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Abstract. Euclidean rotations in R
n are bijective and isometric maps.

Nevertheless, they lose these properties when digitized in Z
n. For n = 2,

the subset of bijective digitized rotations has been described explicitly by
Nouvel and Rémila and more recently by Roussillon and Cœurjolly. In
the case of 3D digitized rotations, the same characterization has remained
an open problem. In this article, we propose an algorithm for certifying
the bijectivity of 3D digitized rational rotations using the arithmetic
properties of the Lipschitz quaternions.

1 Introduction

Rotations defined in Z
3 are simple yet crucial operations in many image process-

ing applications involving 3D data. One way of designing rotations on Z
3 is to

combine continuous rotations defined on R
3 with a digitization operator that

maps the result back into Z
3. However, the digitized rotation, though uniformly

close to its continuous sibling, often no longer satisfies the same properties. In
particular, due to the alteration of distances between points—provoked by the
digitization—the bijectivity is lost in general.

In this context, it is useful to understand which 3D digitized rotations are
indeed bijective. “Simple” 3D digitized rotations, in particular those around one
of the coordinate axes, possess the same properties as 2D digitized rotations.
Therefore, an obvious subset of 3D bijective digitized rotations consists of the
2D bijective digitized rotations embedded in Z

3. Nevertheless, the question of
determining whether a non-simple 3D digitized rotation is bijective, remained
open.

To our knowledge, few efforts were devoted to understand topological alter-
ations of Z

3 induced by digitized rotations. The contributions known to us were
geared toward understanding these alterations in Z

2: Andres and Jacob provided
some necessary conditions under which 2D digitized rotations are bijective [5];
Andres proposed quasi-shear rotations which are bijective but possibly gener-
ate errors, particularly for angles around π/2 [1]; Nouvel and Rémila studied
the discrete structure induced by digitized rotations that are not bijective but
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 30–41, 2016.
DOI: 10.1007/978-3-319-39441-1 4



Bijectivity Certification of 3D Digitized Rotations 31

generate no error [12,14]; moreover, they characterized the set of 2D bijective
digitized rotations [13]. More recently, Roussillon and Cœurjolly used arithmetic
properties of the Gaussian integers to give a different proof of the conditions for
bijectivity of 2D digitized rotations [17]. On the other hand, more general 2D
digitized rigid motions—rotations, translations and their compositions—were
studied by Ngo et al. [9], with their impact on the topological properties of finite
digital grids [10]. Moreover, Ngo et al. established some sufficient conditions for
topology preservation under 2D digitized rigid motions [11]. Lately we provided
a characterization of the set of 2D bijective digitized rigid motions [16].

In this article, our contribution is as follows. We consider an approach similar
to that proposed by Roussillon and Cœurjolly to prove the conditions for bijec-
tivity of 2D digitized rotations using arithmetic properties of Gaussian integers
[17]—which are complex numbers whose real and imaginary parts are integers
[4]. Indeed, the product of two complex numbers has a geometrical interpre-
tation; more precisely, it acts as a rotation when the norm of the multiplier
is one. In our work, we partially extend the results of Roussillon and Cœur-
jolly to 3D digitized rotations, employing Lipschitz quaternions, which play a
similar role to Gaussian integers. However, due to the non-commutative nature
of quaternions and their two-to-one relation with 3D rotations, the former app-
roach has not succeeded yet to fully characterize the bijective digitized rotations.
Nevertheless, we propose an algorithm which certifies whether a given digitized
rotation, defined by a Lipschitz quaternion, is bijective. As a consequence, we
cover all the rational rotations, i.e., those whose corresponding matrix represen-
tation contains only rational elements—since they correspond to rotations given
by Lipschitz quaternions. From the point of view of the applications, excluding a
rotation whose matrix has irrational elements is a minor issue, since computers
mainly work with rational numbers. Moreover, using rational numbers ensures
the exactness of the proposed certification algorithm.

