ing. It is an iterative and interactive process that allows the modelers perform what-

if analysis by propagating the satisfaction level through the intentional elements and

intentional element links.

The meaning of satisfaction depends on the type of the intentional element:

 goal satisfaction means that the goal attains the desired state;

 task satisfaction means that the task follows the defined procedure;

 resource satisfaction means that the resource is produced or delivered;

 softgoal satisfaction means that the modeled conditions fulfill some agreed fit

criterion.

The results of the qualitative evaluation consist of calculating the satisfaction for

each intentional in the model, based on an initial set of satisfaction values assigned

to some intentional elements. The satisfaction of an intentional element can be qual-

ified as: Satisfied, Partially Satisfied, Partially Denied and Denied. According to

the propagation algorithm, sometimes the result cannot be qualified as any of the

previous values, in this case the result is qualified as a Conflict. Figure 7 include

the graphical representation for these values. The algorithm is interactive when the

results require of the user judgement, concretely when the resulting value is Conflict

or Partially Satisfied/Denied.

Satisfied
Partially Satis-

fied
Conflict

Partially De-

nied
Denied

Figure 7. Qualitative evaluation notation

The propagation rules are summarized as:

 Dependency: The satisfaction value from a dependee intentional element is prop-

agated to the dependum and the satisfaction value from a dependum is propa-

gated to the depender intentional element. Therefore, the dependee satisfaction

value is propagated to the depender.

 AND-Decomposition: The minimum value from the children intentional element

is propagated to the parent intentional element.

 OR-Decomposition, XOR-Decomposition and Means-End: The maximum value

from the children intentional element is propagated to the parent intentional ele-

ment.

 Contribution: The satisfaction values are propagated as is shown in Figure 8.

The i* Framework for Goal-Oriented Modeling 17

Figure 8. Propagation rules for Contribution links (adapted from Horkoff and Yu 2014)

4.3. An Example of Application

In the example presented in Section 3.3 (Figure 5), the model contains different

ways to contribute to the community: reporting bugs, committing patches or giving

support to OSS community activities. The organization can decide to con-tribute in

any of these ways; all of them require that the developers follow the OSS commu-

nity practices (task Follow OSS community practices). The i* models support

forward analysis for providing evidence of the goals’ satisfaction in some scenarios.

For example, considering the situation of an organization that does not have in-

house developers with experience in OSS projects. In this case, they need some

support from the community to succeed on following the OSS community practices.

This need is represented in the model by the Acquire management skills task,

which is AND-decomposed including the Ask doubts to the community sub-

task, evidencing that the organization needs some help from the OSS community

(Obtain help task dependency). If the OSS community producing the OSS com-

ponent is not proactive, this means that is not solving the organization doubts. Fig-

ure 9 shows how this situation is represented in the model, adding the qualitative

label Denied () to the Ask doubts to the community task.

Figure 9. Scenario: Ask doubts to the community task is not satisfied

Using the forward evaluation algorithm described in Section 4.2, the organiza-

tion realizes that it is not going to be able to contribute to the OSS Community

18 Xavier Franch, Lidia López, Carlos Cares, Daniel Colomer

(Figure 10) because this situation affects to all the available alternatives for contri-

butions (Report bug, Develop patches and Give support to activities

tasks). This result indicates that the organization is going to fail performing the task

Maintain product and partially failing the softgoal Benefit from co-crea-

tion significatively taken. Because of this, the organization should not

follow this adoption strategy.

Figure 10. Forward evaluation results when Ask doubts to the community is

not satisfied

Figure 11 shows the situation of an organization that succeeds on the Follow

OSS community practices task, but it cannot be accepted as a committer, failing

the Apply to be a committer task.

Figure 11. Failing Apply to be a committer task

The i* Framework for Goal-Oriented Modeling 19

The forward evaluation results (

Figure 12) indicates that the organization is going to be able to contribute the com-

munity in other ways (achieving tasks Report bug and Give support to ac-

tivities), but not committing patches. Allowing thus the organization partially

satisfying one of their main goals (Benefit from co-creation significa-

tively taken) and Maintain product, that jointly with the satisfaction of OSS

component selected, OSS component used and Product tested, would

satisfy the other main goal Product produced using OSS.

Figure 12. Forward evaluation results when Commit patch is not satisfied

20 Xavier Franch, Lidia López, Carlos Cares, Daniel Colomer

5. Conclusion

This book chapter has presented the i* goal- and agent-oriented modeling method.

