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ON SESSIONS AND INFINITE DATA

PAULA SEVERI“, LUCA PADOVANI?, EMILIO TUOSTO ¢,
AND MARIANGIOLA DEZANI-CIANCAGLINI ¢

“¢ Department of Computer Science, University of Leicester, UK

b4 Dipartimento di Informatica, Universita di Torino, Italy

ABSTRACT. We define a novel calculus that combines a call-by-name functional core with
session-based communication primitives. We develop a typing discipline that guarantees
both normalisation of expressions and progress of processes and that uncovers an unexpected
interplay between evaluation and communication.

1. INTRODUCTION

Infinite computations have long lost their negative connotation. Two paradigmatic contexts in
which they appear naturally are reactive systems [22, 1] and lazy functional programming. The
former contemplates the use of infinite computations in order to capture non-transformational
computations, that is computations that cannot be expressed in terms of transformations
from inputs to outputs; rather, computations of reactive systems are naturally modelled
in terms of ongoing interactions with the environment. Lazy functional programming is
acknowledged as a paradigm that fosters software modularity [17] and enables programmers
to specify computations over possibly infinite data structures in elegant and concise ways.
Nowadays, the synergy between these two contexts has a wide range of potential applications,
including stream-processing networks, real-time sensor monitoring, and internet-based media
services.

Nonetheless, not all diverging programs — those engaged in an infinite sequence of
possibly intertwined computations and communications — are necessarily useful. There exist
degenerate forms of divergence where programs do not produce results, in terms of observable
data or performed communications. We investigate this issue by proposing a calculus for
expressing computations over possibly infinite data types and involving message passing. The
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calculus — called SID, after Sessions with Infinite Data — combines a call-by-name functional
core (inspired by Haskell) with multi-threading and session-based communication primitives.

In the remainder of this section we provide an informal introduction to SID and its key
features by means of a few examples. The formal definition of the calculus, of the type system,
and its properties are given in the rest of the paper. A simple instance of computation
producing an infinite data structure is given by

fromz = (x,from (z + 1))
where the function from applied to a number n produces the stream (infinite list)
(n,(n+1,(n+2,---)))

of integers starting from n. We can think of this list as abstracting the frames of a video
stream or the samples taken from a sensor.

The key issue we want to address is how infinite data can be exchanged between
communicating threads. The most straightforward way of doing this in SID is to take
advantage of lazy evaluation. For instance, the SID process

T = (send ct (from 0)) »=f | y<&recve M»>=g

represents two threads z and y running in parallel and connected by a session ¢, of which
thread x owns one endpoint ¢™ and thread y the corresponding peer ¢~. Thread x sends a
stream of natural numbers on ¢ and continues as f ¢', where f is left unspecified. Thread
y receives the stream from ¢~ and continues as (g (from 0,c¢™)). The bind operator _ >»>= _
models sequential composition and has the same semantics as in Haskell, i.e. it passes the
result of performing the left action to the (parametrised) right action. The result of sending
a message on the endpoint a™ is the endpoint itself, while the result of receiving a message
from the endpoint @~ is a pair consisting of the message and the endpoint. In this example,
the whole stream is sent al once in a single interaction between x and y. This behaviour is
made possible by the fact that SID evaluates expressions lazily: the message (from 0) is not
evaluated until it is used by the receiver.

In principle, exchanging “infinite” messages such as (from 0) between different threads
is no big deal. In the real world, though, this interaction poses non-trivial challenges: the
message consists in fact of a mixture of data (the parts of the messages that have already
been evaluated, like the constant 0) and code (which lazily computes the remaining parts
when necessary, like from). This observation suggests an alternative, more viable modelling
of this interaction whereby the sender unpacks the stream element-wise, sends each element
of the stream as a separate message, and the receiver gradually reconstructs the stream as
each element arrives at destination. This modelling is intuitively simpler to realise (especially
in a distributed setting) because the messages exchanged at each communication are basic
values rather than a mixture of data and code. In SID we can model this as a process

prod <= streamy ¢ (from 0) | cons < display, ¢~
where the functions streamy and displayy are defined as:

streamy y (z,rs) = send y x »= \y.streamy y xs

displayo y = recvy »= \z,y/).displayy y »= Azs.g (z,25) (1.1)

The syntax A(_,_).e is just syntactic sugar for a function that performs pattern matching
on the argument, which must be a pair, in order to access its components. In streamo,
pattern matching is used for accessing and sending each element of the stream separately.
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In displayo, the pair (z,y’) contains the received head z of the stream along with the
continuation 3’ of the session endpoint from which the element has been received. The
recursive call display, ¥ retrieves the tail of the stream zs, which is then combined with
the head z and passed as an argument to g.

The code of displayo looks reasonable at first, but conceals a subtle and catastrophic
pitfall: the recursive call displayo 3’ is in charge of receiving the whole tail zs, which is
an infinite stream itself, and therefore it involves an infinite number of synchronisations
with the producing thread! This means that display, will hopelessly diverge striving to
receive the whole stream before releasing control to g. This is a known problem which has
led to the development of primitives (such as unsafeInterleavelIO in Haskell or delayIO
in [30]) that allow the execution of I/O actions to interleave with their continuation. In
this paper, we call such primitive future, since its semantics is also akin to that of future
variables [33]. Intuitively, an expression future e >»= Az.f x allows to evaluate f z even
if e, which typically involves I/O, has not been completely performed. The variable z acts
as a placeholder for the result of e; if f needs to inspect the structure of x, its evaluation
is suspended until e produces enough data. Using future we can amend the definitions of
streamg and displayg thus

stream y (z,xs) = send y x »= \y/.future (stream y’ xs)
display y = recv y »= \(z,y/).future (display y/) »= Azs.g (z,25)

(1.2)

where display allows g to start processing the stream as its elements come through the
connection with the producer thread. The type system that we develop in this paper allows
us to reason on sessions involving the exchange of infinite data and when such exchanges can
be done “productively”. In particular, our type system flags stream, and displayg in (1.1)
as ill-typed, while it accepts stream and display in (1.2) as well-typed. To do so, the type
system uses a modal operator e which guarantees that the number of communications is
finite if the number of generated threads is finite. As hinted by the examples (1.1) and (1.2),
this operator plays a major role in the type of future.

We remark that SID does not force exchanged messages to be basic, nor does it prevent
exchanging infinite streams in one shot. The purpose of SID is to enable the modelling of
systems where communications and infinite data structures are intertwined and to study a
typing discipline that guarantees the preservation of productivity in this setting.

Contributions and Outline. The SID calculus, defined in Section 2, combines in an
original way standard constructs from the A-calculus and process algebras with session types
in the spirit of [16, 14]. The type system, given in Section 3, has the novelty of using the modal
operator e to control the recursion of programs that perform communications. To the best of
our knowledge, the interplay between e and the type of future is investigated here for the first
time. The properties of our framework, presented in Section 4 and Section 5, include subject
reduction (Theorem 4.6 and Theorem 5.16), normalisation of expressions (Theorem 4.13),
progress and confluence of processes (Theorems 5.23, 5.24). Sections 6 and 7 discuss related
and future work, respectively. Appendixes contain the proofs of three theorems.

Publication History. This paper is a thoroughly revised and extended version of [37] and
its companion technical report [38]. There are three substantial improvements compared to
previous versions of the paper. First, we give a much simplified definition of well-polarisation
(Definition 5.3) resulting in simpler and cleaner proofs. Second, we have strengthened the
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progress theorem (Theorem 5.23) and as a consequence part of its proof is new. Finally, the
strong normalisation of the reduction without rules [r-oren] and [r-rurure] (Theorem 5.22)
appears here for the first time.

2. THE SID CALCULUS

We use an infinite set of channels a, b, ¢ and a disjoint, infinite set of variables x, y. We
distinguish between two kinds of channels: shared channels are public service identifiers that
can only be used to initiate sessions; session channels represent private sessions on which
the actual communications take place. We distinguish the two endpoints of a session channel
¢ by means of a polarity p € {4+, —} and write them as ¢t and ¢~. We write p for the dual
polarity of p, where + = — and — = +, and we say that c? is the peer endpoint of cP. A
bindable name X is either a channel or a variable and a name wu is either a bindable name or
an endpoint.