This article is organized as follows. In Sect. 2, we recall the basic definitions
of 3D rotations and Lipschitz quaternions. Section 3 provides our framework for
studying the bijectivity of digitized rotations in Z

3. In Sect. 4, we provide an
algorithm certifying whether a given rational rotation is bijective or not when
digitized in Z

3. Finally, in Sect. 5, we conclude this article and provide some
perspectives.

2 Digitized Rotations in Three Dimensions

A rotation in R
3 is a bijective isometric map defined as

∣
∣
∣
∣

U : R
3 → R

3

x �→ Rx (1)

where R is a 3D rotation matrix. Note that the matrix R can be obtained
from a rotation angle and axis by Rodrigues’ rotation formula [6,8,19] or from
a quaternion [6,19].
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2.1 Spatial Rotations and Quaternions

The proposed framework for bijectivity certification uses the formalism of quater-
nions. These are the elements of the set H = {a + bi + cj + dk | a, b, c, d ∈ R}
with the following properties:

i2 = −1, j2 = −1, k2 = −1,
jk = −kj = i, ki = −ik = j, ij = −ji = k .

Similarly to the set of complex numbers, H possesses a division ring structure,
albeit a non-commutative one. More precisely, for p, q, r ∈ H:

– the conjugate of q = a + bi + cj + dk is defined as q̄ = a − bi − cj − dk;
– the product of two quaternions, defined as

qp = (a1 + b1i + c1j + d1k)(a2 + b2i + c2j + d2k) =
a1a2 − b1b2 − c1c2 − d1d2 + (a1b2 + b1a2 + c1d2 − d1c2)i

+(a1c2 − b1d2 + c1a2 + d1b2)j + (a1d2 + b1c2 − c1b2 + d1a2)k,

is not commutative, i.e. qp �= pq, in general, although real numbers, i.e.,
quaternions such that q = q̄ do commute with all others;

– the norm of q is defined as |q| =
√

qq̄ =
√

q̄q =
√

a2 + b2 + c2 + d2;
– the inverse of q is defined as q−1 = q̄

|q|2 , so that qq−1 = q−1q = 1.

Any point in R
3 is represented by a pure imaginary quaternion: x =

(x1, x2, x3) � x1i+x2j+x3k. Then, any rotation U can be written as x �→ qxq−1,
where x ∈ R

3 [6,19]. The quaternion q is uniquely determined up to mul-
tiplication by a nonzero real number, and, if |q| = 1, up to a sign change:
qxq−1 = (−q)x(−q)−1; hence the correspondence between unit quaternions
and rotation matrices is two-to-one. Note that for any unit norm quaternion
q = a + bi + cj + dk, a rotation angle θ and an axis of rotation ωωω are given as
θ = 2 cos−1 a, and ωωω = (b,c,d)t

|(b,c,d)t| , respectively. We refer the reader unfamiliar with
quaternions to [2,6,19].

2.2 Digitized Rotations

According to Eq. (1), we generally have U(Z3) � Z
3. As a consequence, to define

digitized rotations as maps from Z
3 to Z

3, we usually consider Z
3 as a subset of

R
3, apply U , and then combine the real results with a digitization operator

∣
∣
∣
∣

D : R
3 → Z

3

(x, y, z) �→ (⌊

x + 1
2

⌋

,
⌊

y + 1
2

⌋

,
⌊

z + 1
2

⌋)

where �s	 denotes the largest integer not greater than s. The digitized rotation
is thus defined by U = D◦U|Z3 . Due to the behavior of D that maps R

3 onto Z
3,

digitized rotations are, most of the time, non-bijective. This leads us to define
the notion of point status with respect to a given digitized rotation.
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Fig. 1. Examples of three different point statuses: digitization cells corresponding to
0-, 1- and 2-points are in green, black and red, respectively. White dots indicate the
positions of images of the points of the initial set Z

3 by U , embedded in R
3, subdivided

into digitization cells around the points of the final set Z
3, represented by gray trian-

gles. Note that, for readability purpose, U is a simple 3D digitized rotation such that
θ = π

9
,ωωω = (0, 0, 1)t. Therefore, as for 2D digitized rotations, only 0-, 1- and 2- point

statuses are possible. Note that only one 2D slice of 3D space is presented.

