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Abstract. Orthogonal convex skull of a 3D digital object is a maximal
volume orthogonal convex polyhedron lying entirely inside the object.
An efficient combinatorial algorithm to construct an approximate 3D
orthogonal convex skull of a digital object is presented in this paper.
The 3D orthogonal inner cover, an orthogonal polyhedron which tightly
inscribes the digital object, is divided into slab polygons and 2D orthogo-
nal skulls of these slab polygons are combined together using combinator-
ial techniques to obtain an approximate 3D orthogonal convex skull. The
algorithm operates in integer domain and requires at most two passes.
The current version of the algorithm deals with non-intersecting objects
free from holes and cavities. Experimentation on a wide range of digital
objects has provided expected results, some of which are presented here
to demonstrate the efficacy of the algorithm.

Keywords: Approximate 3D orthogonal convex skull · Orthogonal slic-
ing · 3D orthogonal inner cover · 3D concavity

1 Introduction

Shape description of digital objects is a prominent area of research in the realm
of image analysis. Convex skull can be used as an effective tool for shape descrip-
tion of digital objects. The concept of convex skull was initially studied as the
potato-peeling problem which dealt with finding the convex polygon of maxi-
mum area contained in a given simple (non-convex) polygon [7,9]. The solution
for a planar n-gon, n ≤ 5 [9] was followed by polynomial time algorithms of
O(n9 log n) and O(n7) [5,6]. The same problem has been addressed later under
the name of the convex skull problem [12]. Variations of the potato-peeling prob-
lem using triangulated polygons with or without holes is addressed in [2] and a
near-optimal near-linear time algorithm based on visibility graph is proposed in
[4]. An orthogonal version of the problem is addressed in [13] with an improved
complexity of O(n2), where the maximal-area orthoconvex polygon is determined
by computing the maximal ‘staircase’ boundary of the polygon. The method of
finding the orthogonal convex skull of a digital object used in the current work
has been reported in [8]. The convex skull problem has been extended to the
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Fig. 1. 3D orthogonal inner cover of a digital object A, slab polygons due to orthogonal
slicing along the xy-plane, and an approximate 3D orthogonal convex skull.

3D orthogonal domain where the maximal volume convex subset enclosed in the
object is determined by using a constrained distance transform [3].

A novel and efficient algorithm for the construction of an approximate 3D
orthogonal convex skull of a digital object is presented in this paper. A two-
pass algorithm is used to determine the approximate orthogonal convex skull
irrespective of the object size or grid resolution. The algorithm accounts for
non-intersecting objects free from holes and cavities. Figure 1(a) shows a digital
object, its slice polygons for xy-plane (Fig. 1(b)), and its approximate 3OCS(A)
is shown in Fig. 1(c). The rest of the paper is organized as follows. The problem
is defined in Sect. 2. The algorithm with its time complexity are explained in
Sect. 3. The paper is concluded with experimental results in Sect. 4.

2 Definitions and Preliminaries

A digital object A is defined as a finite subset of Z3, with all its constituent points
(i.e., voxels) having integer coordinates and connected in 26-neighborhood. Each
voxel is equivalent to a 3-cell [11] centered at the concerned integer point
(Fig. 2(Left)). A digital grid G consists of three orthogonal sets of equi-spaced
grid lines along the x-, y-, and z-axes. A larger (smaller) value of the grid size
g implies a sparser (denser) grid. A unit grid cube (UGC) is a (closed) cube
of length g. A UGC-face, fk, has two adjacent UGCs, U1 and U2, such that
fk = U1 ∩ U2 (Fig. 2(Left)). A UGC consists of g × g × g voxels and each UGC-
face consists of g × g voxels.

