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Abstract. Given the pairwise distances for a set of unknown points in a
known metric space, the distance geometry problem (DGP) is to compute
the point coordinates in conformation with the distance constraints. It is
a well-known problem in the Euclidean space, has several variations, finds
many applications, and so has been attempted by different researchers
from time to time. However, to the best of our knowledge, it is not
yet fully addressed to its merit, especially in the discrete space. Hence,
in this paper we introduce a novel variant of DGP where the pairwise
distance between every two unknown points is given a tolerance zone
with the objective of finding the solution as a collection of integer points.
The solution is based on characterization of different types of annulus
intersection, their equivalence, and cardinality bounds of integer points.
Necessary implementation details and useful heuristics make it attractive
for practical applications in the discrete space.

1 Introduction

Given the inter-point distances for a finite set of points with unknown coordinates
in a particular metric space, the distance geometry problem (DGP) is to embed
the points in that space so as to satisfy the distance constraints. The basic
problem in the Euclidean space was first introduced by Menger in 1920s, and
later formally established by Blumenthal in 1950s [2,14,17]. The general version
of the problem is as follows. Given a positive integer k and a simple undirected
weighted graph G = (V,E) with weight function w : E �→ R

+, determine if there
is a function f : V �→ R

k such that for all (u, v) ∈ E, ‖f(u) − f(v)‖ = w(u, v),
where ‖ · ‖ denotes the Euclidean norm in k-dimensional space. The problem is
NP-complete for k = 1 (i.e., embedding in real line) and NP-hard for k > 1 [19].
Following are the variations of DGP as per the input distance set.

1. Exact Distances: The point-set embedding should be such that the corre-
sponding distance set exactly matches the input distance set. Here all the
distances are given, and so the distance set is a complete set.

2. Inexact or Bounded Distances: Each pairwise distance in the solution need
not be exact, but lies in an interval.

3. Sparse Distances: The distance set is incomplete; in addition, the distances
could be of exact or of bounded type.
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The second and the third variations of the problem are more realistic than the
first one, since the exact distances are often not available due to limitations of the
measurement device. The DGP is related to many important research problems,
such as Molecular Distance Geometry Problem and Molecular Conformation
[8,11–13,15,16,20], Sensor Network Localization [4,5,18], and Graph Drawing
[1,3,6,9]. In all these problems, the DGP is dealt in the real space. When the
pairwise distances are exact, it can be solved in polynomial time [7,20]. For
bounded and sparse distances, the scenario becomes complex and difficult to
solve [14,20].

In our work, we have addressed the DGP for inexact or bounded distances in
the integer plane and have devised an efficient technique for solving it whenever a
given input instance admits a feasible solution. Although all the solution points
have integer coordinates, the proposed technique can be extended for finding
solutions in finer grids. To start with, in Sect. 2, we formulate the problem in the
integer plane. In Sect. 3, we present a characterization of digital annulus intersec-
tion for efficient computation of the solution in the integer plane. The proposed
heuristics and algorithm are discussed in Sect. 4. Further research directions and
concluding notes are put in Sect. 5.

2 Preliminaries and Problem Definition in Z
2

We fix here few definitions and notations used in the sequel. A real circle with
center at c ∈ R

2 and radius r is denoted by CR(c, r). A real annulus is defined
as AR(c, a, b) = {p ∈ R

2 : a � ‖c − p‖ � b}, where c ∈ R
2 is the center of the

annulus, and a and b are the respective inner and outer radii. A digital annulus
centered at c ∈ R

2, and with inner and outer radii a and b respectively, is defined
as the set of all integer points in AR(c, a, b), and so given by AZ(c, a, b)={p ∈
Z
2 : a � ‖c − p‖ � b}.

Let P = {p1, p2, . . . , pn} be a set of points with unknown coordinates in Z
2

such that the distance between every two points pi and pj is known to lie in a
given interval [aij , bij ]. The objective is to determine the integer coordinates of
all points in P . We consider an alternative form of the distance bounds where
the distance between pi and pj lies in a known interval [dij − ε, dij + ε] for some
ε > 0. We also assume that the given intervals are such that there is at least one
solution to the problem.