Definition 1. Let y ∈ Z
3 be an integer point. The set of preimages of y with

respect to U is defined as MU (y) = {x ∈ Z
3 | U(x) = y}, and y is referred to

as a s-point, where s = |MU (y)| is called the status of y.

Remark 1. In Z
3, |MU (y)| ∈ {0, 1, 2, 3, 4} and one can prove that only points

p,q ∈ Z
3 such that |p−q| <

√
3 can be preimages of a 2-point; points p,q, r ∈ Z

3

forming an isosceles triangle of side lengths 1, 1 and
√

2 can be preimages of a
3-point; points p,q, r, s ∈ Z

3 forming a square of side length 1 can be preimages
of a 4-point.

The non-injective and non-surjective behaviors of a digitized rotation result in
the existence of s-points for s �= 1. Figure 1 illustrates a simple 3D rotation which
provokes 0- and 2- point statuse.

3 Bijectivity Certification

3.1 Set of Remainders

Let us compare the rotated digital grid U(Z3) = qZ
3q−1 with the grid Z

3.
The digitized rotation U = D ◦ U is bijective if and only if each digitization
cell of Z

3 contains one and only one rotated point of qZ
3q−1; in other words,
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∀y ∈ Z
3, |MU (y)| = 1. Let us denote by C (y) the digitization cell, i.e. the unit

cube, centered at the point y = (y1, y2, y3) ∈ Z
3:

C (y) =
[

y1 − 1
2
, y1 +

1
2

)

×
[

y2 − 1
2
, y2 +

1
2

)

×
[

y3 − 1
2
, y3 +

1
2

)

.

Instead of studying the whole source and target spaces, we study the set of
remainders defined by the map

∣
∣
∣
∣

Sq : Z
3 × Z

3 → R
3

(x,y) �→ qxq−1 − y.

Then, the bijectivity of U can be expressed as

∀y ∈ Z
3 ∃!x ∈ Z

3, Sq(x,y) ∈ C (0),

which is equivalent to the “double” surjectivity relation, used by Roussillon and
Cœurjolly [17]:

{∀y ∈ Z
3 ∃x ∈ Z

3, Sq(x,y) ∈ C (0)
∀x ∈ Z

3 ∃y ∈ Z
3, Sq(x,y) ∈ qC (0)q−1 (2)

provided that both sets Sq(Z3, Z3) ∩ C (0) and Sq(Z3, Z3) ∩ qC (0)q−1 coincide;
in other words, Sq(Z3, Z3) ∩ ((C (0) ∪ qC (0)q−1) \ (C (0) ∩ qC (0)q−1)) = ∅.
Hereafter, we shall rely on Formula (2), and in the study of the bijectivity of
digitized rotation U , we will focus on the values of Sq. More precisely, we will
study the group G spanned by values of Sq:

G = Zq
(

1
0
0

)

q−1 + Zq
(

0
1
0

)

q−1 + Zq
(

0
0
1

)

q−1 + Z

(
1
0
0

)

+ Z

(
0
1
0

)

+ Z

(
0
0
1

)

.

3.2 Dense Subgroups and Non-injectivity

The key to understanding the conditions that ensure the bijectivity of U is the
structure of G. For this reason, we start by looking at the image G of Sq, and
discuss its density.

Proposition 2. If one or more generators of G have an irrational term, then
G∩V is dense for some nontrivial subspace V . We say that G has a dense factor.

On the contrary, we have the following result.

