Challenges for the Application of Migratory User
Interfaces in Industrial Process Visualizations

Lukas Baron® and Annerose Braune®™)

Institute of Automation, Technische Universitdt Dresden, Dresden, Germany
{lukas.baron,annerose.braune}@tu-dresden.de

Abstract. The increasing familiarity of users with modern human-
machine interaction concepts (e.g. touch gestures) and corresponding
devices makes these devices and concepts interesting for industrial appli-
cations. However, the combination of well-established stationary devices
and newer mobile devices may cause negative effects on human opera-
tor’s workflows if the applications—industrial process visualizations in
our case—are not well-designed to conform to the user’s expectations.
These expectations especially focus on the ability of simultaneously used
devices to allow users to collaborate with each other or to change their
devices frequently. This motivates the use of migratory user interfaces
(MUTI) which are able to change devices without losing relevant informa-
tion, and thus, without interrupting the workflow. Hence, in this paper,
we present excerpts of the established concept of MUIs and analyze it
with respect to the demands given by the domain of industrial process
visualizations. We are able to show that these demands require cer-
tain extensions of current MUI techniques, for example, explicit markup
telling relevant and non-relevant parts of the Ul state apart. Our review
of the related work reveals that there is no suitable solution which meets
the demands. In order to demonstrate the feasibility of migratory Uls in
the industrial domain, we present a case study which focuses on extend-
ing already existing user interfaces with the required functionality for
migration.

1 Introduction

New human-machine interaction concepts that make use of touch displays,
motion sensing, etc. have come to mainstream popularity. This fosters the intro-
duction, e. g. of mobile devices, in industrial applications. In such environments,
user interfaces (UI)—process visualizations in our case—currently are designed
specifically for a certain set of devices. Each device and its respective Ul thereby
has its own dedicated purpose which is not intended to change over its lifetime.
Examples for such Uls are process visualizations in operator stations or on in-
field devices like panel PCs. Mobile devices shall supplement such stationary
devices in order to allow the process supervision and control to be handled more
flexible. For example, a mobile device may allow access to certain process data
from any location within the plant in order to conduct maintenance tasks. Such
© Springer International Publishing Switzerland 2016

M. Kurosu (Ed.): HCI 2016, Part IT, LNCS 9732, pp. 364-378, 2016.
DOTI: 10.1007/978-3-319-39516-6_35

Challenges for the Application of Migratory User Interfaces 365

tasks often require multiple users to cooperate with each other while being situ-
ated in different locations, e.g., one user is close to the device to maintain and
another user keeps observing the process from the operating room. In such a
scenario, the Ul is expected to support collaborative functionalities. Moreover,
users may need or want to change the currently used device during the conduc-
tion of a single task, for example, caused by changing their location away from a
stationary device. However, doing this could have a negative effect on the user’s
effectiveness because it takes time to get the Ul on the new device to a state
from where the interaction—and the conduction of the task—can be continued.
Briefly speaking, the user may need to enter data or navigate to the same part
of the visualization on the new device.

Instead, such a change of device is supposed to work without interrupting the
user’s ongoing work —and thus, not reducing his/her effectiveness. By automat-
ically taking into account the recent interaction history with the UI, the time
needed to change the device and to proceed interaction can be reduced. More-
over, the same mechanism which allows the smooth change of the device can be
used to realize collaborative Uls. This kind of freely transferable Uls—referred
to as migratory or nomadic Uls (MUI) [1]-are state of the art in multimedia
applications [9], home automation [4], or collaborative education software [8] but
not yet in industrial environments.

Migration-related procedures may enable or at least support a more effective
handling of tasks in which users may switch from stationary to mobile devices,
e.g., to conduct maintenance or commissioning tasks. However, safety, security,
and reliability are critical measures of quality for applications in the industrial
domain, and thus, for user interfaces as well. Hence, special attention has to
be payed to the satisfaction of these demands when realizing migratory Uls for
industrial applications.

In this paper, we will briefly introduce the established concept of migratory
Uls. Furthermore, the influence of the industrial domain on the functional para-
meters of MUIs will be discussed in detail. Finally, a case study is presented in
order to show the feasibility in accordance with the requirements and to empha-
size an industrial use case for migratory Uls.