An orthogonal polyhedron is a 3D polytope with all its vertices as grid ver-
tices, all its edges made of grid edges, and all its faces being simple isothetic
polygons lying on face planes. An orthogonal convex polyhedron is an orthogo-
nal polyhedron whose intersection with a face plane parallel to any coordinate
plane is either empty or a collection of projection-disjoint orthogonal convex
polygons1. The 3D orthogonal inner cover of A, PG(A), is defined as the set of
orthogonal polyhedrons that tightly inscribes A; i.e.,

i. PG(A) ⊆ A
ii. for each p ∈ PG(A), 0 < d�(p,A′) � g

1 Orthogonal convex polygons are also known as “hv-convex” polygon in literature..
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Fig. 2. Left: α-adjacent 3-cells for g = 2. Right: Slab St of height g, bounded on top
by slab polygon t lying on Πi and in the bottom by b, the projection of t on Πi−1.

where PG(A) denotes the entire inner cover including its surface PG(A) and
interior region. Here, A′ = Z

3 \ A and d� denotes isothetic distance2. In this
work, we consider objects such that its PG(A) contains only one orthogonal
polyhedron.

The 3D orthogonal convex skull of a digital object A, denoted by 3OCS(A),
is a maximal volume orthogonal polyhedron such that

i. no point p ∈ Z
3 \ A lies on or inside 3OCS(A) and

ii. 3OCS(A) is orthogonally convex.

3 Proposed Work

Given a digital object, A, its inner orthogonal cover, PG(A), is sliced into slab
polygons [10] (Sect. 3.1) along one plane (say xy-). The concavities in these slab
polygons are removed and the convex slab polygons are regrouped to form an
orthogonal polyhedron. The resulting polyhedron is again sliced along another
plane (say yz-) and the concavities are removed from the slab ploygons. Simi-
larly, this procedure is repeated for zx-plane. This constitutes one pass of the
algorithm. After the second pass, the resulting orthogonal polyhedron, which is
devoid of any concavity along any plane, is an approximate orthogonal convex
skull.

3.1 Slicing and Orthogonal Slabs

The 3D object A is provided as a set of voxels. A is imposed on a 3D digital grid
G represented as a set of UGCs each of grid size g. A UGC Ul containing object
2 Isothetic distance between two points p(x1, y1, z1) and q(x2, y2, z2) is defined as the

Minkowski norm L∞ given by d�(p, q) = max {|x1 − x2|, |y1 − y2|, |z1 − z2|}. Iso-
thetic distance of a point p from an object A is d�(p, A) = min {d�(p, q) : q ∈ A}. It
may be noted that isothetic distance may also be expressed in terms of Chebyshev
distance [1] which is a special case of Minkowski norm..
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(3, 3, 3) (4, 4, 4) (4, 6, 6) (5, 3, 3) (6, 2, 2) (7, 3, 3)

Fig. 3. Types of concave vertex (that do not belong to intersecting polyhedron).

voxels is defined as a partially object-occupied UGC. A UGC Uk lying completely
inside A is defined as a fully object-occupied UGC.

Let Π = {Π1,Π2, ...,Πr} be a set of slicing planes separated by g and parallel
to the zx-plane (or yz- or xy-plane) which intersects PG(A). A UGC-face fk (fl)
is considered as fully object-occupied (partially object-occupied) if there exists a
Uk (Ul) below (in case of zx-plane) fk (fl). The inner boundary of A intersected
by Πi is traversed orthogonally keeping fully occupied UGC-faces fk to the left.
Thus, a slab polygon on Πi is obtained. Let t be a slab polygon on Πi and b
be the projection of t on Πi−1. The section of PG(A) of height g intercepted
between Πi and Πi−1 and bounded horizontally on top and bottom by t and b
respectively is defined as the slab St (Fig. 2(Right)). Since b is the projection of
t, their shapes are identical, that is, t does not vary from Πi to Πi−1. Hence,
St can be represented by t. It is evident that the UGCs contained in a slab are
fully object-occupied.