Proposition 3. If all generators of G have only rational terms, then there exist
vectors σσσ,φφφ,ψψψ ∈ G which are the minimal generators of G.
Proof. The generators of G are given by the rational matrix B = [R | I3] where
I3 stands for the 3 × 3 identity matrix. As B is a rational, full row rank matrix,
it can be brought to its Hermite normal form H = [T | 03,3], where T is a
non-singular, lower triangular non-negative matrix and 03,3 stands for 3 × 3
zero matrix, such that each row of T has a unique maximum entry, which is
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located on the main diagonal1 [18]. Note that the problem of computing the
Hermite normal form H of the rational matrix B reduces to that of computing
the Hermite normal form of an integer matrix: let s stand for the least common
multiple of all the denominators of B which is given by s = |q|2; compute the
Hermite normal form H′ for the integer matrix sB; finally, the Hermite normal
form H of B is obtained by s−1H′. The columns of H are the minimal generators
of G. Notice that the rank of B is equal to 3. Therefore, H gives a base (σσσ,φφφ,ψψψ),
so that G = Zσσσ + Zφφφ + Zψψψ. As H′ gives an integer base, sG is an integer
lattice. ��
Lemma 4. Whenever G is dense, the corresponding 3D digitized rotation is not
bijective.

Proof. Since G is dense, there exists μ = Sq(x,y) ∈ G ∩C (0), such that μ+σ =
Sq(x + i,y) also line in C (0). Then x and x + i are both preimages of y by U,
which is therefore not bijective. ��

When G is dense (see Fig. 2(a)), the reasoning of Nouvel and Rémila, orig-
inally used to discard 2D digitized irrational rotations as being bijective [13],
shows that a corresponding 3D digitized rotation cannot be bijective as well.
What differs from the 2D case is the possible existence of non-dense G with a
dense factor (see Fig. 2(b)). In this context, we state the following conjecture.

Conjecture 1. Whenever G has a dense factor, the corresponding digitized
rotation is not bijective.

Henceforth, we will assume that G is generated by rational vectors, and forms
therefore a lattice (see Fig. 2(c)). In other words, corresponding rotations are
considered as rational. The question now remains of comparing the (finitely
many) points in Sq(Z3, Z3) ∩ C (0) and Sq(Z3, Z3) ∩ qC (0)q−1.

3.3 Lipschitz Quaternions and Bijectivity

To represent 2D rational rotations, Roussillon and Cœurjolly used Gaussian
integers [17]. In R

3, rational rotations are characterized as follows [3].

Proposition 5. There is a two-to-one correspondence between the set of Lip-
schitz quaternions L = {a + bi + cj + dk | a, b, c, d ∈ Z} such that the greatest
common divisor of a, b, c, d is 1, and the set of rational rotations.

Working in the framework of rational rotations allows us to turn to inte-
gers: |q|2G is an integer lattice. As integer lattices are easier to work with from
the computational point of view, we do scale G by |q|2 in order to develop a
certification algorithm.

1 Note that the definition of Hermite normal form varies in the literature.
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Fig. 2. Illustration of a part of G when: (a) G is dense; (b) G is not dense but has a
dense factor – the set of points at each plane is dense while the planes are spaced by a
rational distance; (c) G is a lattice. In the case of (a) and (b), only some random points
are presented, for the sake of visibility. In (c), vectors σσσ,φφφ,ψψψ are marked in red, blue
and green, respectively (Color figure online).

Similarly to the former discussion, after scaling G by |q|2, we consider the
finite set of remainders, obtained by comparing the lattice qZ

3q̄ with the lattice
|q|2Z3, and applying the scaled version of the map Sq defined as

∣
∣
∣
∣

Šq : Z
3 × Z

3 → Z
3

(x,y) �→ qxq̄ − qq̄y.
(3)

Indeed, Formula (2) is rewritten as
{∀y ∈ Z

3 ∃x ∈ Z
3, Šq(x,y) ∈ |q|2C (0)

∀x ∈ Z
3 ∃y ∈ Z

3, Šq(x,y) ∈ qC (0)q̄.
(4)

Note that the right hand sides of Formulae (3) and (4) are left multiples of q.
As a consequence, we are allowed to divide them by q on the left, while keeping
integer-valued functions. Let us define
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∣
∣
∣
∣

S′
q : Z

3 × Z
3 → Z

4

(x,y) �→ xq̄ − q̄y.