2 Migratory User Interfaces

Before the industrial requirements for migratory user interfaces can be deduced,
we want to introduce the MUI theory. In the first subsection the general charac-
teristics are presented which are common to MUIs. The second section provides
an excerpt of properties that allow the classification of migratory applications.

2.1 Functional Aspects

According to [3], an MUI is characterized by a transfer from a source device on
which the user started interaction to a known target device on which to proceed
immediately. The authors claim that the most important part is to transfer

366 L. Baron and A. Braune

the Ul state instead of exclusively transferring the static artifacts defining the
UT’s software implementation. The Ul state is constituted by the complete user
interaction history prior to the moment of migration, consisting of internally
stored properties, the user’s and the system’s in- and output and called functions
including the gained results. The objective of the state transfer is to achieve a
continuous interaction. If either the target device differs in hard- or software or
if its environment changes, usage continuity also requires adaption capabilities.

Aspects of distributed user interfaces (DUI) have to be considered if a Ul
concerning a specific technical process is split up into parts that are located on
multiple devices [1]. For providing usage continuity, a migration can be applied
in case of a change of the Ul distribution, i.e., users swap devices, including an
optional change of the device number or type. A change of distribution does not
necessarily include a migration mechanism, though. Of course, such a redistri-
bution implies a transfer of static Ul elements to new devices. However, usage
continuity relies on the state transfer. Hence, this applies even in scenarios where
the UI distribution stays static.

In summary, the steps necessary for migrating a Ul can be derived from the
following three aspects of MUIs [1]:

1. Distribution: transfer of static Ul components causing a change of the dis-
tribution configuration,

2. State transfer!': determination and transfer of the UI state which also needs
to reflect the change of distribution,

3. Adaption?: static components of the UI have to be adapted to the changed
device, environment, or execution runtime which may also require an adaption
of the transferred state.

In [3], the term migration engine has been defined which covers the imple-
mentation realizing the migration process. Such an engine needs parameters in
order to perform a migration, e. g., information about source and target devices,
a set of concrete Ul elements to migrate, the Ul state to consider, the users asso-
ciated with each device, etc. These migration parameters in combination with
the migration engine determine what we call the migratory behavior which also
includes the actions users have to take in order to provide the parameters. The
migratory behavior provides conformity to expectations if the provided parame-
ters lead to the intended result. This, however, requires a predictable operation
of the migration engine.

2.2 MUI Classification

The (intended) behavior of an MUI can be described by means of 13 identified
classifiers [1,3,10]. We will only present some selected ones which are relevant
for this paper:

' In [1], this is referred to as the migratory aspect of a UL
2 also referred to as UT plasticity [1].

Challenges for the Application of Migratory User Interfaces 367

@ Initialization. A migration can be triggered automatically or on demand
by users. The trigger might originate from arbitrary devices connected to the
UI system. If the triggering device is the migration source, it is called pushing —
pulling, in case it is the target. To each single migration a direction can be
assigned which distinguishes the triggering device from its passive counterpart.
Thus a migration can be pushed from the triggering device as the source or pulled
onto the triggering device as the target. Hybrid modes —pulling and pushing at
the same time, e. g., when swapping content between devices—are also possible.

@ Scope. The transfer of information may include the UI en bloc— total —or
excerpts thereof — partial. In a redistribution scenario, the process may distribute
the Ul from one to many devices, aggregate from many to one device, or miz it
with multiple devices as sources and targets as well.

® Adaption Type. The Ul adaption may be realized completely dynami-
cally (at runtime), precomputed (at design time) by loading a complete static Ul,
or as an intermediate type, for instance, by using templates that are assembled
at runtime during the migration procedure.

@ System Architecture. The system architecture describes the organiza-
tion of the migration engine. The engine can either be distributed on each of
the Ul devices which arrange themselves autonomously — peer-to-peer —or con-
centrated on an additional entity acting as a migration server. In the lat-
ter case, target and source Uls act as migration clients. Furthermore, in such
a migration-server and migration-client architectures, client-based and server-
based approaches can be distinguished. This classification describes the entity
responsible for determining and obtaining the migration parameters including
the required UI state to transfer.

® Simultaneous Usability. In multi-user and -device scenarios, many users
may use a single device (N-1 relation), one user may use multiple devices (1-N),
or many users use many devices (N-M), e.g., in a collaborative task. In the
context of migratory and distributed applications, this term also includes the
mode of state transfer which can be continuous (synchronizing different Uls
over time) or discrete (transfer the state once, i.e., the state is outdated after
the migration has been completed).