The syntax of expressions and processes is given in Table 1. In addition to the usual
constructs of the A-calculus, expressions include constants, ranged over by k, and pair
splitting. Constants are the unitary value unit, the pair constructor pair, the primitives for
session initiation and communication open, send, and recv [16, 14|, the monadic operations
return and bind [30], and a primitive future to defer computations |29, 28|. We do not
need a primitive constant for the fixed point operator because it can be expressed and typed
inside the language. For simplicity, we do not include primitives for branching and selection
typically found in session calculi. They are straightforward to add and do not invalidate
any of the results. Expressions are subject to the usual conventions of the A-calculus. In
particular, we assume that the bodies of abstractions extend as much as possible to the right,
that applications associate to the left, and we use parentheses to disambiguate the notation
when necessary. Following established notation, we write (e, f) in place of pair e f, and
A1 ,x2).€ in place of Ax.split x as x1, 22 in e, and e »= f in place of bind e f. As usual,
we assume that the infix operator >>= is right-associative.

A process can be either the idle process 0 that performs no actions, a thread x < e with
name x and body e that evaluates the body and binds the result to variable x, a server a e
that waits for session initiations on the shared channel a and spawns a new thread computing
e at each connection, the parallel composition of processes, and the restriction of a bindable

Table 1: Syntax of expressions and processes.

e = Expression P = Process
k (constant) 0 (idle process)

| u (name) | z<e (thread)
| Az.e (abstraction) | server a e (server)
| ee (application) | PIP (parallel)
| split e as z,y in e (pair splitting) | (vX)P (restriction)

k ::= unit | pair | open | send | recv | future | return | bind

Xu=alx
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Table 2: Reduction semantics of expressions and processes.

Reduction of expressions

[R-BETA] [R-BIND]
(Ax.e) f — e{f/x} return e »= f — fe

[rR-cTxT|
[R-sPLIT| e
split (e1,e2) as z,y in f — f{e1, e2/,y} M

Reduction of processes

[r-oPEN]

server a e | x <= Clopen a] — server a e | (vey)(x < Clreturn c¢™] |y < ec)

[r-comm]|

x <= C[send da” €] | y < C'[recv aP] — z < Clreturn a”] | y < C'[return (e, aP)]

|[R-FUTURE]

x <= C[future e] — (vy)(x < C[return y] | y <€)

[R-RETURN]|

(vx)(z < return e | P) — P{e/x}

[R-THREAD]| [R-NEW] [R-PAR] [r-cong]
e— f P—Q P—Q P=P —Q'=Q
re=e—ax<f vX)P — (vX)Q PIR—QIR P—qQ

name. In processes, restrictions bind tighter than parallel composition and we may abbreviate
(vXy1)--- (vXy,)P with (vX;--- X,,)P.

We have that split e as x,y in f binds both x and y in f and (va)P binds any
occurrence of the endpoints a™ and a~ or of the shared channel a within P. The definitions
of free and bound names follow as expected. We identify expressions and processes up to
renaming of bound names.

The operational semantics of expressions is defined in the upper half of Table 2. Ex-
pressions reduce according to a standard call-by-name semantics, for which we define the
evaluation contexts for expressions below:

Eu=[]|€e|split £ as z,yine|open € |send £ | recv £ | bind £

Note that evaluation contexts do not allow to reduce pair components or an expression e in
Az.e, bind f e, return e, future e and send a? e. We say that e is in normal form if there
is no f such that e — f.

The operational semantics of processes is given by a structural congruence relation =
(which we leave undetailed since it is essentially the same as that of the w-calculus [34])
and a reduction relation, defined in the bottom half of Table 2. The evaluation contexts for
processes are defined as

Cu=[]|C»=e¢
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and force the left-to-right execution of monadic actions, as usual.

Rules [r-oren] and [r-comm] model session initiation and communication, respectively.
According to [r-open], a client thread opens a connection with a server a. In the reduct,
a fresh session channel c is created, the open in the client is replaced by the endpoint ¢t
wrapped in the constructor return. Moreover, a copy of the server is spawned into a new
thread that has a fresh name y and a body which is the application of the expression e
(provided by the server) to ¢~. This follows a continuation-passing style since e is a function
expecting the end-point of a channel. So client and server can communicate using the private
channel ¢. According to [r-comm], two threads communicate if one is ready to send some
message e on a session endpoint a” and the other is waiting for a message from the peer
endpoint aP. As in [14], the result for the sender is the same session endpoint and the result
for the receiver is a pair consisting of the received message and the session endpoint. The
difference is that in our case the results have to be wrapped in the constructor return for
monadic actions.

Rules [r-rurure] and [r-rerurn] deal with futures. The former spawns an I/O action e
in a separate thread y, so that the spawner is able to reduce (using [r-smp]) even if e has
not been executed yet. The name y of the spawned thread is used as a placeholder for the
value yielded by e. Rule [r-rerurn] deals with a future variable x that has been evaluated to
return e. In this case, z can be replaced by e everywhere within its scope. Note that the
rule replaces in a single step the variable z in an arbitrary parallel composition of threads
running on possibly different hosts. In this respect, the practical realisation of this rule
may appear critical, if at all possible. In fact, since the replaced value is immutable, the
reduction rule can be implemented without synchronising all the threads that are affected by
the replacement, for example by means of a broadcast or multicast communication.

Rule [r-rureap] lifts reduction of expressions to reduction of threads. The remaining
rules close reduction under restrictions, parallel compositions, and structural congruence, as
expected. Hereafter, we write —* for the reflexive, transitive closure of —.

As an example, let

Q = (vprod consac)(P | server a display)

where
P = prod <= stream ¢t (from 0) | cons < display ¢~

is the process discussed in the introduction. It is easy to verify that
Py = (vproda)(prod <= open a >»>= \y.stream y (from 0) | server a display)

reduces to process Q).

3. Typing SID

We now develop a typing discipline for SID. The challenge comes from the fact that the
calculus allows a mixture of pure computations (handling data) and impure computations
(doing 1/0). In particular, SID programs can manipulate potentially infinite data while
performing I1/O operations that produce/consume pieces of such data as shown by the
examples of Section 1. Some ingredients of the type system are easily identified from the
syntax of the calculus. We have a core type language with unit, products, and arrows. As
in [14], we distinguish between unlimited and linear arrows for there sometimes is the need
to specify that certain functions must be applied exactly once. As in Haskell [30, 28], we use
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the I0 type constructor to denote monadic I/O actions. For shared and session channels
we respectively introduce channel types and session types [16]. Finally, following [25], we
introduce the delay type constructor e, so that an expression of type et denotes a value of
type t that is available “at the next moment in time”. This constructor is key to control
recursion and attain normalisation of expressions. Moreover, the type constructors e and I0
interact in non-trivial ways as shown later by the type of future.

Table 3: Syntax of Pre-types and Pre-session types.

{ ;=coind Pre-type T ::=coind Pre-session type
B (basic type) end (end)
T session type) | 7t.T (input)
(T) shared channel type) \ 1t. T (output)
t xt (product) | T  (delay)

linear arrow)
input/output)
delay)

I0¢

| (
| (
| (
] t—t (arrow)
| (
| (
| (

3.1. Types. The syntax of pre-types and pre-session types is given by the grammar in
Table 3, whose productions are meant to be interpreted coinductively. A pre-(session) type
is a possibly infinite tree, where each internal node is labelled by a type constructor and has
as many children as the arity of the constructor. The leaves of the tree (if any) are labelled
by either basic types or end. We use a coinductive syntax to describe the type of infinite
data structures (such as streams) and arbitrarily long protocols, e.g. the one between prod
and cons in Section 1.

We distinguish between unlimited pre-types (those denoting expressions that can be
used any number of times) from linear pre-types (those denoting expressions that must be
used exactly once). Let lin be the smallest predicate defined by

lin(t) lin(s) lin(t)

lin(zt.T)  lin(*t.T)  lin(t —s)  lin(10 ¢) ks s el

We say that t is linear if lin(t) holds and that ¢ is unlimited, written un(t), otherwise. Note
that all I/O actions are linear, since they may involve communications on session channels
which are linear resources.

Definition 3.1 (Types). A pre-(session) type t is a (session) type if:

(1) For each sub-term t; — t2 of ¢ such that un(t2) we have un(t¢;).

(2) For each sub-term t; —o to of t we have lin(ts).

(3) The tree representation of ¢ is regular, namely it has finitely many distinct sub-trees.
(4) Every infinite path in the tree representation of ¢ has infinitely many e’s.