Then, the bijectivity of U is ensured when
{∀y ∈ Z

3 ∃x ∈ Z
3, S′

q(x,y) ∈ q̄C (0)
∀x ∈ Z

3 ∃y ∈ Z
3, S′

q(x,y) ∈ C (0)q̄, (5)

provided that both sets S′
q(Z

3, Z3) ∩ q̄C (0) and S′
q(Z

3, Z3) ∩ C (0)q̄ coincide.

4 An Algorithm for Bijectivity Certification

In this section we present an algorithm which indicates whether a digitized ratio-
nal rotation given by a Lipschitz quaternion is bijective or not. The strategy con-
sists of checking whether there exists w ∈ ((q̄C (0)∪C (0)q̄)\(q̄C (0)∩C (0)q̄))∩Z

4

such that w = S′
q(x,y). If this is the case, then the rotation given by q is not

bijective, and conversely.
Because q is a Lipschitz quaternion, the values of S′

q span a sublattice Ǧ ⊂ Z
4.

Therefore, given a Lipschitz quaternion q = a+bi+cj+dk, solving S′
q(x,y) = w

with x,y ∈ Z
3 for w ∈ Ǧ leads to solving the following linear Diophantine

system:
Az = w (6)

where zt = (x,y) ∈ Z
6 and

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b c d −b −c −d

a −d c −a −d c

d a −b d −a −b

−c b a −c b −a

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The minimal basis (σ̌σσ, φ̌φφ, ψ̌ψψ) of Ǧ can be obtained from the columns of the
Hermite normal form of the matrix A. Since the rank of A is 3, we have
Ǧ = Zσ̌σσ + Zφ̌φφ + Zψ̌ψψ.

Therefore, the problem amounts to: (i) finding the minimal basis (σ̌σσ, φ̌φφ, ψ̌ψψ) of
the group Ǧ by reducing the matrix A to its Hermite normal form; (ii) checking
whether there exists a linear combination of these basis vectors w = uσ̌σσ+vφ̌φφ+wψ̌ψψ,
for u, v, w ∈ Z such that w ∈ (q̄C (0) ∪ C (0)q̄) \ (q̄C (0) ∩ C (0)q̄).

To find points of Ǧ that violate Formula (5), we consider points w ∈ Z
4 ∩

q̄C (0) (or w ∈ Z
4 ∩ C (0)q̄) such that w /∈ C (0)q̄ (or w /∈ q̄C (0)). Then, we

verify whether w belongs to Ǧ. The membership verification can be done in two
steps. Step 1: we check if Eq. (6) has solutions, while verifying if the following
holds:

aw1 − bw2 − cw3 − dw4 = 0,

where w = (w1, w2, w3, w4) and q = a + bi + cj + dk. Step 2: we check if Eq. (6)
has integer solutions by solving it. This can be done by reducing the matrix
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[A | w] to the Hermite normal form. Note that before iterating over points
w ∈ Z

4 ∩ q̄C (0) (or w ∈ Z
4 ∩ C (0)q̄), we can first reduce the matrix A to its

Hermite normal form Ȟ and then reduce the augmented matrix [Ȟ | w], which
is computationally less costly, as explained in the following discussion.

All the steps are summarized in Algorithm 1. Figure 3 presents sets of points
qw ∈ qC (0)q̄ ∪ |q|2C (0) for some Lipschitz quaternions, which induce bijective
digitized rational rotations, while Fig. 4 presents non-bijective cases. Finally,
Table 1 lists some examples of Lipschitz quaternions that generate non-simple
3D bijective digitized rotations2.

Algorithm 1. Checks if a given Lipschitz quaternion generates a 3D bijec-
tive digitized rotation.
Data: a Lipschitz quaternion q = a + bi + cj + dk s.t. gcd(a, b, c, d) = 1.
Result: True if the digitized rotation given by q is bijective and false otherwise.