3 Industrial Demands

3.1 Software and Engineering Requirements

In order to classify the requirements of industrial process visualizations, we dis-
tinguish between a design phase and a runtime life cycle phase. The latter phase
covers the operative period of the Ul starting from the point in time when the
UI has been connected to the technical process. Thus, this phase also includes
timeframes in which the process itself is not functional but the UI is required
to work (e.g. during maintenance or commissioning). Prior to this, the design
phase covers planning, engineering, implementation, and testing of the UL

An industrial visualization has to interact with complex and expensive tech-
nical systems which poses requirements to its reliability in terms of safety and

368 L. Baron and A. Braune

security. Likewise, the accountability of the engineering results in specific require-
ments that need to be considered during the design phase. In particular, the UI’s
presentation and (migratory) behavior during runtime has to be predictable. The
characteristics to be provided by Uls (e. g. visually) are specified in standards of
the respective domain, company, or contractee. The functional features depend
on the tasks that a user has to fulfill [6]. Hereby, the standards are amongst
other things concerned with usability aspects which have an influence on pre-
sentational and behavioral parameters. Thus, the Ul and potential migration
capabilities have to ensure by design that users are not being disturbed, for
example, through unneeded functions and UI elements or unexpected behavior.

3.2 UI Structure and Functionality

Industrial process visualizations usually consist of panels connected via navi-
gation elements. However, primarily they contain elements for the display and
manipulation of certain aspects or parts of the technical process [13]. Such ele-
ments are often associated with each other reflecting functional dependencies
of their corresponding components within the process plant. This means that
certain Ul elements must not be divided arbitrarily (e.g. during partial migra-
tions) but with respect to the user’s task in a way that all needed functionality
is available before and after a migration. Information about such relations are
usually not explicitly available within visualization applications. For example,
some pumps and valves are related to each other due to the pipes that connect
them. But even if both, pipes and devices, are visibly connected in the visu-
alization, the functional dependencies are not identifiable automatically. Such
knowledge is provided only by domain experts, although not necessarily in a
manner which is suitable for an automatic interpretation by machines. In terms
of migration, this has to be considered in order to support the determination of
optimal migration parameters for the users’ workflow. If this knowledge is well
formalized, some algorithms determining which elements belong together could
be applied as proposed in [2]. However, the demand of predictable behavior (see
Sect. 3.1) requires means for developers to amend or to override an algorithm’s
result by providing information manually. For that purpose, either the algorithm
must be adjustable or its results have to be obtained during the design phase
to be stored in an intermediate data structure that can be edited by the UI
engineer in order to configure migration engines at runtime.

Another peculiarity of a process visualization is its real-time communication
with process data servers or (non-real-time connections to) historical databases
in order to provide a continuously updated process view (for example, visualized
by changing and animating selected UT elements). Such process visualizations
are extended by an authorization mechanism which is an important part of the
security and safety design. It grants or denies read and write access to single
data items with respect to the current UI device, its assigned user, as well as the
user’s roles within the company. Typically, there is only one user at a time with
exclusive control rights to (a limited part of) the process—granted by a control

Challenges for the Application of Migratory User Interfaces 369

token. During runtime, the tokens might be transferred, but only with mutual
consent and granted access rights.

A UD’s structural, functional, and perceptual design is strictly bound to its
well-defined use case, the intended role of a user, the device, and the environ-
ment [14]. Thus, it is common that the same technical process is equipped with
multiple individual (and individually designed) Uls. For example, consider the
following scenario: An operator located in a control room with a stationary desk-
top PC wants to migrate some panels of a Ul to service personnel in the field
in order to give instructions. Both Uls have a completely different use case and
thus a different level of detail. The operator’s view is limited to the functional-
ity necessary for nominal operations. On the other hand, servicing needs access
to all parameters of the faulty device plus eventually further devices that are
functionally associated or collocated. However, both Uls would not only differ in
the displayed content, there may be organizational or presentational differences,
too. That is why a migration engine would need to mediate between different
use cases for corresponding Uls by adapting them in case of migration.

3.3 Implications for MUI Properties

As we explained in the previous section, the Uls considered in this contribution
always need to communicate with process data servers. By transferring these
data to the UI, they obviously become part of its state. Since this functionality
can be presumed in any case, we have to separate different parts of the state
from each other. In Fig. 1, the state is depicted decomposed into an injected and
an internal state.