To simplify our strategy, we first fix the reference frame with p1 as the origin,
p2 as an integer point on the +x-axis, and p3 lying left of −−→p1p2. With a12 � ‖p1−
p2‖ � b12, we get p2 ∈ AZ(p1, a12, b12), and p3 ∈ AZ(p1, a13, b13)∩AZ(p2, a23, b23)
(Fig. 1a). Now, for i � 4, if we try to embed pi based on its distance intervals
from the previous i − 1 points, then we need to compute

⋂i−1
j=1 AZ(pj , aji, bji),

which is expensive. Hence, as a faster solution, we use
⋂3

j=1 AZ(pj , aji, bji) for
each pi(i � 4) (Fig. 1b). For this, we have the following lemma.

Lemma 1. All the solution points corresponding to pi for i = 4, 5, . . . , n belong
to

⋂3
j=1 AZ(pj , aji, bji), which, if empty, does not yield any solution for P .

Proof. Follows from the problem statement and our consideration. ��
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Fig. 1. Embedding of p3 followed by p4 in Z
2.

3 Characteristics of Annulus Intersection

We first provide some basic concepts of discrete geometry in the integer plane.
For more details we refer to [10]. Let p = (i, j) ∈ Z

2. The 4-neighbors of p
in Z

2 is defined as N4(p) = {(i′, j′) ∈ Z
2 : |i − i′| + |j − j′| = 1}, and the

8-neighbors as N8(p) = {(i′, j′) ∈ Z
2 : max(|i − i′|, |j − j′|) = 1}. A subset A of

Z
2 is said to be 4-connected (resp., 8-connected) if either A is singleton or there

exists a sequence of points in A between every two points of A such that every
two consecutive points in that sequence are 4-neighbors (resp., 8-neighbors) of
each other. When A is not connected, its maximally connected subsets are called
connected components.

Let, without loss of generality, p1 and p2 be the farthest pair, and the dis-
tance d12 between them be denoted by d for simplicity. We examine the possible
locations of an unknown point p, which is at a distance d1 and d2 from p1 and
p2 respectively, where a1 � d1 � b1 and a2 � d2 � b2. So, by our supposition,
max(b1, b2) � d. Also, b1 + b2 � d, failing which there will be no such point p.
Then p can be chosen as some point common to the digital annuli AZ(p1, a1, b1)
and AZ(p2, a2, b2) if their intersection is non-empty. When a solution exists, i.e.,
the width of the annulus is sufficiently large, the intersection will be either a
single or a pair of 8-connected components (Fig. 2). We define IZ as the set of
integer points belonging to both AZ(p1, a1, b1) and AZ(p2, a2, b2). The non-empty
intersection IZ is classified as follows.

– Type 1 (a1 + a2 > d): IZ comprises two connected components lying in two
different sides of the line p1p2. (As a degeneracy, it may have a single com-
ponent when a1 + a2 tends to d.)

– Type 2 ((a1 +a2 � d)∧ (a1 + b2 � d)∧ (b1 +a2 � d)): IZ is a single connected
component. (As a degeneracy, it may have two connected components as in
Type 1.)
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– Type 3 (((a1 + b2 < d) ∧ (b1 + a2 > d)) ∨ ((b1 + a2 < d) ∧ (a1 + b2 > d))): IZ

is a single connected component.
– Type 4 ((a1 +a2 < d)∧ (a1 + b2 < d)∧ (b1 +a2 < d)): IZ is a single connected

component bounded by the outer circles of the real annuli.

(a) Type 1 (b) Type 2 (c) Type 3 (d) Type 4

Fig. 2. Possible types of intersection between two annuli such that no radius exceeds
the distance between the annulus centers.

Note that there can be other types of intersection if max(b1, b2) > d. Hence,
to avoid this, we consider p1 and p2 as the farthest pair. we have the following
lemma related to intersection types.

Lemma 2. Type 3 and Type 4 intersections are computationally equivalent to
Type 2.