1 Ȟ ← HermiteNormalForm(A)
2 foreach w = (w1, w2, w3, w4) ∈ Z

4 ∩ q̄C (0) do

3 if aw1 − bw2 − cw3 − dw4 = 0 and {p | Ȟp = w,p ∈ Z
3} �= ∅ then

4 if w /∈ C (0)q̄ then
5 return false

6 return true

The time complexity of Algorithm 1 is given as follows.
Step 1: reduction of the matrix A to the Hermite normal form can be done

in a polynomial time [18]. For instance, one can apply the algorithm proposed
by Micciancio and Warinschi [7] or its more recent, optimized version pro-
posed by Pernet and Stein [15], whose running time complexity for full row
rank matrices—with some slight modifications it can handle non-full row rank
matrices—is O(mn4 log2 N(A)), where n is the number of rows, m the number
of columns and N(A) stands for a bound on the entries of the matrix A [7].
Here n = 4 and m = 6. Thus, the time complexity of Step 1 is O(log2 N(A)).

Step 2: the number of points in Z
4 ∩ q̄C (0) (resp. Z

4 ∩ C (0)q̄) is bounded
by |q|3. For each point, the time needed to reduce the matrix [Ȟ | w] to the
Hermite normal form is O(n4 log2 N([Ȟ | w])), where n = 4 and N([Ȟ | w]) is a
bound on the entries of the matrix [Ȟ | w] [7]. Therefore, the time complexity of
Step 2 is O(|q|3 log2 N([Ȟ | w])). Note that determining whether w /∈ C (0)q̄ (or
w /∈ q̄C (0)) can be done in a constant time while checking a set of inequalities.

Finally, we can conclude that the time complexity of Algorithm1 is given by
the complexity of Step 2, namely O(|q|3 log2 N([Ȟ | w])).

2 A complete list of Lipschitz quaternions in the range [−10, 10]4, inducing bijective
3D digitized rotations can be downloaded from: http://dx.doi.org/10.5281/zenodo.
50674

http://dx.doi.org/10.5281/zenodo.50674
http://dx.doi.org/10.5281/zenodo.50674
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(a) (b)

Fig. 3. Visualization of qw ∈ qC (0)q̄ ∪ |q|2C (0) together with qC (0)q̄ and |q|2C (0),
for (a) q = 3+k and (b) q = 3+4i+k, each of which induce bijective digitized rational
rotation. Points qw are depicted as blue spheres (Color figure online).

(a) (b)

Fig. 4. Visualization of qw ∈ qC (0)q̄ ∩ |q|2C (0) – in blue, qw ∈ qC (0)q̄ \ |q|2C (0) –
in red, and |q|2C (0) \ qC (0)q̄ – in green, for (a) q = 4 + k and (b) q = 2 − 3i − 2j − 5k,
each of which induces a non-bijective digitized rational rotations (Color figure online).
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Table 1. Examples of Lipschitz quaternions which generate 3D bijective digitized
rotations.

Lipschitz quaternion Angle axis representation

3 + 2i + j θ ≈ 73.4◦,ωωω =
(

2√
5
, 1√

5
, 0
)

5 + 4i + j θ ≈ 79.02◦,ωωω =
(

4√
17

, 1√
17

, 0
)

2 + i + j + k θ ≈ 81.79◦,ωωω =
(

1√
3
, 1√

3
, 1√

3

)

4 + j + 3k θ ≈ 76.66◦,ωωω =
(
0, 1√

10
, 3√

10

)

3 + i + j + k θ ≈ 60◦,ωωω =
(

1√
3
, 1√

3
, 1√

3

)

4 + i + j + k θ ≈ 46.83◦,ωωω =
(

1√
3
, 1√

3
, 1√

3

)

5 + i + j + k θ ≈ 38.21◦,ωωω =
(

1√
3
, 1√

3
, 1√

3

)