By injected, we refer to all information and process data that are imported
exclusively from external providers and, thus, can be reconstructed without any
additional information. The internal state is only known to the UI itself and
may, for instance, be incorporated by internal variables which are created at
runtime. Each part of the state can be used for output on the UI’s presentational
feature. Interactors of course intend to influence the internal state in order to
provide user input. Algorithms f implemented within the UI (see Fig.1) may
calculate required information based on the injected and/or the internal state. In
terms of state transfer, the injected state can be omitted (as it can be recreated
on the target device) but in the industrial domain it must be omitted due to
authorization mechanisms that may be bypassed otherwise. If bypassed, the
migration engine may yield access to process data for users who are not supposed
to have access. That is why we will concentrate on the internal state only.

Since the division of the state into the internal and the injected parts is usu-
ally only implemented implicitly within Uls, we need additional explicit markup
that allows the automatic handling of the state transfer. Depending on the cur-
rent situation, e. g., characterized by a certain task, in which a migration occurs,
not the complete internal state is relevant. This results in a further division of
the internal state into relevant and non-relevant parts of which only relevant
parts will be migrated. In analogy with the definition of partial migration in
Sect. 2.2, this can be considered as a partial internal state transfer.

370 L. Baron and A. Braune

Injected State

External
Data
Provider

Il

A
v
Presentation &
Interactors

Y

Internal State

User

Fig. 1. Decomposition of the internal Ul state

Taking the industrial demands for engineering and the UI characteristics
into account, it is possible to put further restrictions to the MUT classifiers (cf.
Sect. 2.2) without raising claim to completeness:

@ Initialization. Frequently incoming or outgoing automatic migrations
are conflicting with design guidelines (e.g. [12]) because of the likely negative
impact on human operator’s work. On the other hand, MUIs have the potential
to enhance the support of the planning and conducting of maintenance work or
to make the human communication more efficient. This might be true even if
the migration is initiated manually. If applied, automatic migrations should rely
on a set of well-tested rules. User-initiated migrations have the advantage of an
easier implementation by omitting the rule evaluation plus a better situational
awareness for the current tasks of the user and the respectively needed parts
of the UIL. This assumes that manual initialization also means that users select
which elements to migrate. As an optimum between interfering with the target
user’s current work and exploiting the situational awareness of the source user,
we propose a migration relaying mechanism as a hybrid method (cf. Sect. 2.2-®).
This means that at first the source user has to notify the target user who may
then actively pull the migration, i. e., no migration shall open itself automatically
without the target user’s request. The other way around, a pull that is initiated
by the target user could be realized by asking the respective source user for
his/her consent or, even more detailed, for the information he/she is willing to
share within the limits given by authorization policies.

By adding a migration server as an intermediate location between the source
and the target device, migrations are able to cope with interrupted connections.
These intermediate locations would then act like chat servers that store migra-
tions temporarily when transferring them from source to target.

In terms of directions of migrations, a pull mechanism (see Sect.2.2) must
prohibit the transfer of private data (such as control token, etc.) if not permit-
ted by access rights of the user associated with the target device. In case of
automatic triggering, the same restrictions apply to push mechanisms as well.
In certain situations (process failures, etc.), and given the required access rights,
a migration push may be required to overrule the above-explained migration
relaying mechanism —which was intended not to open unrequested migrations
on the target device—i.e., the migration system could be used to support the
user in handling urgent situations.

Challenges for the Application of Migratory User Interfaces 371

@ Scope. The access levels of the users also limit the set of migratable ele-
ments. If access to the plain/static UT is not restricted but access to process data
providers in the background is restricted, total and partial migrations can be
implemented without considering authorization issues. This will result in visu-
alizations which are not updated completely in case a user has no complete
read access. In cases where this poses risks to the process—because an impor-
tant information is not available or only transferred once, but expected to be
updated continuously, and thus, pretending normal operations—total migration
is forbidden. On the other hand, partial migration, only limited to data that the
receiver has access to, should not be safety-critical because the unavailability of
required information is not hidden.

® Adaption Type. If a migration requires adaption of the UI, either because
of the changed device or incompatible access rights, both the adaption strategy
and the result have to be predictable in order to ensure compliance with expecta-
tions given by standardization (see Sect.3.1). It may even be necessary that the
result of each migration has to be plannable in advance (during design phase).