Proof. For Type 3 (Fig. 3(a-b)), we can replace AZ(p1, a1, b1) by AZ(p1, a′
1, b1)

with a′
1 = d − b2, whence it gets converted to Type 2, thereby equalizing

AZ(p1, a1, b1) ∩ AZ(p2, a2, b2) to AZ(p1, a′
1, b1) ∩ AZ(p2, a2, b2); similarly, we can

replace AZ(p2, a2, b2) by AZ(p2, a′
2, b2) with a′

2 = d − b1, which also results in
Type 2. In case of Type 4 (Fig. 3c), AZ(p1, a1, b1) and AZ(p2, a2, b2) can be
replaced by AZ(p1, a′

1, b1) and AZ(p2, a′
2, b2) respectively, with a′

1 = d − b2 and
a′
2 = d − b1, thereby again resulting in Type 2. ��

Thus, Type 3 and Type 4 intersections can be converted to their equivalent
Type 2 intersection, which simplifies the associated computation.

3.1 Computing Annulus Intersection in Z
2

We first ensure that an annulus intersection is of Type 1 or of Type 2 or its equiv-
alent. For computing the integer points in IZ := AZ(p1, a1, b1) ∩ AZ(p2, a2, b2),
we first find a seed point s ∈ IR := AR(p1, a1, b1) ∩ AR(p2, a2, b2). The
seed point s is taken as an/the intersection point of the circles CR(p1, a1+b1

2 )
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Fig. 3. Converting Type 3 and Type 4 intersections into equivalent Type 2 intersection
by removing the empty sub-annulus incident on the inner circle (shown dashed and
blue). (Color figure online)

and CR(p2, a2+b2
2 ). Note that CR(p1, a1+b1

2 ) and CR(p2, a2+b2
2 ) intersect at two

points if d′ = a1+b1
2 + a2+b2

2 > d, where d is the distance between p1 and p2. If
d′ = d, then they touch at a single point, and they do not intersect or touch at
all when d′ < d. As the intersection is of Type 1 or Type 2, there always exists a
seed point with minimum distance b1−a1

2 and b2−a2
2 from the boundaries of the

annuli (Fig. 4). This gives us the following lemma.

Lemma 3. If min(b1 − a1, b2 − a2) �
√

2 and the intersection of AZ(p1, a1, b1)
and AZ(p2, a2, b2) is of Type 1 or of Type 2, then there exists an integer point
q0 ∈ AZ(p2, a1, b1) ∩ AZ(p2, a2, b2) and it can be determined in constant time.

Proof. The seed point s belongs to a unit square U whose vertices are integer
points. If the width of each annulus is at least

√
2, then the minimum distance

of s from each annulus boundary is at least
√
2
2 = 1√

2
. Hence, the real circle

CR(s, 1√
2
) is completely enclosed by both the annuli. Since s lies on or inside U ,

at least one vertex of U is within a distance of 1√
2

from s, and so lies on or inside
CR(s, 1√

2
), and hence inside the annulus intersection. ��

By Lemma 3, we get an integer point q0 ∈ IZ. Starting from q0, we get all
other points in IZ as a connected component, using breadth first search (BFS)
in the integer plane.

Henceforth in this paper, for notional and notational simplicity, we consider
2ε as the width of each annulus. So, the digital annulus centered at a point pi is
denoted by AZ(pi, di − ε, di + ε), where di is its mean radius.

Theorem 1. If d := ||p1 − p2|| � max(d1, d2) + ε, then the cardinality of IZ is
O(ε2) for Type 1 intersection and O(ε

√
εd) for Type 2 intersection.
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Fig. 4. Finding a seed points s (red) for computing the annulus intersection. (Color
figure online)

Proof. We have d > d1 + ε and d > d2 + ε. If d > d1 + d2 + 2ε, then IZ is
empty. So, d � d1 + d2 + 2ε. Without loss of generality, we take p1 = (0, 0) and
p2 = (d, 0), as illustrated in Fig. 5.

Let I+ = {(x, y) ∈ IR : y � 0}, xmin = min{x : (x, y) ∈ I+}, xmax =
max{x : (x, y) ∈ I+}, ymin = min{y : (x, y) ∈ I+}, and ymax = max{y : (x, y) ∈
I+}. Then there exists a rectangle with edge-lengths w = (xmax − xmin) and
h = (ymax − ymin) such that it encloses I+. Hence, the number of integer points
in I+ is O(wh), and from the symmetry of the problem, the cardinality of IZ is
O(wh). We determine w and h by case analysis.