3.2 Concavity in Three Dimensions

Depending on the fully object-occupied neighboring UGCs a grid vertex v may
be classified into different types where each type is represented by a 3-tuple
defined as (#incident UGCs, #incident edges, #incident faces) w.r.t. v. The
grid vertices of types (3, 3, 3), (4, 4, 4), (4, 6, 6), (5, 3, 3), (6, 2, 2), and (7, 3, 3) are
classified as concave vertices. In Fig. 3, some instances of the possible concave
vertices (which do not form intersecting polyhedrons) are shown.

While traversing a slab polygon t (which represents St) a concavity is detected
if we encounter at least two consecutive concave vertices. In Fig. 4(a), the con-
cave vertices on t and b are shown in blue color. For a nested concavity the
number of consecutive concave vertices is more than two, as shown in Fig. 4(c).
The rectangular faces of St having width g and incident on the concave vertices
are defined as concavity faces. If two concavity faces are parallel to each other,
then they are referred to as parallel concavity faces. A concavity on a slab has
at least three concavity faces. Two of them must be parallel concavity faces (see
Fig. 4(a) and (c)).

3.3 Resolving the Concavities of a Slab

During the traversal along the boundary of a slab, whenever a concavity is
detected, it is resolved as follows. A face plane Πf perpendicular to a slab St

and passing through the concave vertices of a concavity divides the slab into
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Fig. 4. (a) A concavity on slab St containing two consecutive concave vertices (blue)
on each of the slab polygons t and b, and a pair of parallel concavity faces. (b) Sub-
polyhedrons formed when a face plane Πf passes through the concave vertices of St.
(c) Nested concavity on St containing four consecutive concave vertices on each of t
and b (Color figure online).

three different parts: two separate sub-polyhedrons lying on one side of Πf ,
and the rest of the slab on the other side (Fig. 4(b)). To maintain convexity of
the slab one of the sub-polyhedrons has to be dropped depending on whether
the concavity is defined by two or more consecutive 270◦ grid vertices. While
traversing a concavity, the sub-polyhedron appearing before the concavity has
already been processed in the previous steps. Hence, that sub-polyhedron does
not contain any concavity. The next sub-polyhedron is checked recursively for
concavity. If deleting a sub-polyhedron disconnects the slab into two parts, then
the sub-polyhedron is not deleted. Otherwise, the sub-polyhedron having the
smaller volume is dropped. This ensures that the sub-polyhedron having the
larger volume is included in OCS(St), thereby striving to achieve a larger volume
of 3OCS(A). As retaining the larger volume sub-polyhedron is a local decision,
it does not ensure that 3OCS(A) will be of the largest possible volume.

Figure 5 shows a brief demonstration of resolving the concavities in a slab.
Concavity C1 (category Cz,x) has two sub-polyhedrons A and B (Fig. 5(a)). The
sub-polyhedron A, occurring after C1, is checked recursively for concavity. Con-
cavity C2 (category Cz,y) is detected on A (Fig. 5(b)). C2 has sub-polyhedrons
A1 and A2. A2 is devoid of concavity. Volume of A2 is smaller than A1 and delet-
ing A2 does not disconnect the slab. Hence, A2 is deleted. In case of concavity C3

(category Cz,x), sub-polyhedrons A3 and A4 are of equal volume (Fig. 5(c)). As
deleting A4 disconnects the slab, A4 is not deleted. Hence, A3 is deleted. Now,
sub-polyhedron A of concavity C1 contains no further concavity (Fig. 5(d)). As
volume of B is less than A, sub-polyhedron B is deleted to resolve C1 (Fig. 5(e)).
Similarly, concavity C4 (category Cz,y) is resolved by deleting sub-polyhedron D.
Thus, all the concavities on the given slab are resolved (Fig. 5(f)). The process is
repeated for all the slabs parallel to a given coordinate plane. After each deletion
of a sub-polyhedron, PG(A) is modified accordingly.
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3.4 Finding Approximate 3D Orthogonal Convex Skull

Construction of an approximate 3D orthogonal convex skull of A involves resolv-
ing the concavities of PG(A) so that 3OCS(A) is a convex orthogonal polyhe-
dron. Along each coordinate plane the following steps are carried out:

i. A is sliced orthogonally to form a set of orthogonal slabs that represent
PG(A) (Sect. 3.1).

ii. The concavities on each slab are detected and resolved, thereby modifying
PG(A) (Sect. 3.3).

iii. If PG(A) has been disconnected into more than one polyhedrons, then all
the polyhedrons except the one having the largest volume are discarded.