In case of adaptions that are completely driven by algorithms at runtime,
a set of adjustable formalized rules is needed. The applicability depends on the
development costs necessary for the identification of relevant factors of influence
and for the runtime gathering of each of the factors. If such rule evaluations are
not performing well enough, such adaption mechanisms should not be considered.

Precomputed target Uls should always meet industrial requirements in terms
of quality. If designed by domain experts, runtime adaptions are not necessary,
but costs more or less depend on the number of precomputed Uls, as each of
them has to be developed individually. If this approach is used, the migration
engine requires means to identify corresponding elements across these Uls in
order to navigate to the migrated elements on the target device. This is realized
by creating links from a source element to its counterparts in other Uls.

@ System Architecture. The use of process data servers as central entities
has already been indicated in Sect.3.2. Typically, there are multiple tasks that
these entities are delegated to, e. g., logging user interaction, alarm acknowledge-
ment, user authorization, etc. The most important requirement when design-
ing additional features like migration functionality is not to interfere with the
server’s real-time capabilities. This means that potentially expensive functional-
ity (in terms of computation time) should be outsourced to separate instances.
Concerning migration, we propose using a migration server and migration client
structure in parallel to already existing UI clients and process data servers.
Hereby, migration clients integrate with each Ul in order to provide access to
its state and means for users to control migrations (e. g. in case of user-initiated
migrations, parameters like the target device have to be selected).

® Simultaneous Usability. The ability to synchronize selected parts of
the internal state of different Uls, for example, in a collaborative scenario, pos-
sibly results in the best performance regarding continuous usage. Because, once
migration and synchronization have been initiated, users are able to swap devices
without the need to re-initiate state transfers.

372 L. Baron and A. Braune

Multi-user scenarios may affect safety-critical behavior of a Ul if, for example,
the state of an input element is accessible by a second person without knowledge
of the person who is in control of the process. Synchronizing certain U elements
continuously can be seen as a hidden control token transfer or token split onto
multiple users which is forbidden in case they are not aware or not allowed to
control the process. However, it is not unreasonable to synchronize certain Ul
aspects: For example, an operators view in a control room could be synchronized
with a corresponding view on a field device—limited to non-safety-critical ele-
ments or to a read-only mode on the device without the actual control token—in
order to achieve a four-eye-control or simply improved means to communicate.
Non-safety-critical elements are, for example, navigators (synchronizing the view
in focus) or in- and output elements for historical features like trends.

In a single-user and multi-device scenario, a synchronization of safety-critical
UI elements is risky if the user assigned to a certain device is not in its physical
operating range and thus not able to observe its inaccessibility by other persons.
A mechanism for an automatic locking of the respective safety-critical function
depending on the user’s position could be applied in order to prevent harmful
interference.

In consequence, a migration feature that enables simultaneous use requires
an additional markup of the relevant internal state allowing or disallowing its
synchronization, and the direction in which to synchronize, e. g., in a read-only
mode on the source or target side.

Although, we discussed only 1-N and N-M scenarios, N-1 relations do not
seem to be unrealistic. Such a scenario would require means to quickly and
reliably identify and authorize the user triggering a safety-critical action out of
all simultaneously acting users.

3.4 Summary

In this section, we discussed the implications on functional aspects of migratory
Uls in the industrial domain. In order to enable UI migration, such Uls need to
be enhanced with markup (1) concerning functional dependencies between UI
elements with respect to the underlying process, (2) telling relevant and non-
relevant parts of the Ul state apart, and (3) allowing the configuration of the
synchronization in multi-user/-device scenarios.

For automatic initializations and runtime adaptions, algorithms are required
that evaluate formalized rules. This depends on the availability and reliable
gathering of relevant factors of influence. Furthermore, it is important to be able
to easily adjust such algorithms in order to ensure predictable behavior.

In case of manual triggering of migrations, user-selected migration parame-
ters, and the use of precomputed Ul adaptions, we propose data models contain-
ing the three types of markup that we have mentioned plus information about
corresponding UI elements across the precomputed Uls (UI links). These data
are created during design phase and are used for configuring migration engines
at runtime. Hence, they have to be manually amendable.