Case I (IR is Type 1): Here, d � d1 + d2 − 2ε, and IR consists of two connected
components: one lies above and the other lies below the line p1p2 (Fig. 5(a)).
Then xmin is the abscissa of the point of intersection of CR(p1, d1 − ε) and
CR(p2, d2 + ε). By solving the equations x2 + y2 = (d1 − ε)2 and (x − d)2 + y2 =
(d2+ε)2, we get xmin = d2+(d1−ε)2−(d2+ε)2

2d . Similarly, the abscissa of the point of

intersection of CR(p1, d1 + ε) and CR(p2, d2 − ε) gives xmax = d2+(d1+ε)2−(d2−ε)2

2d .
So by using d � max(d1, d2) + ε, we get

w = xmax − xmin =
4ε(d1 + d2)

2d
� 4ε

(
1 − ε

d

)
� 4ε. (1)

By symmetry of the problem, we can interchange x and y to obtain a similar
bound for h as 4ε. Hence, for each of the two components of the annulus inter-
section, there exists an enclosing square of length 4ε. Hence, the cardinality of
IZ becomes O(ε2).

Case II (IR is Type 2): Here, d1+d2−2ε < d, because the inner circles CR(p1, d1−
ε) and CR(p2, d2 − ε) do not intersect or touch each other. By following the
procedure used in Case I, it can be shown that xmax − xmin � 4ε, or, w = O(ε).
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Fig. 5. Cardinality of intersection for annulus width 2ε. (a) Type 1 annulus intersection
is bounded by a rectangle with (axis-parallel) edges of length O(ε) and cardinality
O(ε2). (b) Type 2 annulus intersection is bounded by a rectangle with edges of length
O(ε) and O(

√
εd), and cardinality O(ε

√
εd).

Let c = (cx, cy) be the topmost point of the annulus intersection, and hence it is
the intersection point of the outer real circles of the two annuli. By symmetry,
c′ = (cx,−cy) is the bottommost point, which is the reflection of c with respect to
x-axis. Then solving the equations c2x+c2y = (d1+ε)2 and (d−cx)2+c2y = (d2+ε)2,

we get cx = d2+(d1+ε)2−(d2+ε)2

2d and cy as follows.

c2y = (d1 + ε)2 −
(

d2+(d1+ε)2−(d2+ε)2

2d

)2

= ((d1+d2+2ε)2−d2)(d2−(d1−d2)
2)

4d2

� ((d+4ε)2−d2)(d2−(d1−d2)
2)

4d2 , since d1 + d2 − 2ε < d

= 4ε2
(
1 + d

2ε

) (
1 − (d1−d2

d )2
)

� 4ε2
(

d
2ε + d

2ε

)
, since d � max(d1, d2) + ε, d > d1 + d2 − 2ε, d

2ε > 1

= 4εd =⇒ cy = O(
√

εd). (2)

By Eq. 2, h = O(
√

εd); as w = O(ε), the number of points in IZ is O(ε
√

εd). ��
By Lemma 3 and Theorem 1, we have the following corollary.

Corollary 1. IZ is computable in O(ε2) time for Type 1 and in O(ε
√

εd) time
for Type 2 intersections.

4 Proposed Algorithm and Implementation Issues

The first three points p1, p2, and p3 are known, or are fixed with an appropriate
coordinate system, as explained in Sect. 2. That is, for i = 1, 2, 3, the candidate
solutions are IZ

i = {pi}. For each other point pi, a set of candidate solutions
is obtained as IZ

i :=
⋂3

j=1 AZ(pj , aji, bji). One or more points from IZ

i would
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belong to a/the global solution with all n points. In particular, we have the
following theorem on the collection of these sets of candidate solutions.

Theorem 2. If a given set of distance constraints admits a global solution, then
it is always contained in the collection K := {IZ

i : i = 1, 2, . . . , n} whose compu-
tational time is O(ε2n) in the best case and O(ε

3
2 d

1
2 n) in the worst case.