The above steps are repeated along another coordinate plane considering the
modified PG(A) as input.
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Fig. 5. Demonstration of resolving the concavities on a slab. Concavity C1 is of category
Cz,x, C2 of category Cz,y, C3 of category Cz,x, and C4 of category Cz,y.
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(a) Cx,z (b) Cx,y (c) Cy,z (d) Cy,x (e) Cz,y (f) Cz,x

Plane Concavity
Induced concavity

yz-plane zx-plane xy-plane

yz
Cx,z Cy,z

- -
Cx,y Cz,y

zx
Cy,z

-
Cx,z

-
Cy,x Cz,x

xy
Cz,y - -

Cx,y
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Fig. 6. Two categories of possible concavities w.r.t. a slab along each coordinate plane.
(a) Resolving concavity of category Cx,z induces concavity of category Cy,z along yz-
plane, (b) resolving Cx,y induces Cz,y along yz-plane, (c) resolving Cy,z induces Cx,z

along zx-plane, (d) resolving Cy,x induces Cz,x along zx-plane, (e) resolving Cz,y

induces Cx,y along xy-plane, and (f) resolving Cz,x induces Cy,x along xy-plane.
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Along each coordinate plane there exists exactly two categories of concavity
on a slab St, as shown in the table in Fig. 6. A concavity can be resolved only
along the coordinate plane to which it is parallel, i.e., Cx,z (belonging to category
Cx,z) and Cx,y (belonging to category Cx,y) are resolved only along the yz-plane,
etc. Resolving a concavity along a coordinate plane may induce another concavity
along a different coordinate plane which leads to the following observation.

Observation 1. W.l.o.g., resolving an instance of concavity of category Cx,z,
while traversing the slab along the yz-plane, may induce one (or more)
instance(s) of concavity of category Cy,z.

It is observed that resolving a concavity of category Cx,z may induce a con-
cavity of category Cy,z, and resolving a concavity of category Cy,z may induce
a concavity of category Cx,z; resolving Cx,y may induce Cz,y and vice versa;
resolving Cy,x may induce Cz,x and vice versa. W.l.o.g. let us consider concav-
ity Cy,z (belongs to Cy,z). Cy,z and Cx,z (belongs to Cx,z) may be induced from
each other for a finite number of times, which leads to the following lemma.

Lemma 1. Let resolving an instance of concavity Cy,z induces one or more
instances of concavity Cx,z and resolving those instances of Cx,z induces one or
more instances of Cy,z. Then resolving the instances of the induced concavity
Cy,z does not induce any further concavity.

Proof. Let the concavities of slab polygons of P along the zx-plane be resolved
first, followed by the yz-plane and the xy-plane. Since resolving a concavity may
induce another concavity, more than one pass may be required to resolve the
induced concavities, as will be elaborated later in Theorem 1. In the first pass,
let the concavity Cy,z on slab Sy1 of P (Fig. 7(a)) be resolved by deleting one
of its sub-polyhedrons A along the zx-plane (Fig. 7(b)). As a result one or more
instances of concavity C ′

x,z may be induced on slabs Sx1 and Sx2 of P ′, by
Observation 1 (Fig. 7(c)). While resolving each instance of C ′

x,z along the yz-
plane (Fig. 7(d)), one or more instances of concavity C ′

y,z may be induced on
slabs Sy2 and Sy3 of P ′′ (Fig. 7(e)). In this case, no concavity is detected along
the xy-plane in the first pass. Hence, it is not shown in Fig. 7. In the second
pass, one or more instances of concavity C ′