Challenges for the Application of Migratory User Interfaces 373

4 Case Study

4.1 Existing Migration Engines

The analysis of available case studies and respective underlying designs reveals a
limited applicability in the industrial domain. Tools for dynamic web migration
[7] and TERESA-based applications [2] include a set of tools for runtime analysis
of existing Uls in order to compensate missing explicit markup of migration-
related information. However, it is not explained whether rules can be easily
adjusted in order to amend the algorithm’s results. The use of precomputed Uls
as described in Sect. 3.3-® seems not to be supported. MASP is another solution
[4] with abilities to plan situations (different distribution scenarios regarding
the available devices) in advance. The adaption mechanisms are not clarified,
though [11]. The DireWolf framework [8] gives an idea of how to synchronize the
state between different Uls but not with respect to the usual functionality of
industrial process visualizations (see Sect. 3.2). Most of these approaches neither
distinguish between relevant and non-relevant parts of the Ul state, as introduced
in Sect. 3.3, nor do they allow by design the detailed amending of migratory
behavior. In case of using rule based algorithms at runtime, they have not been
evaluated for the domain of industrial automation.

4.2 Concepts

The design of our case study ensures compliance to industrial UI standards
by using individually engineered and thus precomputed Uls (see Sect.3.3-®).
For the configuration of our migration engine, we designed a data model as
proposed in Sect. 3.4 —a migration model —covering additional information about
the functional dependencies between Ul elements, the description of its relevant
state, and how to transfer it.

This approach is independent of the concrete Ul adaption strategy or tools
selected at the design phase which may rely on independently designed Uls for
each device or even on an automatic deduction of a specialized Ul from a pre-
existing version (e.g. transformation from desktop to mobile UT).

Figure 2 shows the basic components of our migration engine mainly consist-
ing of an MUI server that relays migrations and synchronizations via connec-
tions to available migration-clients. For that, it uses the migration model and
an authorization mechanism. Each migration client integrates itself into the Ul
with a technology-dependent plug-in in order to get access to the state properties
(client-based approach). The migration client provides users with controls that
are necessary for triggering the migration and defining its respective parameters,
such as the migration target.

4.3 Migration Model

Figure 3 shows the concept of our migration model. The migration-relevant part
of the internal state is indicated by explicitly tagging migratable elements and

374 L. Baron and A. Braune

manipulates controls) . controls MUI Server authorisation
""" U 1=====7 MUIClient 7777777 TITTTTTO) provider

Ul notifies |migrationmode||

[}

[}

[}

I N .

==--MUI Plug-in : | process data

— association ~ ->relation

Fig. 2. Plug-in concept for enabling migration in common UI technologies

Source Ul UlLinking || E Target Ul #1 | [target view migration
. E migratable element D i
‘ B --» association tag synchroni-
E - { Target Ul #2 | @ target-wise reference reference
J - N - |:| O synchronisation link [_] view
. o target element

—> source-wise reference - - sation
Fig. 3. Migration Model for UI linking and tagging

each of its relevant properties. The elements can be part of the presentational
feature and the internal state as well. In addition, elements can be tagged as
associated in order to reflect functional relations as discussed in Sect.3.2. By
defining such an association, the migration process can be influenced in three
different ways: always migrate elements together (deny migration if not possible),
migrate together if possible (otherwise allow separate migration of elements), or
forbid simultaneous migration. If a Ul is intended to act as a migration target,
its respective presentations need to be tagged in order to determine distinct
migration results. Analogously to the relevant state within the source Ul, the
target state properties need to be tagged.

The connection, and thus the description of the migration procedure itself,
is realized by a set of migration links each telling the migration engine which
presentation to display for each migrated element with respect to the concrete
UI that is opened on the target device. As a subordinate feature of each migra-
tion link, synchronization links refer to state properties of the source Ul and
to each corresponding target Ul property. As a property of a synchronization
link, the mode of synchronization can be defined as once/continuous and target-
wise/source-wise/bidirectional.

Concerning migration links, synchronization links, and element associations,
we presume each property to be either enabled or disabled at runtime in order
to be able to provide situational sensitivity for the migration behavior. This
could be realized by integrating additional logic evaluating process properties
(e.g. the alarm status), the user (as discussed in Sect.3.3-®), the devices (e.g.
battery status), or the environment®. Thus, there may exist multiple—and thus
ambiguous — migration links for the current set of elements to migrate but, for
example, pointing to different migration targets or including different synchro-
nization links. Hence, an adaptation mechanism may also change the migration

3 consistent with the context of use as described in [5].