Proof. The containment of global solution in K follows from Lemma 1. For prov-
ing the computational part, we use Corollary 1. For each pi with i = 4, . . . , n,
computation of AZ(p1, a1i, b1i)∩AZ(p2, a2i, b2i) takes O(ε2) time for Type 1 inter-
section and O(ε

√
εd) time for Type 2 intersection. The additional time needed

for validation against AZ(p3, a3i, b3i) is subsumed within the aforesaid time com-
plexity. Summing up this over i from 4 to n, we get the result. ��

By Lemma 3, we always have an integer point qi,0 in IZ

i if we set ε � 1√
2

and IZ

i is of Type 1 or of Type 2, for i = 1, 2, . . . , n. Further, by Theorem 1, if
d � max(d1, d2)+ε, then with ε = 1√

2
, we get |IZ

i | = O(1) for Type 1 intersection

and O(
√

d) for Type 2 intersection. So by Corollary 1, IZ

i can be computed in
O(1) time in the best case and in O(

√
d) time in the worst case. This gives the

following corollary.

Corollary 2. For an appropriately small value of ε (= 1√
2
for definiteness), the

time complexity of the algorithm varies from O(n) to O(n
√

d), where d is the
maximum point-pair distance.

When positions of p1, p2, and p3 are not known, we can choose p1 as the
origin and p2 lying in AZ(p1, a12, b12). There are O(εd) possible choices for p2.
Next, the third point p3 can be chosen from the intersection of AZ(p1, a13, b13)
and AZ(p2, a23, b23). There are O(ε

3
2
√

d) ways to choose p3. The rest of the points
can be computed using the proposed technique. For certain choices of p2 and p3,
a global solution (satisfying all the distance bounds) may not exist. So, we may
need to consider all possible choices of p2 and p3 in order to compute a global
solution. There are O(ε

5
2 d

3
2 ) possible pairs of possible solutions for p2 and p3

in the worst case. Hence, total time required for computing a global solution
is O(ε4d2n) in the worst case. We also need O(n2) time to verify the distance
bounds for a solution.

4.1 Search for Feasible Solution

By Theorem 2, the collection K contains all feasible solutions. However, it may
contain some infeasible combinations too, alongside. To distinguish the former
from the latter, one has to search at least O(ε2n) possible combinations. These
combinations can be represented in a rooted tree with the root node containing
the solution for p1 and a node at the ith level representing a set of solutions for
pi that satisfies the distance constraints with its predecessor points from pi−1

to p1. The tree traversal is similar to the branch-and-prune technique proposed
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Algorithm 1. DDGA(n, a, b, P1, P2, P3 )

1 Create empty list IZ

i of candidate solutions for ith point, for i = 1, 2, · · · , n.

2 IZ

1 ← { P1}, IZ

2 ← { P2}, IZ

3 ← { P3}
3 for i = 4, 2, · · · , n do � set of candidate solutions for ith point

4 IZ

i ← AZ(P1, a1i, b1i) ∩ AZ(P2, a2i, b2i) ∩ AZ(P3, a3i, b3i).

5 ni ← |IZ

i | � number of candidate solutions for ith point

6 N ← ShiftOrigin(
⋃n

i=1 IZ

i ) � make sure all points are in [1, N ] × [1, N ]
7 Create a matrix B[1..N ; 1..N ], initialized to 0s � to accumulate votes

8 for i = 1, 2, · · · n do � casting mutual votes of IZ

i and IZ

j

9 for j = i + 1, i + 2, · · · , n do
10 for k = 1, 2, · · · , ni do

11 (αi, βi) ← IZ

i [k] � get the kth point of IZ

i

12 for l = 1, 2, · · · , nj do

13 (αj , βj) ← IZ

j [l] � get the lth point of IZ

j

14 d ← ||(αi, βi) − (αj , βj)|| � distance between the points

15 if aij � d � bij then
16 B[αi, βi] ← B[αi, βi] + 1 � casting a vote for (αi, βi)
17 B[αj , βj ] ← B[αj , βj ] + 1 � casting a vote for (αj , βj)