All conditions except possibly 4 are natural. Condition 1 essentially says that unlimited
functions are pure, namely they do not contain and they cannot erase communications.
Indeed, an unlimited function (one that does not contain linear names) that accepts a linear
argument should return a linear result. Condition 2 states that a linear function (one that
may contain linear names) always yields a linear result. This is necessary to keep track of
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the presence of linear names in the function, even when the function is applied and its linear
arrow type eliminated. For example, consider z of type Nat — Nat and both y and w of
type Nat, then without Condition 2 we could type (Az.y)(z w) with Nat. This would be
incorrect, because it discharges the expression (z w) involving the linear name z. Condition 3
implies that we only consider types admitting a finite representation, for example using
the well-known “u notation” for expressing recursive types (for the relation between regular
trees and recursive types we refer to [31, Chapter 20]). We define infinite types as trees
satisfying a given recursive equation, for which the existence and uniqueness of a solution
follow from known results [10]. For example, there are unique pre-types Syat, Syat, and e
that respectively satisfy the equations Sf,, = Nat X Sf,., Syat = Nat X Sya;, and e = ee°.
En passant, note that linearity is decidable on types due to Condition 3. The fact that lin
has been defined above as the smallest predicate that satisfies certain axioms and rules is
crucial. In particular, > is not linear.

Condition 4 intuitively means that not all parts of an infinite data structure can be
available at once: those whose type is prefixed by a e are “delayed” in the sense that recursive
calls on them must be deeper. For example, Sya¢ is a type that denotes streams of natural
numbers where each subsequent element of the stream is delayed by one e compared to
its predecessor. Instead Sy, is not a type: it would denote an infinite stream of natural
numbers, whose elements are all available right away. Similarly, Outy.; and Iny.; defined by
Outyat = !Nat. @ Qutyar and Iny,e = ?Nat. @ Iny,g are session types, while Outy,, and Ing,,
defined by Outy,, = !Nat.Out},, and Inj,, = ?Nat.Inf,, are not. The type > is somehow
degenerate in that it contains no actual data constructors. Unsurprisingly, we will see that
non-normalising terms such as Q = (Az.z z)(Az.z x) can only be typed with >, Without
Condition 4, Q could be given any type.

We adopt the usual conventions of parentheses. Arrow types associate to the right. We
assume the following precedence among type constructors: e, I0, X, followed by — and —o
with the same (and lowest) precedence. We also need a notion of duality to relate the session
types associated with peer endpoints. Our definition extends the one of [16] in the obvious
way to delayed types. More precisely, the dual of a session type T is the session type T
coinductively defined by the equations:

end = end 27t T =1t.T 1. T =7t.T o1 — o1

Sometimes we will write "t in place of @--- e t.
H./_/
n-times
3.2. Typing Rules for Expressions. First we assign types to constants:
unit : Unit send :MT —t—oI0T pair:t—s-—otxs if lin(t)
return: ¢t — I0¢ recv 7.7 — 10 (txT) pair:t—s—>txs if un(t)
open :{(T)—10T future : " (I0 ) — I0 o™¢ bind : I0t — (t = I0s) — I0 s

Each constant k # unit is polymorphic and we use types(k) to denote the set of types
assigned to k, e.g. types(return) = (J,{t — I0 t}.

The types of unit and return are as expected. The type schema of bind is similar to
the type it has in Haskell, except for the two linear arrows. The leftmost linear arrow allows
linear functions as the second argument of bind. The rightmost linear arrow is needed to
satisfy Condition 1 of Definition 3.1, being I0 ¢ linear. The type of pair is also familiar,
except that the second arrow is linear or unlimited depending on the first element of the pair.
If the first element of the pair is a linear expression, then it can (and actually must) be used
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Table 4: Typing rules for expressions.

[oI] [consT] [ax1OM]|
lke:t

MN,tet k _— r
Freret  Tra.g nNtewpeslk) o un(l)

[—1] [—E] [—I]
Mrz:e"tFe:o"s ) lMkep:e(t—s) o eg: 0™t Fr:e"the:o"s
M Az.e: o (t —s) i M +Tokees:o’s M Az.e: o™ (t —o s)

[—E] [xE]
M ke :e(t—s) MobFey:e"t TiFe:e(t Xty) lo,x:e"ty,y:e" o f:e"s
M +Thkeey:os I+ Ty b split eas z,y in [ : o"s

for creating exactly one pair. The types of send and recv are almost the same as in [14],
except that these primitives return I/O actions instead of performing them as side effects.
The type of open is standard and obviously justified by its operational semantics. The most
interesting type is that of future, which commutes delays and the IO type constructor.
Intuitively, future applied to a delayed I/O action returns an immediate I/O that yields a
delayed expression. This fits with the semantics of future, since its argument is evaluated in
a separate thread and the one invoking future can proceed immediately with a placeholder
for the delayed expression. If the body of the new thread reduces to return e, then e
substitutes the placeholder.

The typing judgements for expressions have the shape I' - e : t, where typing environments
(for used resources) I' are mappings from variables to types, from shared channels to shared
channel types, and from endpoints to session types:

roas= 0| Na:t | Ta:{T) | T,a?:T

The domain of ', written dom(T"), is defined as expected. A typing environment I is linear,
notation lin(T"), if there is u : ¢ € T such that lin(¢); otherwise I is unlimited, notation un(T").
As in [14], we use a (partial) combination operator + for environments that prevents names
with linear types from being used more than once. Formally the environment I' +T" is defined
inductively on " by

FMow:t if u & dom(T),
where TH+wu:t=<T if u:teTl and un(t),
undefined otherwise.

r+0 =T
I+ (M u:t) F+T)4+u:t

The typing axioms and rules for expressions are given in Table 4. The side condition
un(T) in [const], [axiom], and [-1] is standard [14]. The typing rules differ from the ones in [14]
on two crucial details. First of all, each rule allows for an arbitrary delay in front of the
types of the entities involved. Intuitively, the number of e’s represents the delay at which
a value becomes available. So for example, rule [—1] says that a function which accepts an
argument z of type t delayed by n and produces a result of type s delayed by the same n
has type o"(t — s), that is a function delayed by n that maps elements of ¢ into elements of
s. The second difference with respect to the type system in [14] is the presence of rule [e1],
which allows to further delay a value of type ¢t. Crucially, it is not possible to anticipate a
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delayed value: if it is known that a value will only be available with delay n, then it will also
be available with any delay m > n, but not earlier.

3.3. Examples of Type Derivations for Expressions. Using rule [¢I] and the recursive
type s = es — t, we can derive that the fixed point combinator
fix = Ay.(Az.y (z x))(Az.y (z x))

has type (et — t) — ¢ by assigning the type s — t to the first occurrence of A\x.y (z x) and
the type es — t to the second one [25].
It is possible to derive the following types for the functions in Section 1:

from: Nat — Syat stream: Outysy — Syat — I0 ¢  display : Inyay — I0 Syat

where, in the derivation for display, we assume type Syat — I0 Syat for g. We show the
most interesting parts of this derivation. We use the following rules, which are easily obtained
from those in Table 4 and the types of the constants.

[Fix] [BIND]
Nx:etke:t un(r) I e :On(IO t) Iy eg :On(t—oIO 8)
['Efix Az.e:t M+Toke »=ey:0"I0s
[FUTURE] [x = 1]

FTke:e"t™I0 ¢t o1 :0"t,x0: 0"t Fe:o"s
' future e: "I0 o™ ¢ I'E XNy, x0).e: 0™ (t1 X tg — 5) un(P)

In order to type display we desugar its recursive definition as display = fix (Az.\y.e),
where

— _ /
e = e >=ey e] = recv g,; e3 = future(x y)

e = Mz,y').e3 »>=¢y es = Azs.g(z,zs)
We derive
\Y%
. r7 rlv r3a r4 + ez = ey : 10 Syat
My Fep:I0 (Nat x eIny,y) Ty ey : (Nat X @Iny,,) — I0 Syat
T,y : Ingae e I0 Syat

I''Th F Ay.e : Ingar — I0 Syat
' display : Inyat — I0 Syat

[x = 1]

[BIND]

(1]
[Fix]

where I' = ¢ : Syat — I0 Syat, 1 = = : (Inyag — 10 Syat), 2 = ¥ : Inyat, I3 = ¢ : eInyay
and Iy = z : Nat. The derivation V is as follows.
I Fx: e(Inyay — I0 Syat) M3 9 : eInya
N,z y’ : oI0 Syat :
I“l, rg H e3: I0 e Syat F, F4 H €4 : ®Syat — 10 Syat
F, Fl, rg, F4 [ ez M>= ¢4 : I0 Syat

[—E]

[FUuTURE]

[BIND]

Note that the types of the premises of [-E] in the above derivation have a e constructor
in front. Moreover, future has a type that pushes the e inside the I0; this is crucial for
typing e4 with (eSyay — I0 Syat). We can assign the type Syat — I0 Syar to ey by guarding
the argument z of type eSy,¢ under the constructor pair. Without future, the expression
x Yy >= ey has type oI0 Syay and for this reason display, cannot be typed.
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Controlling guardedness of recursion is subtle as it could require types with several
bullets. For example, let e = split ys as y,2s in (s zs) and consider the function
skip = fix As.\(z,ys).(z,€e)
that deletes the elements at even positions of a stream. Function skip has type Syat — S2yat,
where S2y.. = Nat X e @ S2y... We derive
\Y%
'+ 2 : Nat 'Fe:oeoS2yt
ME(x,e) : S2yat
s : ®(Syat — S2yat) F A(z,ys).(x,€) : Syat — S2yat
F Sklp : SNat — SQNat

[x1]

[—=1]

[Fix]

where I' = s : ®(Syar — S2yat), & : Nat, ys : @Syag, rule [x1] is
[xI]
MNEe :o" o Fey:o”s
I+ Tok (e1,e) : 0" (t xs)

and the type derivation V is
o] It s : ®(Syat — S2yat)
) I+ s:ee(Syat — S2yat) " 2s: @@ Sy
'k ys: e(Nat X eSyat) IMF s zs:eeS2y.x
'Fe:oeoS2y

[xE]

where I = s : (Syat — S2yat), Y : ®Nat, 25 : ® @ Sy,. Note that in the above derivation, the
first premise of [-+E] has two e’s in front of the arrow type. The same derivation can be done
in the system of [25]. Instead [3]| uses clock variables and [7]| uses one constant to type this
example as a particular case of lifting guarded recursive data to coinductive data.