Challenges for the Application of Migratory User Interfaces 375

model and thus the migration behavior, for example, by influencing the property
of being enabled/disabled of different migration links.

4.4 Results

For the implementation of the migration engine, we decided to concentrate on
user-initiated migrations only including the preceding selection of UI elements
to migrate and of the migration targets. Possible migration targets are (1)
devices that are assigned to the user initiating the migration and (2) other users.
If a certain device is selected, the migration is pushed directly to this device.
In case a user is selected, the migration will use the hybrid push/pull method
as proposed in Sect.3.3-®. The respective controls can be seen in the upper
part of Fig. 4. If a user wants to select elements for migration, a Ul overlay gets
activated which shows migratable elements with half-transparent boxes in order
not to overlap with any important information that might be displayed. The
boxes can be clicked (switching to highlighted state—represented by the sym-
bols A1-A3 in Fig.4) in order to select the respective element. In the example,
we selected a pump (cf. symbol Al in Fig.4) and a connected valve (A2) as well
as the associated control elements (A3) for migration. This could be applicable
in a service scenario where controls for a damaged unit (the pump) need to be
transferred to a mobile device for in-field repairs as proposed in Sect. 3.2. The
other components might be useful for testing after repairs have been completed.
A migration can be initiated by hitting the “migrate” button (cf. symbol B in
Fig.4) with an optionally activated continuous synchronization feature (check
box “keep synced”). On the target device (see Fig.5—left part), the user gets
notified by the display of the incoming migration in a message box. After open-
ing the message, the user is able to select an available UI for his target device
and for his respective authorization level.

The message box could also be seen as a task-sensitive navigation hub, i.e.,
it provides special navigation shortcuts to panels that could all be required for
a certain task. Normally, the user would have to navigate on arbitrary (not
task-specific) paths to these panels. In the example denoted in Fig. 4, the source
user could have assigned the task (e.g. to check the devices that belong to the
migrated elements) to the target user.

In the example depicted in Fig. 6, a different UI has been opened compared
to the migration source. By changing the layout of the Ul, we simulated an
adapted version for mobile devices.

5 Summary and Conclusions

In this contribution, we presented the fundamental basics of MUIs and discussed
constraints and requirements to the Ul development in the domain of industrial
automation. We continued by discussing consequences for selected MUI proper-
ties. Finally, we introduced our case study including a migration model which is
intended to work as an intermediate between MUI development on the one hand

376 L. Baron and A. Braune

show migratable | Migrate 0 Abort James Moriarty testm3 “Your Name: Peter Parker
[l show selected [Ikeep synced D. Device Name: testm]
] show associated B 1 Logout
— — = = o o
f B
; XX #4713 |
© Navigator L 18 A3
Applications Behaelter 1 v Behaelter 1 v
Process Visualisation V1 soll %
V2 soll %
© Messages 00 P3 soll

start stopp

Fig. 4. Migration client with its controls (upper part) and an opened process visual-
ization (right part)

#
© Navigator x S =
Navigator T
& | Umpumeen | ["'ympumpen
Applications From Peter Parker PR TrEE von nach

I Date Sun Mar 02 2014 16:39:17 GMT=0100 | [pehastter 1 v Behasiter 1 v
—— Dosieren

© Messages @ (Subject TestMessage o Mossages L Vi sl

Role Static LBuctise | V2 soll
BRICa ey Text Iwant to test the migration Plug-n. B TestMessage 53 S0l w

start stopp.

Available Applications

Process Visualisation ZiT T
(3 Elements in 3 Presentations - 0 not avaiable) @ @

7 Process Visualisation Clone
S5 https: localhost:8082/p/RootivisuC/movisa.html
(1 Elements i 1 Presentations - 2 not avaiable)

Process Visualisation Mobile

@ o/ localhost8082/p/Rootivisul imovisa.html.
(1 Elements in 1 Presentations - 2 not available)

Show Content Close 0 % o ymn o

Fig. 5. Incoming migration notifica- Fig. 6. Opened target Ul (differs from the
tion on the target source Ul

and migration engines at runtime on the other hand. Despite the creation of the
migration model being still relatively simple if the required domain expertise is
available, it becomes difficult to manage in bigger projects and therefore should
be supported by appropriate tools. If functional dependencies between Ul ele-
ments are modeled well enough and thus the selection of elements to migrate
becomes easy, we expect conformity of the migration behavior with user expec-
tations. Better support for the user’s current task is needed in order to be able to
preselect Ul elements for migration. Moreover, we intend to design a rule-based
system in order to initiate migrations automatically.