y,z on P ′′ (Fig. 7(f)) are resolved
along the zx-plane. Let us assume, by contradiction, that this induces one or
more instances of C ′′

x,z on slab Sx3 of P ′′′ (Fig. 7(h)).
A concavity on a slab is characterized by two sub-polyhedrons and is resolved

by deleting any one of them according to certain rules (Sect. 3.3). During the
first pass along the zx-plane, Cy,z is the only concavity detected on slab Sy1 of P
(Fig. 7(a)). During the second pass along the zx-plane (Fig. 7(e)), two instances
of concavity C ′

y,z are detected on slabs Sy2 and Sy3. They are resolved by delet-
ing sub-polyhedrons D and E respectively from P ′′. Since C ′

y,z is not detected on
P in the first pass along the zx-plane, it is concluded that the sub-polyhedrons
D and E existed as a part of P (Fig. 7(a)). Hence, it is justified that if resolving
an instance of concavity Cy,z induces one or more instances of concavity Cx,z,
then resolving those instances of Cx,z induces one or more instances of Cy,z

(Fig. 7 (a–e)).
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Fig. 7. (a) When an instance of concavity Cy,z is resolved along the zx-plane (b) by
deleting a sub-polyhedron A, (c) two instances of concavity C′

x,z are induced, which
are resolved along the yz-plane (d) by deleting sub-polyhedrons B and C. As a result
(e) two instances of C′

y,z are induced which are resolved along the zx-plane (f) by
deleting sub-polyhedrons D and E . (g) Polyhedron P ′′′ is obtained after resolving all
the concavities of P . (h) It is assumed that an instance of concavity C′′

x,z exists on P ′′′.

During the first pass along the yz-plane (Fig. 7(c)), two instances of concavity
C ′

x,z are detected on the slabs Sx1 and Sx2 of P ′. If it is assumed that concavity
C ′′

x,z exists on slab Sx3 (Fig. 7(h)), then the sub-polyhedron F should be present
on the slab Sx3 of P ′′′ during the second pass along the yz-plane. But the sub-
polyhedron F did not exist as a part of P ′ during the first pass along the yz-
plane (Fig. 7(c)). It implies that F has been deleted before the first pass along
the yz-plane, i.e., F has been deleted while resolving Cy,z along the zx-plane
(Fig. 7(b)). Hence, F cannot exist on Sx3 during the second pass along the yz-
plane. In absence of the sub-polyhedron F , concavity C ′′

x,z cannot exist on Sx3 of
P ′′′ (Fig. 7(h)). This contradicts our assumption. Hence, no concavity is induced
while resolving an instance of C ′

y,z (Fig. 7(g)). Hence proved. ��
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The induced concavities may not be resolved within a single pass of the
algorithm, i.e., applying the algorithm once along the yz-, zx-, and xy-planes.
The following theorem proves that two passes of the algorithm are sufficient for
the purpose.

Theorem 1. The orthogonal polyhedron formed by applying the proposed algo-
rithm at most twice on PG(A) for the set of three coordinate planes (yz-, zx-,
and xy-planes) gives an approximate 3D orthogonal convex skull 3OCS(A).

Proof. According to Lemma 1, a concavity along with its subsequent induced
concavities (if any) are resolved completely by applying the concavity removal
method along three coordinate planes. The sequence of coordinate planes starts
and ends with the same coordinate plane. For example, a concavity of cat-
egory Cy,z and the induced concavities of category Cx,z and again Cy,z are
resolved along the zx-, yz-, and zx-planes (Fig. 7). This is possible only if two
passes of the algorithm are used. Since there exists categories of concavity along
each of the three coordinate planes, application of the algorithm along each of
yz-, zx-, and xy-planes may be required twice. Resolving all the concavities
of PG(A) can, however, conclude in less than two passes depending on the
object structure which does not induce concavity. Therefore, all the concavi-
ties and induced concavities on PG(A) are resolved in at most two passes of the
algorithm.