3.4. Typing Rules for Processes. The typing judgements for processes have the shape
' P > A, where I' is a typing environment as before, while A is a resource environment,
keeping track of the resources defined in P. In particular, A maps the names of threads and
servers in P to their types and it is defined by

A =0 | ANzt | Aa:(T)

Table 5 gives the typing rules for processes. A thread is well-typed if so is its body, which
must be an I/O action. The type of a thread is that of the result of its body, where the delay
moves from the I/O action to the result. The side condition makes sure that the thread is
unable to use the very value that it is supposed to produce. The resulting environment for
defined resources associates the name of the thread with the type of the action of its body.
A server is well-typed if so is its body e, which must be a function from the dual of 7' to an
I/O action. This agrees with the reduction rule of the server, where the application of e to
an endpoint becomes the body of a new thread each time the server is invoked. It is natural
to forbid occurrences of free variables and linear channels in server bodies. This is assured by
the condition shared(T"), which requires I to contain only shared channels. Clearly shared(T")
implies un(T"), and then we can type the body e with a non linear arrow. The type of the
new thread (which will be ¢ if e has type T — I0 t) must be unlimited, since a server can
be invoked an arbitrary number of times. The environment I' 4+ a : (T') in the conclusion of
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Table 5: Typing rules for processes.
[THREAD] [sERVER]

IMe:e"(I0t) + & dom(T) le:T—10t shared(T")
M4a:(T)F serverae > a: (T) un(t)

l-z<ep z:e"t

[PAR] [sEssiOoN] B [NEW]
Fl}—P11>A1 FQI—P2>A2 F,ap:T,ap:TI—PDA r,X:tI—PDA,XZt
M+ kPP o AL F'F (va)P > A ' (vX)P > A

the rule makes sure that the type of the server as seen by its clients is consistent with its
definition.

The remaining rules are conventional. In a parallel composition we require that the sets
of entities (threads and servers) defined by P, and P; are disjoint. This is enforced by the
fact that the respective resource environments A; and Ag are combined using the operator
_, _ which (as usual) implicitly requires that dom(A;) N'dom(Ay) = (. The restriction of
a session channel a introduces associations for both its endpoints a™ and a~ in the typing
environment with dual session types, as usual. Finally, the restriction of a bindable name X
introduces associations in both the typing and the resource environment with the same type
t. This makes sure that in P there is exactly one definition for X, which can be either a
variable which names a thread or a shared channel which names a server, and that every
usage of X is consistent with its definition.

3.5. Example of Type Derivation for Processes. Let inc : Nat — Nat be the increment
function on natural numbers, and consider

incStream r = recv x »>=
Ay, a').future(incStream ') >»= (3.1)
Az.return (inc y,z)

which receives natural numbers in a channel x, increments them by one and returns them in
a stream. Note that the function incStream in (3.1) is the function display in (1.2) once g
is instantiated with A(z1,z9).return (inc x1,z2). Then, the process

r < stream ¢t (from 0) | y < (incStream ¢ ) »=send b | z<recvb (3.2)

sends on channel b the whole sequence of integers starting from 1. We show part of a type
derivation for the thread named y in (3.2).

¢ : Inyat F incStream ¢ : I0 Syat
bt : 1Syar.end - send b T : I0 Syar — I0 end

¢ : Inyat,b" : !Syag.end - (incStream ¢ ) >=send b T : 10 end

[BIND]

— T — T |[THREAD]
¢ : Inya,b" : !Syat.end - y < (incStream ¢ ) »=send b " > y:end
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4. PROPERTIES OF TYPEABLE EXPRESSIONS

This section is devoted to the proof of the two most relevant properties of typeable expressions,
which are subject reduction (reduction of expressions preserves their types) and normalisation.
As informally motivated in Section 3, the type constructor e controls recursion and guarantees
normalisation of any expression that has a type different from .

4.1. Subject Reduction for Expressions. The proof of subject reduction for expressions
(Theorem 4.6) is standard except for the fact that we are using the modal operator e. For
this, we need Lemma 4.1 below, which says that the type of an expression should be delayed
as much as the types in the environment. This property reflects the fact that we can
only move forward in time. For example, from x : t - Ay.x : s — ¢ we can deduce that
x: et \y.x:e(s—t), but we cannot deduce x : ot - \y.z : s — ¢. Notably we can derive
x:et,y:et — sk yx:s, ie. the environment can contain types more delayed than the type
of the expression.

Lemma 4.1 (Delay). IfT'He:t, then Ty, elx e : ot for I, I =T.
Proof. By induction on the derivation. L]

The following property tells that, if an expression contains an endpoint or a variable
with a linear type, then the type of that expression should be linear. For example, it is
not possible to assign the unlimited type Nat — I0 end to the function 1¢ = Az.send a? x
which contains the free endpoint aP of type !Nat.end. Otherwise, 1c could be erased in
(Az.unit) lc or duplicated in (Az.(z,z)) lc.

Lemma 4.2. IfT Fe:t and un(t), then un(T).

Proof. The proof is by induction on the derivation of ' - e : £. The case of [-E] uses
Condition 1 and the case of [<E] uses Condition 2 of Definition 3.1. ]

The following three lemmas are standard in proofs of subject reduction.

Lemma 4.3 (Inversion for Expressions).

(1) IfTEXk:t, thent = "t and t' € types(k) with un(T).

(2) IfTHw:t, thent=e"t' and T =T u : t' with un(T").

(3) If T = Ax.e : t and un(T"), then either t = o"(t; — t2) or t = o"(t; —o t3) and
Ix:e"tiFe: ey,

(4) If T'E Ax.e: t and |in(T), then t = " (t] —o t3) and I',x : @"t1 e : @"ts.

(5) If T - ereg : t, thent = @™ty and ' =T + Ty with Ty F ey : "t and either T} F e :
0n(t1 — tg) orTiFep: On(tl —o tz).

(6) If T+ split e as x,y in f: t, then T =T, + Ty and t = &"t' with T - e : " (11 X t2)
and Ty, z : "ty : @ty = f: @™,

Proof. By case analysis and induction on the derivation. We only show Item 3 which is

interesting because we need to shift the environment in time and apply Lemma 4.1. A

derivation of I' F Az.e : t ends with an application of either [-1I], [—I] or [eI]. For the first two
cases, the proof is immediate. If the last applied rule is [eI], then ¢t = ot and we have

e AXxe:t
I Az.e: of
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By induction ¢’ = e"(t; — t9) or t’ = @"(t] —o t3) and I',x : @"t; - e : @"t5. Hence,
t=ot' =" TL(t; = ty) ort = ot' = " (t; —oty)
By Lemma 4.1 we have that ',z : e"tlt; e : o™ tlt,. O
Lemma 4.4 (Substitution). If T,z :ske:t andTo b f:s and Ty + Ty is defined, then
M +Tke{f/x}:t

Proof. By induction on the structure of expressions. We only consider the case e = k, to
show the application of Lemma 4.2. It follows from Item 1 of Lemma 4.3 that un(I',z : s)
and t = "¢’ with ¢ = types(k). From un(s), Ty - f : s and Lemma 4.2, we derive un(Ty),
and therefore 1 + Ty Fk : ¢ by [const] and k{f/x} = k. ]

Lemma 4.5 (Evaluation Contexts for Expressions). If ' F Ele] : t, then T' =T} + Ty and
M,z:sE&x]:t andTa ke : s for some s.

Proof. By induction on the structure of £. []
Theorem 4.6 (Subject Reduction for Expressions). If ' e:t and e — €/, then T ¢’ : t.