18 for i = 4, 5, · · · , n do � find a point in IZ

i having maximum vote

19 (α, β) ← IZ

i [1] � first point in the list IZ

i

20 for k = 2, 3, · · · , ni do � search in IZ

i

21 (αi, βi) ← IZ

i [k]
22 if B[α, β] < B[αi, βi] then
23 (α, β) ← (αi, βi)

24 Pi ← (α, β) � final solution point with maximum vote

25 return {Pi : i = 1, 2, · · · , n}

in [13] and the interval branch-and-prune technique proposed in [12] for finding
an approximate DGP solution in R

2. In our approach, the search is performed
in Z

2, where we need to verify only a finitely many possible points for a valid
solution. A possible solution to the DGP problem corresponds to a path of length
n − 1 from the root to a leaf node. In order to find a solution, in the worst case,
we may need to explore and verify all paths, which would take exponential time
when ε is not small. In such a case, a voting scheme may be adopted as an
efficient heuristic to determine the best solution point in each IZ

i in the sense
that it satisfies the maximum number of distance constraints. For any p ∈ IZ

i

and q ∈ IZ

j , if p and q satisfy the distance constraints, then each of them receives
a mutual vote. In order to compute the vote for all candidate integer points, we
use an accumulator B (implemented as a 2D array), such that for each digital
point (α, β), B(α, β) stores the number of votes received by (α, β). The main
steps are shown in Algorithm 1.
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)b()a(

Fig. 6. Visualization of a digital solution to DGP with inexact distances. See Appendix
for the input. (a) p1, p2, and p3 shown in red; the connected components making the
candidate solutions of all other points shown in distinct colors; each point having the
highest vote in a component shown as a blue dot. (b) The votes for all candidate
solutions are treated as intensity values to visualize the accumulator matrix B as an
image. Brighter pixels correspond to higher votes and pixels having highest votes are
marked by colored dots. (Color figure online)

4.2 Improvement of Efficiency

If all the annulus intersections computed during the execution of the algorithm
are of Type 1, then the algorithm has the speediest execution. So, in order to
increase Type 1 intersections, we choose p1 and p2 as the farthest pair. Similarly,
we choose p3 such that min(b13, b23) � min(b1i, b2i), ∀i �= 1, 2. Further, IZ

i can
be computed by following an appropriate ordering of computation of the inter-
section of the three annuli AZ(p1, a1i, b1i), AZ(p2, a2i, b2i), and AZ(p3, a3i, b3i),
so that IZ

i is Type 1 intersection; otherwise, we defer its computation. In par-
ticular, we first run the algorithm for the points that have Type 1 intersection
with respect to p1, p2 and p3, and find the solution by voting scheme. We take
S1 as the list of points whose solutions are found by this, and S2 as the list of
the remaining points, i.e., the ones having Type 2 intersection. The solutions for
the points in S2 are determined by using few suitable points from S1.

4.3 Test Results

The proposed algorithm for solving inexact DGP is implemented and tested on
randomly generated problem instances. Experimentation shows that the algo-
rithm is able to solve inexact DGP efficiently. A solution to a small problem
instance with n = 12 points is visualized in Fig. 6. Notice that only one solu-
tion is reported here; there are, in fact, multiple solutions when a connected
component contains more than one point having the same maximum vote.



DGP in Integer Plane 287

5 Concluding Notes

We have formulated the inexact DG problem in Z
2 and have done a theoretical

analysis in order to solve it efficiently. For a large value of ε, we have proposed an
efficient voting scheme in order to bring down the exponential time complexity
to a low-order polynomial. The idea can be extended for solving inexact DGP in
3D integer space also. Besides, many other issues and possibilities have opened
up, which requires a deeper analysis of the problem in the discrete space. Some
of these, which we foresee as potential research problems, are as follows.

1. The number of worst-case occurrences in the execution of the algorithm can
possibly be minimized by changing the sequence in which the annuli are con-
sidered while computing their intersections. The rationale is that if the centers
of three annuli are well-separated, then their intersection is well-formed, easy
to compute, and lead to speedier execution.