By showing our first working prototype, we gave a sound indication for the
potential of MUIs in industrial applications. By using a runtime architecture
which integrates itself via plug-ins into the Uls, we enabled our migration engine
for potential use in common industrial visualization applications. However, this
kind of integration with existing visualization technologies requires proper public

Challenges for the Application of Migratory User Interfaces 377

interfaces which the visualization system used in the case study does provide.
However, in case another system shall be used, it yet has to be evaluated if
these interfaces are present. Concerning authorization, our solution is based on
restrictions to the whole Ul instead of to UI parts or to single process data
items. In the future, we also want to realize a fine-grained authorization and a
token-based mechanism in order to dynamically control access when migrating.

This approach to migratory user interfaces in industrial process visualizations
could be valuable in the future. Especially in the context of emerging paradigms
which are propagating flexible production processes and logistics, such as indus-
try 4.0, where user interfaces with migratory features can be an outstanding
supplement to plugésproduce scenarios, for example.

References

1. Balme, L., Demeure, A., Barralon, N., Calvary, G.: CAMELEON-RT: a software
architecture reference model for distributed, migratable, and plastic user interfaces.
In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS,
vol. 3295, pp. 291-302. Springer, Heidelberg (2004)

2. Bandelloni, R., Paterno, F.: Flexible interface migration. In: Proceedings of the
9th International Conference on Intelligent User Interfaces. IUI 2004, ACM (2004)

3. Berti, S., Paternd, F., Santoro, C.: A taxonomy for migratory user interfaces. In:
Gilroy, S.W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS, vol. 3941, pp. 149-160.
Springer, Heidelberg (2006)

4. Blumendorf, M., Roscher, D., Albayrak, S.: Dynamic user interface distribution
for flexible multimodal interaction. In: International Conference on Multimodal
Interfaces and the Workshop on Machine Learning for Multimodal Interaction.
ICMI-MLMI 2010, ACM (2010)

5. Chen, G., Kotz, D., et al.: A survey of context-aware mobile computing research.
Technical report, Technical Report TR2000-381, Department of Computer Science,
Dartmouth College (2000)

6. DIN EN 9241-110: Ergonomics of human-system interaction - Dialogue principles
(2008)

7. Ghiani, G., Paterno, F., Santoro, C.: On-demand cross-device interface compo-
nents migration. In: Proceedings of the 12th International Conference on Human
Computer Interaction with Mobile Devices and Services. MobileHCI 2010, ACM
(2010)

8. Kovachev, D., Renzel, D., Nicolaescu, P., Klamma, R.: DireWolf - distributing
and migrating user interfaces for widget-based web applications. In: Daniel, F.,
Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 99-113. Springer,
Heidelberg (2013)

9. Lachenal, C., Coutaz, J.: A reference framework for multi-surface interaction. In:
Proceedings of the HCI International (2003)

10. Paterno, F., Santoro, C.: A logical framework for multi-device user interfaces. In:
Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems. EICS 2012, ACM (2012)

11. Paterno, F., Santoro, C., Spano, L.D.: MARIA: a universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments. ACM Trans. Comput.-Hum. Interact. 16, 19:1-19:30 (2009)

378 L. Baron and A. Braune

12. VDI 3814-7: Building automation and control systems - Design of user interfaces
(2012)

13. VDI, VDE 3699-3: Process control using display screens - mimics (2014)

14. VDI, VDE 3850-1: Development of usable user interfaces for technical plants -
Concepts, principles and fundamental recommendations (2014)

	Challenges for the Application of Migratory User Interfaces in Industrial Process Visualizations
	1 Introduction
	2 Migratory User Interfaces
	2.1 Functional Aspects
	2.2 MUI Classification

	3 Industrial Demands
	3.1 Software and Engineering Requirements
	3.2 UI Structure and Functionality
	3.3 Implications for MUI Properties
	3.4 Summary

	4 Case Study
	4.1 Existing Migration Engines
	4.2 Concepts
	4.3 Migration Model
	4.4 Results

	5 Summary and Conclusions
	References