Proof. By induction on the definition of —. Lemma 4.5 is useful for rule [r-crxt]. We only
consider the case (Az.e) f — e{f/x}. Suppose ' (Az.e) f:t. By Item 5 of Lemma 4.3
t=e"tgand ' =Ty + Ty and

lob f:e"; andeither Ty Az.e:e"(t; —t3) or T F Ax.e: o™ (ty —ot9)
In both cases, it follows from Item 3 of Lemma 4.3 that
M,z :e"t1 Fe: ety (4.1)
By applying Lemma 4.4 to (4.1) we get T'F e{f/x} : o"ts. L]

4.2. Normalisation of Expressions. In this section we prove that any typeable expression
whose type is different from > reduces to a normal form (Theorem 4.13). For this, we
define a type interpretation indexed on the set of natural numbers for dealing with the
temporal operator e. The time is discrete and represented using the set of natural numbers.
The semantics reflects the fact that one e corresponds to one unit of time by shifting the
interpretation from ¢ to ¢ + 1. A similar interpretation of the modal operator with indexed
sets is given in [25]|. For simplicity we consider only Unit as basic type, the addition of other
basic types is easy.

Before introducing the type interpretation, we give a few definitions. Let & be the set of
expressions. We define the following subsets of &:

N ={e|e—" f & fis anormal form}
N, ={e| e —* E[z] & x is a variable}
Nro = {e | e —*Cleg] & ey € {send a? ej,recv aP, open a, future e;}}

The sets M, and Mo are sets of expressions which reduce to normal forms of particular
shapes. They are disjoint and both subsets of 91. We will do induction on the rank of types.
For Unit, session types, and shared channel types the rank is always 0. For the other types,
the rank measures the depth of all what we can observe at time 0. We could also compute it
by taking the maximal O-length of all the paths in the tree representation of the type, where
the 0-length of a path is the number of type constructors different from e from the root to a
leaf or to a e.
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Definition 4.7 (Rank of a Type). The rank of a type t (notation rank(t)) is defined as
follows.
rank(Unit) = rank(T) = rank((T)) = rank(et) =0
rank(I0 t) = rank(t) + 1
rank(t x s) = maz(rank(t), rank(s)) + 1
rank(t — s) = max(rank(t),rank(s)) + 1
rank(t — s) = max(rank(t),rank(s)) + 1

The rank is well defined (and finite) because the tree representation of a type cannot
have an infinite branch with no e’s at all (Condition 4 in Definition 3.1) and rank(et) is set
to 0.

We now define the type interpretation [t] € N — P(€), which is an indexed set, where
N is the set of natural numbers and P is the powerset constructor.

Definition 4.8 (Type Interpretation). We define [t], C € by induction on (i, rank(t)).
[Unit], = MNyU{e|e —* unit}
[T], = Muie|e—"a"}
(D)), = 9 Ufele—" a)
[t xs], = MU{e|e—"(e1,e2) and e; € [t]; and ey € [s],}
[t—=sl; = [t —sl,
= NyU{ele—"Az.fandee € [s]; Ve € [t];,j <i}
U{e|e—"E[k] and ee’ € [s]; Ve’ € [t];,7 <i}
[10t], = MUNpU{e|e—"*return e and ¢ € [t],}
[ot], ¢
let];y = [tl;
Note that [e>°], = €& for all i € N. In the interpretation of the arrow type, the requirement
“for all j <4¢” (and not just “for all 7”) is crucial for dealing with the contra-variance of the

arrow type in the proof of Item 3 of Lemma 4.10.
The next properties of the type interpretation are expected.

Lemma 4.9.
(1) [o"t]; = € if i <n.
(2) [o"t]; = [tl;—,, if i = n.

Proof. Both items are proved by induction on n. 0]

Lemma 4.10.

(1) For all types t and i € N, we have M, C [t],.
(2) Ift # es, then [o" 1] ., CN.
(3) ForallieN, [t]; ., < [t];

(4) Ift # >, then [,y [t]; € N
Proof. (Item 1). By induction on ¢ and doing case analysis on the shape of the type. All
cases are trivial except when the type is et.

(Item 2). Using Item 2 of Lemma 4.9.

(Item 3). By induction on (i,rank(t)). Suppose e € [t — s]; ;. Then ee’ € [s]; for
j <i+ 1. This is equivalent to saying that ee’ € [s] J41 for 5/ <. By induction hypothesis
[s];+1 € [s];. Hence, e € [t — s];. The remaining cases are easy.
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(Item 4). All the cases are trivial except for a type starting by e. Since t # >, we have
that ¢ = @"*1s and s # es’. It follows from Item 2 that [e"*'s] ., C 91 and hence

m [[t]]l < [[t]]nJrl = [[.nJrlS]]nJrl C. O
1€eN

In order to deal with open expressions we resort to substitution functions, as usual. A
substitution function is a mapping from (a finite set of) variables to €. We use ¢ to range
over substitution functions. Substitution functions allows us to extend the semantics to
typing judgements (notation I' |=; e : t).

Definition 4.11 (Typing Judgement Interpretation). Let § be a substitution function.
(1) 0 = Tif6(x) € [t]; forall z: t €T.
(2) TEie:tifd(e) € [t], forall § = T.

As expected we can show the soundness of our type system with respect to the indexed
semantics.

Theorem 4.12 (Soundness). IfT'Fe:t, then T |=;e:t for alli € N.
The proof of this theorem by induction on '+ e : t can be found in Appendix A.

Theorem 4.13 (Normalisation of Typeable Expressions). If ' e :t and t # o>, then e
reduces (in zero or more steps) to a normal form.

Proof. 1t follows from Theorem 4.12 that
I ):1 e:t (4.2)
for all ¢ € N. Let id be the identity substitution and suppose x : s € I'. Then

id(z) =z €M,
C [s]; by Item 1 of Lemma 4.10.

This means that id |=; " for all i € N. From (4.2) we have that id(e) = e € [t], for all 1.

Hence,
ec ﬂ [t1;
ieN
It follows from Item 4 of Lemma 4.10 that e € . ]

Notice that there are normalising expressions that cannot be typed, for example Ax.QI,
where Q) is defined at the end of Section 3.1 and I = Az.z. In fact QO has type e and by
previous theorem it cannot have other types, and this implies that the application QI has
no type.
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5. PROPERTIES OF REACHABLE PROCESSES

In general, processes lack subject reduction. For example, the process
(vzy)(z <= return y | y <= return z) (5.1)
is well-typed by assigning both x and y any unlimited type, but its reduct
(vz)(x <= return z)

is ill-typed because the thread name x occurs free in its body (c¢f. the side condition of rule
[rurean]). Another paradigmatic example is

x<sendaty | y<recva" 5.2
yly

which is well-typed in the environment at : 't.end,a™ : ?t.end where ¢t = o(t x end) and
which reduces to x < return a™ | y < return (y,a”). Again, the reduct is ill-typed because
the thread name ¥y occurs free in its body. In general, these examples show that the reduction
rules [r-rerTurn] and [r-comm] can violate the side condition of the typing rule [rureap], which
requires that a future variable is never defined in terms of itself.

Another source of problems is the fact that, as in many session calculi [4, 8|, there
exist well-typed processes that are (or reduce to) configurations where mutual dependencies
between sessions and/or thread names prevent progress. For instance, both

(vzyab)(z <= send a™ 4 »= Az.recv b~ | y < send b' 2 »= \zv.recv a™) (5.3)
(vza)(z < recv a” »= A(y,z).send a™ y) 5.4)

are well-typed but also deadlocked.

The point is that none of the troublesome processes (including those shown above)
is relevant to us, because they cannot be obtained by reducing a so-called initial process
modelling the beginning of a computation. A closed, well-typed process P is initial if

P= (vxay - -am)(x<elserver aj ey | --- | server a,, en)

namely if it refers to no undefined names and if it consists of one thread x — usually called
“main” in most programming languages — and an arbitrary number of servers that are
necessary for the computation. In particular, typeability guarantees that all bodies reduce to
normal forms and all open’s refer to existing servers. Clearly, an initial process is typeable
in the empty environment.

We call reachable all processes that can be obtained by reducing an initial process. A
reachable process may have several threads running in parallel, resulting from either service
invocation or future’s.

This section is organised as follows. Section 5.1 defines the set of well-polarised processes,
which includes the set of reachable processes. Subject reduction for reachable processes then
follows from subject reduction for well-polarised processes (Section 5.2). Well-polarisation of
reachable processes is also used in Section 5.3 to show progress and in Section 5.4 to show
confluence.