A slab refers to a section of PG(A) at a given slicing plane. Since PG(A) is of
maximum volume that can be inscribed in the object, at the given slicing plane
a slab is also of maximum volume. While resolving a concavity on a slab, the
sub-polyhedron with the larger volume is included in the 3D orthogonal convex
skull of the slab, thereby trying to achieve a larger volume of 3OCS(A). It may
be noted that the 3D orthogonal convex skull of the slab may not be unique due
to the varying starting point and initial direction of traversal. Also, the volume
of 3OCS(A) may vary with different order of the coordinate planes along which
the algorithm is applied. Due to the variation in volume, the result given by the
algorithm is an approximate 3D orthogonal convex skull. Hence proved. ��

3.5 Algorithm

Given an object A as a set of voxels, its approximate 3D orthogonal convex
skull is constructed by the two-pass algorithm presented in Fig. 8. The three
coordinate planes are considered in sequence (for loop Steps 3–15), for each
slicing plane along a coordinate plane the concavities in a slab are removed (Steps
6–11). On a slicing plane, each slab S[i] is subjected to a method explained
in Sect. 3.3 to construct the 2D orthogonal convex skull OCS(S[i]) (Step 10).
Consequently, the slab corresponding to the 2D orthogonal convex skull K[i]
along each slicing plane is accumulated in P ′

G(A) (Step 11).
While finding the 2D orthogonal convex skull of the slab polygon w.r.t. a slab,

the volume of the slab is determined by computing the area of the slab polygon.
The total volume of a set of consecutive slabs in the direction perpendicular to
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Algorithm 3OCS(A,G)
01. count ← 0 � # passes
02. do
03. for each coordinate plane j �j ∈ {yz, zx, xy}
04. set P ′

G
(A) ← 0 � empty set of polyhedrons

05. slice P
G
(A) with Π �Π = {Π1, Π2, ..., Πr}

06. for each slicing plane Πk �1 ≤ k ≤ r
07. set s ← # slabs on Πk

08. set S ← set of slabs on Πk

09. for i = 1 to s
10. set K[i] ← 2D orthogonal convex skull OCS(S[i])
11. P ′

G
(A) ← P ′

G
(A) ∪ K[i]

12. set m ← # polyhedrons in P ′
G
(A)

13. set M ← set of polyhedrons in P ′
G
(A)

14. P
G
(A) ← largest(vol(M [1]), vol(M [2]), ..., vol(M [m]))

15. count ← count + 1
16. while(count < 2)
17. return P

G
(A)

Fig. 8. Brief outline of the proposed algorithm.

the given coordinate plane gives the volume of the polyhedron composed of the
set of slabs. Thus, the volumes of all the orthogonal polyhedrons in P ′

G(A) are
determined. If P ′

G(A) contains a single polyhedron, then P ′
G(A) represents the

modified 3D orthogonal inner cover PG(A). If P ′
G(A) contains more than one

polyhedron, then the polyhedron having the largest volume is assigned to PG(A)
(Step 14) and the rest of the polyhedrons are discarded.

The process is repeated with the modified PG(A) along the other coordinate
planes (Steps 3–15) and the algorithm is repeated exactly once along all the three
coordinate planes (Steps 2–16). Finally, the modified 3D orthogonal inner cover
PG(A) is reported as the approximate 3D orthogonal convex skull (approximate
3OCS(A)) (Step 17). The algorithm deals with non-intersecting objects free from
holes and cavities.

3.6 Time Complexity

Let n be the number of voxels on the object surface connected in 26-
neighborhood. A UGC is a cube of length g which contributes a maximum of five
faces to the cover. Therefore, the number of UGCs on the object surface contain-
ing object voxels is O(n/g) in the worst case, which implies that the number of
UGC-faces on the object surface is given by O(n/g). The full object occupancy
of a UGC is determined by checking six UGC-faces completely in O(g2) time.