2. In many applications, the distances may not be known for some pairs of
points. We can then apply the algorithm to compute the candidate solutions
for those points whose distances from p1, p2, and p3 are known; then these
partial solutions can be used in a suitable order to find the remaining points.

3. For a small ε, no integer solution may exist for certain points. To handle this,
we can go for a higher resolution by subdividing Z

2 and reporting the solution
point coordinates as rational numbers.

4. We have not commented on the behavior of the heuristic used when ε is large.
As ε increases, uncertainty also increases, and the solution space increases
exponentially and depends on the distribution of the pairwise distances. We
envisage a wide scope of research to analyze this aspect of the problem.

A Appendix

Top matrix: (d)n×n contains actual distances among n = 12 points generated
randomly. An instance of inexact DGP is made with [aij , bij ] = [(dij −ε), (dij +ε)
for ε = 2.
Bottom matrix: (d̂)n×n (rounded off to two decimal places) of the embedded

point set; the RMS error
(

=
√∑

i<j(dij − d̂ij)2/
(
n
2

))
between (d)n×n and

(d̂)n×n is 0.7654.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
p1 0 41.77 28.92 30.89 38.19 31.69 23.49 12.27 10.71 23.37 35.63 13.35
p2 41.77 0 24.01 24.42 9.33 10.85 18.57 30.39 38.81 22.94 11.08 30.30
p3 28.92 24.01 0 34.07 27.74 21.04 13.72 17.40 20.75 26.31 13.11 25.00
p4 30.89 24.42 34.07 0 15.54 15.72 20.43 25.68 34.76 8.88 28.00 17.87
p5 38.19 9.33 27.74 15.54 0 7.45 17.54 28.38 37.67 16.28 16.87 25.39
p6 31.69 10.85 21.04 15.72 7.45 0 10.09 21.21 30.36 12.24 12.37 19.61
p7 23.49 18.57 13.72 20.43 17.54 10.09 0 11.82 20.51 12.65 12.76 14.02
p8 12.27 30.39 17.40 25.68 28.38 21.21 11.82 0 9.48 16.85 23.43 9.72
p9 10.71 38.81 20.75 34.76 37.67 30.36 20.51 9.48 0 26.06 30.41 17.48
p10 23.37 22.94 26.31 8.88 16.28 12.24 12.65 16.85 26.06 0 22.86 10.02
p11 35.63 11.08 13.11 28.00 16.87 12.37 12.76 23.43 30.41 22.86 0 26.71
p12 13.35 30.30 25.00 17.87 25.39 19.61 14.02 9.72 17.48 10.02 26.71 0
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p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
p1 0 41.00 29.41 29.41 38.64 31.26 23.19 11.40 10.77 23.26 35.90 13.42
p2 41.00 0 24.04 24.04 7.62 10.77 18.25 30.15 38.33 22.36 10.00 29.61
p3 29.41 24.04 0 34.00 27.78 22.14 14.04 19.10 21.19 27.17 14.21 25.94
p4 29.41 24.04 34.00 0 17.20 14.76 20.02 23.85 33.60 7.62 27.31 16.28
p5 38.64 7.62 27.78 17.20 0 7.62 18.03 28.79 38.01 17.26 15.30 26.02
p6 31.26 10.77 22.14 14.76 7.62 0 10.63 21.19 30.41 11.66 12.65 19.10
p7 23.19 18.25 14.04 20.02 18.03 10.63 0 12.00 20.25 13.15 13.00 14.21
p8 11.40 30.15 19.10 23.85 28.79 21.19 12.00 0 9.90 16.40 24.52 9.06
p9 10.77 38.33 21.19 33.60 38.01 30.41 20.25 9.90 0 26.25 31.06 17.89
p10 23.26 22.36 27.17 7.62 17.26 11.66 13.15 16.40 26.25 0 22.80 9.85
p11 35.90 10.00 14.21 27.31 15.30 12.65 13.00 24.52 31.06 22.80 0 26.93
p12 13.42 29.61 25.94 16.28 26.02 19.10 14.21 9.06 17.89 9.85 26.93 0
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