5.1. Well-polarised Processes. The most original and critical aspect of the following
proofs is to check that reachable processes do not have circular dependencies on session
channels and variables. The absence of circularities can be properly formalised by means of
a judgement that characterises the sharing of names among threads, inspired by the typing
of the parallel composition given in [20]. Intuitively, the notion of well-polarisation captures
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the following properties of reachable processes and makes them suitable for proving subject
reduction, progress and confluence:

(1) two threads can share at most one session channel;

(2) distinct endpoints of a session channel always occur in different threads;

(3) if the name of one thread occurs in the body of another thread, then these threads cannot
share session channels nor can the first thread mention the second.

Note that (5.1) and (5.2) violate condition (3), (5.3) violates condition (1), and (5.4) violates

condition (2). In order to define well-polarised processes, we need a few auxiliary notions.

To begin with, we define functions to extract bounds, threads and servers from processes.

Definition 5.1 (Bounds, Threads, Servers). We define
bounds(P) = {X1,..., X} threads(P)=Q servers(P)=R
it P=wX; - X,)(Q | R), Q| R does not contain restrictions, @ is thread-only (namely, it

is a parallel composition of threads), and R is server-only (namely, it is a parallel composition
of servers).

Next, we define a mapping that computes the set of polarised names occurring free in an
expression or parallel composition of threads.

Definition 5.2 (Polarised Names). Let A be defined on expressions and thread-only pro-
cesses by:
Ne) = {aP|a? efnle)}U{xt | z €fn(e)}
Nx<e) = {27 }UN(e)
N(P1Q) = N(P)UNQ)
Let A, B be sets of polarised variables and endpoints. We say that A and B are

independent, notation A # B, if for every X? € A and X? € B we have p = q. Then A # A
implies that A cannot contain the same name with opposite polarities.

Definition 5.3 (Well-polarised Processes). Let = P be the least predicate on thread-only
processes such that

[wP-EMPTY]| [WP-THREAD| [wP-PAR]
_ T EN(e EP  Ed P P

We say that P is well-polarised if = @ for some @) = threads(P).

Note that the variable X in [we-rar] is existentially quantified. The empty process is
trivially well-polarised and a thread x < e is well-polarised if e does not contain references
to both a” and aP, nor to the thread name . A parallel composition P | Q is well-polarised
if there is at most one variable or endpoint that occurs with opposite polarities in N'(P) and
N(Q). This means that either:

(1) P contains a” and @ contains a?,

(2) P has a thread labelled x and @ has a thread whose body contains x (or vice versa),

(3) N(P) # N(Q), i.e. N(P) and N(Q) do not share names with opposite polarities.
Note that = P can hold even if P cannot be typed, for example = z < QI, see the

end of Section 4.2. Well-polarisation cannot be incorporated into the typing rules because
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it is not closed under structural equivalence, i.e. = P and P = P’ do not imply = P'. A
counterexample is shown below:

P = (z1 < return 1| yo < return z1) | (2 < return y; | y1 < return 2)
P’ = (1 < return 1 | 29 < return y1) | (y1 < return 2 | yo < return 1)

Definition 5.4. We write P C Q if P € §(Q), where § is defined by
S(0) = {0} S(x<e)={z<e}
S(P | P)=8(P)US(P)U{P{ | Pj| P{ € S(Py) and P}, € S(P)}
We write P C Q if P C @ and P # Q.

Note that, if P C @, then all threads of P respect the syntactic structure of ). This means
that if we represent the processes as trees, P is a sub-tree of (). This is important because
= is not necessarily preserved by structural equivalence.

Lemma 5.5. If = P and Q C P, then = Q.
Proof. By induction on the derivation of = P. ]

The proof that well-polarisation of typeable processes is preserved by reductions (Theorem
5.9) is a bit involved because Py — Qo and = P with P = threads(P,) do not imply that
= @ for an arbitrary @ = threads(Qp). We will prove a variant of the above property: if
Py — Qo and = P with P = threads(P,), then there exists Q' with Q' = threads(Qp) such
that = @’. The problem lies on the reduction rules [r-comm] and [r-reTUrN].

Example 5.6. This example shows that using the rule [r-comm] we can obtain @ from P
such that = P, but }~= Q.

P=(rx<senda’ z|z<return 1) | y < recv a”
Q= (z < returna’ | z & return 1) | y < return (z,a”)

By re-arranging the threads of @) we get a process Q' such that = Q"
Q' = (x = return a® | y < return (z,a7)) | z < return 1
The rule [r-rerurn] has a similar problem as illustrated by the following example.

Example 5.7. Take Py = (vz)P and

P = ((x <=return (21,22) | 21 < return 23) | 22 < return 1)|
(y <= send atz | u < recva)

Q = (21 < return 29 | 29 < return 1)|
(y < send a™ (21,22) | u<recv a™)

Then = P but £ Q. We have that = Q" and Q = Q" where

Q' = ((y = send a” (21,29) | u<recva™) | z; < return z3) | 29 < return 1

The details for finding a @' = threads(Q) for any Qo such that Py — Qo and = P
with P = threads(FP) are given in Appendix B. Here we only give the formalisation of the
properties (1), (2) and (3) listed at the beginning of this section.

Lemma 5.8.

(1) Let = P | Q and either X #Y orp # q. If XP, Y7 € N(P) and XP € N(Q), then
Y9 ¢ N(Q). Similarly, if XP € N(P) and XP,Y? € N(Q), then YI & N (P).

(2) If =P andx<=e C P andy < f C P and x occurs in f, then y cannot occur in e.
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B) If=EPandz<eC P andy <« f C P and aP occurs in e and aP occurs in f, then y
cannot occur in e.

Proof. Ttem 1 is easy to verify.

(Item 2). There exists a point in the derivation of = P where we split the two threads
xz < e and y <= f. This means that there is P, | P» C P such that x < ¢ C P, and
y < f C P, (or vice versa). Lemma 5.5 implies = P, | P, = P; and = P,. Hence,
z= € N(P1) and y~,zt € N(P2), because we assume that z occurs in f. By Item 1
yT & N(Py), which means that y cannot occur in e.

(Item 3). Similar to the previous item. ]

The interest in well-polarisation comes from its preservation by reduction of typeable
processes, as stated in the following theorem whose proof can be found in Appendix B.

Theorem 5.9. If P — P’ and P is typeable and well-polarised, then P’ is well-polarised
too.

As an immediate consequence we have that reachable processes are well-polarised, since
an initial process is trivially well-polarised.

Corollary 5.10. Each reachable process is well-polarised.

5.2. Subject Reduction for Reachable Processes. The following three lemmas are for
processes as Lemmas 4.3, 4.4 and 4.5 are for expressions.

Lemma 5.11 (Inversion for Processes).

(1) IfTFx<e > A, then A=x: "t withTFe: e (10 t) and x ¢ dom(T").

(2) IfT-serverae > A, thenT =T",a:(T) and A=a: (T) withTFe: (T — I0t) and
shared(I") and un(t).

(3) ]fF H Pl | P2 > A, then T = F1+F2 and A = Al,AQ with F1 H Pl > Al and FQ H PQ > Ag,

(4) IfTF (va)P > A, then either T,aP : T,aP : T+P > AorT,a:{(T)FP > Aa:(T).

(5) If TH (vx)P > A, thenT,x :tE P > Ajx:t.

Proof. By case analysis on the derivation. L]

Lemma 5.12 (Substitution). Let T,z : t = P > A with © ¢ dom(A) and Ty e : t and
Iy 4+ Ty be defined and dom(T2) Ndom(A) = 0. Then Ty + Ty - P{e/x} > A.

Proof. By induction on the structure of processes. We only discuss the case of rule [rureap].
The interesting observation is that we need to use the hypothesis dom(I'z) Ndom(A) = () to
ensure that the name of the thread does not belong to its own body. We also use Lemma 4.4
to type the body of the thread itself. []

Lemma 5.13 (Evaluation Contexts for Processes). If '+ Cle] : (10 s), then T' =T + I
and T,z : o (I0 t) - Clz] : (10 s) and Iy - e : (10 t).

Proof. By induction on the structure of evaluation contexts for processes. L]
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A useful consequence of the previous lemma is the following property of contexts filled
by communication expressions.

Lemma 5.14. IfT,a” : ¢"T I~ C[send aP €] : (10 t) orT,aP : @1 I Clrecv aP] : ¢ (10 t),
then n < m.

Proof. We only consider the case I',aP : ¢"T I C[send aP e] : (10 t). By Lemma 5.13
=T +Tyand I,z : @ (I0 s) - C[z] : @™(I0 t) and I'y,aP : @"T I send a” e : o™ (I0 s).
Since rule [-E] requires at least n bullets in front of the type of send we get n < m. L]

We say that an environment T is balanced if a? : T €T and a? : S € T imply T = S. We
can now state subject reduction of well-polarised processes. The proof of this theorem is the
content of Appendix C.