It consists of a modeling language and several techniques for evaluating and ana-

lyzing the models. We have highlighted the existence of different versions and taken

some decisions in order to provide a consolidated version in this work. The corre-

sponding metamodel and one of the analysis techniques have been implemented

successfully in ADOxx.

Future work spreads over several dimensions. Concerning the language, we aim

at adapting the metamodel to the final version of the ongoing the iStar Standard

Core Language Definition. This will foster the adoption of OMiLAB iStar Tool as

one of the first tools supporting the standard. In terms of the tool itself, we plan to

include several facilities as import/export, different model views and libraries of

reusable model fragments. Finally, we will implement other algorithms and tech-

niques like those proposed by Amyot et al (2010), Franch (2006) and Giorgini et al

(2002).

Acknowledgments

This work has been partially funded by the Spanish funded project EOSSAC

(TIN2013-44641-P) and the RISCOSS project, funded by the EC 7th Framework

Programme FP7/2007-2013, agreement number 318249.

References

Amyot D, Mussbacher G (2002) URN: Towards a New Standard for the Visual Description of

Requirements. In: Procs. 3rd Int. Workshop on Telecommunications and beyond: The Broader

Applicability of SDL and MSC (SAM), LNCS 2599, pp. 21-37, Springer Berlin Heidelberg

Amyot D, Ghanavati S, Horkoff J, Mussbacher G, Peyton L, Yu E (2010) Evaluating goal models

within the goal-oriented requirement language. In: International Journal Intelligent Systems

25(8), pp. 841-877 Wiley

Bencomo N, Belaggoun A (2013) Supporting Decision-Making for Self-Adaptive Systems: From

Goal Models to Dynamic Decision Networks. In: Procs. 19th Int. Working Conf. on Require-

ments Engineering: Foundation for Software Quality (REFSQ), LNCS 7830, pp 221-236,

Springer Berlin Heidelberg

Castro J, Kolp M., Mylopoulos J (2001) A Requirements-Driven Development Methodology. In:

Proc. of the 13th Int. Conf. on Advanced Information Systems Engineering (CAiSE), pp. 108-

123, Springer Berlin Heidelberg

Chung L, Nixon B, Yu E, Mylopoulos J (2000) Non-functional Requirements in Software Engi-

neering. Kluwer Academic Publishing

The i* Framework for Goal-Oriented Modeling 21

Dardenne A., Fickas S, van Lamswerdee A (1991) Goal-directed Concept Acquisition in Require-

ments Elicitation. In: Proc. of the 6th Int. Workshop on Software Specification and Design

(IWSSD), pp. 14-21, IEEE CS Press, Los Alamitos

Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed Requirements Acquisition. Sci-

ence of Computer Programming, 20(1-2), pp. 3—50, Elsevier

Estrada H, Martínez A, Pastor O, Mylopoulos J (2006) An Empirical Evaluation of the i* Frame-

work in a Model-Based Software Generation Environment. In: 18th Int. Conference on Ad-

vanced Information Systems Engineering (CAiSE), LNCS 4001, pp. 513-527, Springer Berlin

Heidelberg

Franch X (2006) On the Quantitative Analysis of Agent-Oriented Models. In: 18th Int. Conference

on Advanced Information Systems Engineering (CAiSE), LNCS 4001, pp. 495—509. Springer

Berlin Heidelberg

Franch X, Grau G, Mayol E, Quer C, Ayala C P, Cares C, Navarrete F, Haya M, Botella P (2007)

Systematic Construction of i* Strategic Dependency Models for Socio-technical Systems. In-

ternational Journal of Software Engineering and Knowledge Engineering 17(1), pp. 79-106,

World Scientific

Franch X (2010): Fostering the Adoption of i* by Practitioners: Some Challenges and Research

Directions. In Intentional Perspectives on Information Systems Engineering, pp. 177-194,

Springer Berlin Heidelberg

Franch X (2010) Incorporating Modules into the i* Framework. In: CAiSE 2010. LNCS 6051, pp.

439—454. Springer Berlin Heidelberg

Giorgini P, Mylopoulos J, Nicciarelli E, Sebastiani R (2002) Formal Reasoning Techniques for

Goal Models. In: LNCS, vol. 2503, pp. 167—181, Springer Berlin Heidelberg

GRL (2001) - Goal Oriented Requirement Language. At http://www.cs.toronto.edu/km/GRL/.