W.r.t. each slicing plane, orthogonal slicing involves traversal of the grid
vertices on the slicing plane exactly once. Therefore, considering all the slicing
planes, the UGCs on the object surface are traversed exactly once. This traversal
requires O(n/g) time. O(g2) time is required to check whether a UGC-face is
fully object-occupied. Hence, the direction of traversal at each grid vertex is
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determined in O(g2) time. Therefore, the orthogonal slicing along a coordinate
plane is completed in O(n/g) × O(g2) = O(ng) time.

The grid vertices on the object surface are sorted lexicographically in O((n/g)
log (n/g)) time. Once a concavity is detected on a slab, the terminal vertices of
the next sub-polyhedron are found from the lexicographically sorted lists. For
all the slabs this operation is completed in O(log n) time. In case of nested con-
cavity, connectivity of a sub-polyhedron is checked in O(1) time. Volumes of the
sub-polyhedrons are computed in O(n/g) time to remove the sub-polyhedron
of smaller volume in every case. Hence, the overall time complexity for resolv-
ing the concavities on all the slabs is bounded by O(n log n). Volume of the
approximate 3D orthogonal convex skull is determined by computing the vol-
ume of all the slabs parallel to a given coordinate plane in O(n/g) time. There-
fore, the total time complexity for finding an approximate 3OCS(A) is given by
O(ng) + O(n log n) = O(n log n).

4 Experimental Results and Conclusions

The proposed algorithm has been implemented in C in Linux Fedora Release 13,
Dual Intel Xeon Processor 2.8 GHz, 800 MHz FSB. The experimental results in

Chess pawn Seahorse Bottle

g = 2, volOIC = 4630, g = 2, volOIC = 52690, g = 2, volOIC = 14967,
volOCS = 3628 volOCS = 36583 volOCS = 13605

g = 4, volOIC = 436, g = 4, volOIC = 5445, g = 4, volOIC = 1524,
volOCS = 365 volOCS = 3964 volOCS = 1374

Fig. 9. Approximate 3D orthogonal convex skull of Chess pawn, Seahorse, and Bottle.
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Fig. 9 display an approximate 3D orthogonal convex skull of each of the objects
Chess pawn, Seahorse, and Bottle for different grid sizes. The volumes of both
the 3D orthogonal inner cover (volOIC) and the approximate 3D orthogonal
convex skull (volOCS) decrease exponentially with increasing grid size. It may
be noted that the number of concave vertices of all the types except (7, 3, 3) is
less in the approximate 3OCS(A) than in the 3D orthogonal inner cover.

The approximate 3D orthogonal convex skull of an object may vary with the
order of the coordinate planes along which the algorithm is applied. If the two
sub-polyhedrons due to a concavity on a slab are of equal volume, then more
than one result may exist. The approximate 3D orthogonal convex skull may
also vary depending on the starting point and initial direction of traversal (anti-
clockwise or clockwise) while resolving the concavities on a slab. The result
will be unique only if none of the concavities on a slab have more than two
consecutive 270◦ vertices or the sub-polyhedron with the larger volume is not
deleted to maintain connectivity of the slab. The volume of 3OCS(A) may vary
with its structure, reporting an approximate 3D orthogonal convex skull in every
case. Figure 10 illustrates the variation of the approximate 3D orthogonal convex
skull when the proposed algorithm is applied on the object along the coordinate
planes in different orders, like, along the yz-plane first, followed by the zx-plane
and the xy-plane, etc. The current version of the algorithm is limited to non-
intersecting digital objects and objects free from holes and cavities. Extension
of the algorithm to account for those objects may be attempted in future.

(a) yz-, zx-, and xy-planes (b) zx-, yz-, and xy-planes (c) yz-, xy-, and zx-planes

Fig. 10. Variation of the approximate 3D orthogonal convex skull of Phone due to
application of the algorithm along the coordinate planes in different orders.
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