Theorem 5.15 (Subject Reduction for Well-polarised Processes). Let T be balanced and P
be well-polarised. If P — P’ and T+ P > A, then there is balanced environment I’ such
that "= P > A.

Theorem 5.16 (Subject Reduction for Reachable Processes). All reachable processes are
typeable.

Proof. This follows from Corollary 5.10 and Theorem 5.15, observing that the empty session
environment is balanced. []

5.3. Progress of Reachable Processes. We now turn our attention to the progress
property (Theorem 5.23). A computation stops when there are no threads left. Recall that
the reduction rule [r-return] (cf. Table 2) erases threads. Since servers are permanent we say
that a process P is final if

P = (vay---ap)(server aj ey | --- | server a,, e,,)

In particular, the idle process is final, since m can be 0.
The following lemma gives fundamental features of linear types, which play an important
role in the proof of progress.

Lemma 5.17 (Linearity).

(1) IfT,u:tke:s andlin(t), then u occurs exactly once in e.

(2) If T,u:t+ P > A and lin(t), then there exists exactly one thread x < e of P where u
occurs only once in e and u occurs as name of another thread if u : t € A and nowhere
else.

Proof. Both items are proved by induction on derivations. L]
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The following properties of typeable processes are handy in the proof of progress.

Lemma 5.18. Let P be typeable. Then:

(1) If x € bounds(P) and y <= E[x| C threads(P), then x < e C threads(P).

(2) If a € bounds(P) and x <= C[open a| C threads(P), then server a e C servers(P).

(3) If a € bounds(P) and z < C[send a? e] C threads(P), then y < f C threads(P), where
aP only occurs in expression f and the typing environment for threads(P) contains both
aP : '¢.T and aP : 7t.T.

(4) If a € bounds(P) and x < C[recv aP] C threads(P), then y < f C threads(P), where
aP only occurs in expression f and the typing environment for threads(P) contains both
al : 7t T and aP : 't.T.

Proof. (Item 1) and (Item 2). To type the restriction of = (or a), we need to use rule [xew],
which requires z (or a) to occur in the resource environment. Rule [rurean] is the only rule
that puts the name of a thread in the resource environment. Rule [server] is the only rule
that puts the name of a server in the resource context.

(Item 3). To type the restriction of a, we need to use rule [session], which requires the
environment to contain dual session types for a? and aP. Since a? is an argument of send,
its type is of the form !¢.T and hence, aP should have type 7¢.T. The fact that aP occurs in
only one thread follows from Item 2 of Lemma 5.17.

(Item 4). The proof is similar to Item 3. ]

The proof of Theorem 5.23 requires to define a standard precedence between threads
and show that this relation is acyclic. Informally, a thread precedes another one if the first
thread must be evaluated before the second one. The simpler case is when the body of one
thread is an evaluation context containing the name of another thread, i.e. © < e precedes
y < &[x]. In the remaining cases the bodies of the threads are the normal forms C[send a” €]
or C[recv a?] which have to wait for a? to be inside an evaluation context. This is formalised
in the following definition.

Definition 5.19 (Precedence).
(1) The endpoint a? is ready in e if
e € {C[send a? f],C[recv ]}

(2) The endpoint a? is blocked in e if one of the following conditions holds:

(a) e =C[send b? f] and a # b and a? occurs in C or in f;

(b) e =Clrecv b?] and a # b and aP occurs in C;

(c) e = E[z] and aP occurs in &.

(3) The expression e precedes the expression f (notation e < f) if a? is ready in f while a?

is blocked in e.
(4) The thread x < e precedes the thread y < f (notation z < e < y < f) if either

e < for f=¢E&x]

Note that a channel is either ready or blocked in a typeable expression.
The following lemma follows easily from the definition of <. The proof of the third item
uses Lemma 5.17 and typeability of P.

Lemma 5.20. Let P be a reachable process and x <=e|y<= fC P andx <=e < y< f.
Then there is X such that:

(1) XP e N(z <e) and XP € N(y < f).
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(2) If X is a variable, then X = x.
(3) If X = a, then aP is blocked in e while aP is ready in f. Moreover, these are the only
occurrences of aP? and aP in P.

A process P is acyclic if the precedence between the threads in threads(P) has no cycles.
As we will see in the proof of Theorem 5.23 acyclicity is a crucial property to assure progress.
We can show that each reachable process is acyclic.

Lemma 5.21. Fach reachable process is acyclic.

Proof. Suppose towards a contradiction that a reachable process P contains a cycle and
consider ) C threads(P) such that @ includes all the threads involved in that cycle. By
Lemma 5.5 = Q.

Suppose first that Q@ = x < e. Then x < e < z < e. It follows from Item 1 of
Lemma 5.20 that both X? and X? occur in = < e. This contradicts = Q.

Suppose now that Q@ = Q1 | Q2. Since @ contain all the threads involved in the cycle,
there are two threads =1 < e; and y; < f; of Q)1 and two threads x5 < e2 and y < fo of
(2 such that

T <=e3 <X Ty <= e9

n<Efi = y2efo
Item 1 of Lemma 5.20 gives XP € N(z1 < e1), XP € N(xg < e3) and Y7 € N(y1 < f1),
Y7 € N(y2 < f2). Item 1 of Lemma 5.8 requires X =Y and p = ¢q. Suppose X =Y is a
variable. Then it follows from Item 2 of Lemma 5.20 that x1 = X =Y = yo. This contradicts
the typeability of the process P, since the typing rule [par] guarantees that all threads have
different names. Suppose now that X = a. Then a? € N(ey), aP € N(e2) and a? € N(f1),
aP € N(f2). Tt follows from Item 3 of Lemma 5.20 that a? and aP occur only once in P.
This is possible only if e; = f; and eo = fo. Item 3 of Lemma 5.20 implies that a? is blocked
in e; while ready in f;, and aP is ready in es while blocked in fo. This is absurdum since
e1 = f1 and ez = fo. O

For the proof of progress it is useful to consider the reduction —~ without rules [r-oren]
and [r-rurure] and to show that it is strongly normalising for typeable processes. The process
displayg of Section 1 which has an infinite — ~-reduction sequence is rejected by our type
system.

Theorem 5.22 (Strong Normalisation of — 7). The reduction —~ on typeable processes
1s strongly normalising.

Proof. The proof requires some definitions for getting a weight of typeable processes which
decreases by reduction. For t # > we define the function delay(¢) which counts the number
of initial bullets in a type t as follows.

delay(t) = {

We extend delay to resource environments by

delay(zy : t1,..., @y : ty) = max{delay(t;) | 1 <i < n}
Let T # > and m € N. We define the function ct(m,7T) that counts the number of ? and !
in a session type 1" only until time m as follows.

ct(m,end) =0 ct(m, 7t.T) = ct(m, 1¢.T) =1 + ct(m,T)
ct(0,07) =0 ct(m+ 1,0T) = ct(m,T)

1+ delay(¢') ift = ot
0 otherwise
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We extend the function ct to type environments by ct(m, ") = ct(m,T1) + ...+ ct(m, T;,),
where af :Th,...,a} : Ty are the type declarations for the positive session channels occurring
inT.

Let ns(e) be the number of reduction steps to reach the normal form of e. We define the
weight of the typeable process P for the environments A and I' by

wt(P, A, T) = (k,ct(delay(A),T),ns(e1) + ... + ns(ex))

where threads(P) =Q =z1 < e | ... lap<eyand THQ > A.

We will prove that if P —~ P’ and T" - threads(P) > A and I F threads(P’) > A,
where the derivation " F threads(P’) > A is obtained from T F threads(P) > A as in the
proof of the Subject Reduction Theorem, then wt(P, A, T) > wt(P', A, T").

The only interesting case is threads(P) = z < C[send a™ €| | y < (C'[recv a™] | Q
and threads(P’) = z < C[return a™| | y < C'[return (e,a”)] | Q. The first components of
wt(P, A, T) and wt(P’,A,T') are equal since the number of threads does not change. We
will prove that the second component decreases. By the Inversion Lemma ' must contain
suitable session types for a®™,a”. We can then assume

F=a’:e"(1t.T),a : " (7t.T),Ty
We get " = a™ : o"T,a~ : o"T Ty. Let m = delay(A). By the Inversion Lemma if the
type of C[send at e] is ”'I0 s, then A contains x : ”'s. By Lemma 5.14 n < m/,
which implies n < m. From ct(m,e"(1t.T)) = ct(m —n, 't.T) = 1 + ct(m —n,T) and
ct(m, ®"T) = ct(m —n,T) we conclude ct(m,T) > ct(m, ") as desired. ]

As a consequence of the above theorem, every infinite reduction of a typeable process
spawns infinitely many threads.