3 + 2i + 2j + 3k θ ≈ 107.9◦,ωωω =
(

2√
17

, 2√
17

, 3√
17

)

−5 + 3i + 5j + 5k θ ≈ 246.1◦,ωωω =
(

3√
59

, 5√
59

, 5√
59

)

5 − 4i + −5j + 5k θ ≈ 116.8◦,ωωω =
(
−2
√

2
33

, − 5√
66

, 5√
66

)

10 − 10i + 10j + 9k θ ≈ 118.4◦,ωωω =
(
− 10√

281
, 10√

281
, 9√

281

)

−10 + 9i − 9j − 10k θ ≈ 243.4◦,ωωω =
(

9√
262

, − 9√
262

, −5
√

2
131

)

2 + 2i + j + 2k θ ≈ 112.6◦,ωωω =
(
2
3
, 1
3
, 2
3

)

−2 − 2i − j + k θ ≈ 258.5◦,ωωω =
(
−
√

2
3
, − 1√

6
, 1√

6

)

5 Conclusion

In this article, we showed the existence of non-simple 3D bijective digitized
rotations—ones for which a given rotation axis does not correspond to any of
the coordinate axes.

The approach is similar to that used by Roussillon and Cœurjolly to prove the
conditions for the bijectivity of 2D digitized rotations using Gaussian integers
[17]. In our work, we used Lipschitz quaternions, which play a similar role to
Gaussian integers. Due to the non-commutative nature of quaternions and their
two-to-one relation with 3D rotations, the former approach has not succeeded
yet to fully characterize the set of 3D bijective digitized rotations. Nevertheless,
we proposed an algorithm that certifies whether a digitized rotation given by
a Lipschitz quaternion q is bijective or not. The time complexity of proposed
certification algorithm is O(|q|3 log2 N([Ȟ | w])).

As a part of our future work, we would like to prove Conjecture 1 and find the
general solution to Eq. (6), which allows us to characterize the set of 3D bijective
digitized rotations. We may also consider images of finite sets (e.g. digital images
or pieces of ambient space). The bijective digitized rotations found above will
map bijectively any finite subset of Z

3; but other (non-bijective) rotations may
also be bijective when restricted to a given finite subset. Identifying those can
be achieved by applying a similar algorithm to the one proposed by the authors
in [16] for 2D rigid motions, though at a greater cost.
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(eds.) DGCI 1996. LNCS, vol. 1176. Springer, Heidelberg (1996)

2. Conway, J., Smith, D.: On Quaternions and Octonions. Taylor & Francis, Ak Peters
Series, Boca Raton (2003)

3. Cremona, J.: Letter to the editor. American Mathematical Monthly 94(8), 757–758
(1987)

4. Hardy, G.H., Wright, E.M.: Introduction to the Theory of Numbers, vol. IV. Oxford
University Press, Cambridge (1979)

5. Jacob, M.A., Andres, E.: On discrete rotations. In: DGCI. pp. 161–174 (1995)
6. Kanatani, K.: Understanding Geometric Algebra: Hamilton, Grassmann, and Clif-

ford for Computer Vision and Graphics. CRC Press, Boca Raton (2015)
7. Micciancio, D., Warinschi, B.: A linear space algorithm for computing the Hermite

Normal Form. In: ISSAC. pp. 231–236. ACM (2001)
8. Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipula-

tion. CRC Press, Boca Raton (1994)
9. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid

transformations in 2D digital images. Comput. Vis. Image Underst. 117(4), 393–
408 (2013)

10. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for
2D digital images under rigid transformations. J. Math. Imaging Vis. 49(2), 418–
433 (2014)

11. Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transfor-
mation of 2D digital images. IEEE Trans. Image Process. 23(2), 885–897 (2014)

12. Nouvel, B., Rémila, É.: On colorations induced by discrete rotations. In: Nyström,
I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 174–
183. Springer, Heidelberg (2003)
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