Grau G, Franch X (2007). On the Adequacy of i* Models for Representing and Analyzing Software

Architectures In: Procs. ER Workshops, LNCS 4802, pp. 296-305, Springer Berlin Heidelberg

Horkoff J, Yu E (2010) Finding Solutions in Goal Models: An Interactive Backward Reasoning

Approach. In: Procs. 29th Int. Conf. on Conceptual Modeling (ER), LNCS 6412, pp. 59-75,

Springer Berlin Heidelberg

Horkoff J, Yu E (2011) Analyzing goal models: different approaches and how to choose among

them. In: Proceedings of the 2011 ACM Symposium on Applied Computing (SAC), pp. 675-

682, ACM New York

Horkoff J., Yu E (2014) Interactive goal model analysis for early requirements engineering. In:

Requirements Engineering, online, Springer Berlin Heidelberg

ITU-T Recommendation Z.151 (11/08), User Requirements Notation (URN) - Language Defini-

tion, from http://www.itu.int/rec/T-REC-Z.151/en

Jennings N R, Sycara K, Wooldridge M (1998) A Roadmap of Agent Research and Development.

Autonomous Agents and Multi-Agent Systems, 1(1) pp. 7-38

Jennings N R (2000) On Agent-Based Software Engineering. Artificial Intelligence, 117(2), pp.

277–296.

Kavakli E (2004) Modelling organizational goals: Analysis of current methods. In: 19 th ACM

Symposium on Applied Computing, pp. 1339—1343, ACM, New York

Leite J., Werneck V., Oliveira A., Cappelli C., Cerqueira A., Cunha H., González-Baixauli G.

(2007) Understanding Actor Diagram: an Exercise of Meta Modeling. In Proceedings of the

10yh Workshop on Reuquirements Engineering (WER), pp. 2-12

Li F-L, Horkoff J, Mylopoulos J, Guizzardi R S S, Guizzardi G, Borgida A, Liu L (2014) Non-

functional Requirements as Qualities, with a Spice of Ontology. In: Procs. 22nd IEEE Int. Re-

quirements Engineering Conference (RE), pp. 293 – 302, IEEE CS Press, Los Alamitos

Lopez L, Costal D, Ayala C P, Franch X, Annosi M C, Glott R, Haaland K (2015) Adoption of

OSS components: a goal-oriented approach. Data & Knowledge Engineering 99, pp. 17-38,

Elsevier

22 Xavier Franch, Lidia López, Carlos Cares, Daniel Colomer

Moody D L, Heymans P, Matulevicius R (2010) Visual syntax does matter: improving the cogni-

tive effectiveness of the i* visual notation. Requir. Eng. 15(2), pp. 141-175, Springer Berlin

Heidelberg

Mylopoulos, J, Chung L, Nixon B (1992) Representing and Using Non-functional Requirements:

A Process-Oriented Approach. IEEE Transactions on Software Engineering, 18 (6), pp. 483-

491, IEEE CS Press, Los Alamitos

Mylopoulos J, Chung L, Yu E (1999) From Object-Oriented to Goal-Oriented Requirements Anal-

ysis. Communications of the ACM, 42 (1), pp. 31-37, ACM, New York

van Lamsweerde A (2001) Goal-Oriented Requirements Engineering: A Guided Tour. In: In: 5th

IEEE International Symposium on Requirements Engineering, pp. 249, IEEE CS Press, Los

Alamitos

Wooldridge M, Cincarani P (2000) Agent-Oriented Software Engineering: The State of the Art.

In: First International Workshop on Agent-Oriented Software Engineering (AOSE), LNCS

1957, pp. 1-28, Springer Berlin Heidelberg

Yu E (1993) Modeling Organizations for Information System Requirements Engineering. In: 1st

International IEEE Symposium on Requirements Engineering (ISRE), pp. 34-41, IEEE CS

Press, Los Alamitos

Yu E, Mylopoulos J (1994) Understanding “why” in Software Process Modelling, Analysis, and

Design. In: Proc. of the 16th Int. Conf. on Software Engineering (ICSE), pp. 159-168, IEEE

CS Press, Los Alamitos

Yu E (1995) Modelling Strategic Relationships for Process Reengineering. PhD Dissertation, Uni-

versity of Toronto