Theorem 5.23 (Progress of Reachable Processes). A reachable process either reduces or it
is final. Moreover a non-terminating reachable process reduces in a finite number of steps to
a process to which one of the rules [r-open] 0T [r-ruTure] must be applied.

Proof. If a process has no thread, then it is final. In discussing the other cases we omit to
mention the application of rules [r-xew], [r-par] and [r-cong].

If a process has a thread whose body is a reducible expression, then the process is
reducible by rule [r-rurean]. If a process has a thread whose body is C[future e], then the
process is reducible by rule [r-rurure]. If a process has a thread whose body is return e, then
the process is reducible by rule [r-rerurn]. If a process has a thread whose body is Clopen a],
then by Item 2 of Lemma 5.18 the process has a server named a. Therefore the process is
reducible by rule [r-oren].

Otherwise all the bodies of the threads of the process are of the shapes C[send a” e],
Clrecv aP] and E[z]. Since reachable processes are well-polarised, Lemma 5.21 assures that
there is at least one minimal thread in the precedence order, let it be z <= e. The expression
e cannot be £[y], since Item 1 of Lemma 5.18 implies that the process should have one thread
y < f; and by definition of precedence y <= f < x < e, which contradicts the minimality
of x < e. Let e = C[send a? ¢']. Ttem 3 of Lemma 5.18 implies that the process should have
one thread y < f and a? occurs in f. The expression f can be neither of the following:

- C'[send b7 f'] with b # a and P occurring in C’ or f
- C'[recv b?] with b # a and a occurring in C’
- &|z] with aP occurring in €
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since we would get y <= f < @ < e. Then f can only be either C’[send aP f'] or C'[recv aP].
Since reachable processes are typeable, Item 3 of Lemma 5.18 gives type ?t.T for aP, so we
have f = C'[recv aP]. The process can then be reduced using rule [r-comu]. The proof for
the case e = C[recv aP] is similar and it uses Item 4 of Lemma 5.18.

Theorem 5.22 assures that infinite applications of rules [r-open] and [r-rurure] are needed
to get infinite computations. ]

Let Py and @ be defined as at the end of Section 2. Note that P, is typeable, and indeed
an initial process. Hence, by Theorems 5.16 and 5.23, process @) is typeable and has progress.

We now show two initial processes whose progress is somewhat degenerate. The first
one realises an infinite sequence of delegations (the act of sending an endpoint as a message),
thereby postponing the use of the endpoint forever:

badserver = (vzab)(x < open a >»>= loopll|
server a \y.open b >»>= loop2 y | server b recv)

where

loopl = fix Af.Az.recv x »= Ay.split y as y1,¥y2 in send yo y; >=
Az.future (fz)

loop2 = fix Ag.A\yx.send x y »>= Az.recv z =
Au.split u as up,ug in future (gujug)

We have that loopl : RS; — I0 e*° and loop2:t — SR; —o I0 e*°, where RS, = 7¢.1¢. ¢ RS,
and SR; = '£.7t. @ SR;. Since no communication ever takes place on the session created with
server b, badserver violates lock freedom, which is progress in [12].

The second example is the initial process (va)(z < Qsyture), Where Qsyryre = fix future.
This process only creates new threads.

5.4. Confluence of Reachable Processes. In this section we prove that the reduction
relation is confluent on reachable processes. The proof is trivial for expressions, since there
is only one redex at each reduction step. However, for processes we may have several redexes
to contract at a time and the proof requires to analyse these possibilities. Once again
well-polarisation plays a crucial role in the proof. The fact that we can mix pure evaluations
and communications and still preserve determinism is of practical interest.

Notice that typeability forbids processes where the same variable can be replaced by
different expressions, like the process

(vr)(z <= return 0 | z <= return 1 | y <= stream ¢* (from z))
which reduces to both y < stream ¢t (from 0) and y < stream ¢t (from 1).
Theorem 5.24 (Confluence of Reachable Processes). Let P be a reachable process. If
P — P and P — Py, then cither P, = Py or there is P3 such that P, — P3 and
P — P3.
Proof. The proof proceeds by case analysis.

(1) Suppose rule [r-rerury] is not applied. Since the redexes are non-overlapping, it is easy
to see that P = Q1 | Q2 and P, = Q) | Q2 and P» = Q1 | @} from @1 — @) and
Q2 — QY. The common reduct is then Q] | Q5.



26 SEVERI ET AL.

(2) Let P = (vxy)(x < return e | y < return f | R) and suppose we apply rule [r-return]
in both directions. Typing rule [par] implies x # y. Since P is reachable, and then
well-polarised by Corollary 5.10, we cannot have both y € fv(e) and z € fv(f) by Item 2
of Lemma 5.8. Suppose y & fv(e). Then

P, = (vz)(z < returne | R{f/y}) and
Py = (vy)(y < return (f{e/z}) | R{e/x})
and the common reduct of Py and P is R{e/z}{f{e/z}/y}.

(3) Let P = (vz)(z < C[send a? €] | y < C'[recv aP] | z <= return f | R) and suppose that
in one direction we apply [r-rerurn] and in the other direction we apply [r-comm]. Then

P =< C{f/z}[send a” e{f/z}] | y <= C'{f/z}[recv aP] | R{f/z}
P, = (vz)(x < C[return a?] | y <= C'[return (e,aP)] | z < return f | R)

It is easy to see that P; and P» have the common reduct:

r <= C{f/z}[return a?] | y <= C'{f/z}[return (e{f/z},dP)] | R{f/z}

(4) The remaining cases are similar to the last one. ]

6. RELATED WORK

To the best of our knowledge, SID is the first calculus that combines session-based communi-
cation primitives |16, 41| with a call-by-need operational semantics [42, 2, 23].

There are many calculi with functional and concurrent features, one of the more interesting
ones being Boudol’s blue calculus [5]. In the context of communication-centric calculi,
infinite data are explicitly considered in [21, 11] and “implicitly” handled in |39, 40|, where
recursive/coinductive sessions are used to encode infinite communications.

Toninho et al. [39] integrate the Curry-Howard interpretation of linear sequent calculus
as session-typed processes in a functional language. The main construct is a contextual
monad encapsulating open concurrent computations, which can be communicated between
processes in the style of higher-order processes. This allows for example to construct a
stream transducer. In the same framework [40] handles infinite data by encoding them as
coinductive sessions.

Lindley and Morris [21] combine recursive and co-recursive data types with communi-
cation primitives. They have fold and unfold over both recursive and corecursive session
types instead of a general fixed point operator. The constructors in and out witness the
isomorphism of recursion and corecursion. The operational semantics is call-by-value, but
sending code is allowed because fold and unfold are values.

SSCC [11] offers an explicit primitive to deal with streams. Our language enables
the modelling of more intricate interactions between infinite data structures and infinite
communications. Besides, the type system of SSCC considers only finite sessions types and
does not guarantee progress of processes.

Following [25], we use a modal operator e to restrict the application of the fixed point
operator and exclude degenerate forms of divergence. This paper is an improvement over past
typed lambda calculi with a temporal modal operator in two respects. Firstly, we do not need
any subtyping relation as in [25] and secondly SID programs are not cluttered with constructs
for the introduction and elimination of individuals of type e as in |18, 36, 19, 3, 6, 7]. A
weak criterion to ensure productivity of infinite data is the guardedness condition [9]. We do
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not need such condition because we can type more normalising expressions (such as display
in (1.2)) using the modal operator e.

Futures originated in functional programming as annotations for implicitly parallelising
programs [15]. Different operational semantics for an idealised functional language with
futures are discusses in [13].

The papers more related to ours are [26] and [33|. The call-by-value calculus of [26]
models Alice [32], a concurrent extension of standard ML [24]|, where synchronisation is
based on futures as placeholders for values. A linear type system assures safety. The
call-by-need A-calculus in [33] provides a semantic foundation for the concurrent Haskell
extended with futures. It shows the correctness of several program transformations using
contextual semantics. Our calculus shares threads with these calculi. A main difference is
the way in which the threads interact: through thread names and cells in [26] and through
shared memory in form of Haskell’s mutable variable and a global heap of shared expressions
in [33]. Recursion is obtained by allowing the body of a thread to contain the thread name
in [26] and by recursive heaps in [33].

In the session calculi literature, the word “progress” has two different meanings. Some-
times it is synonym of deadlock freedom [4], at other times it means lock freedom, i.e. that
each offered communication in an open session eventually happens [12, 27, 8]. Reachable SID
processes cannot be stuck, and if they do not terminate they generate new threads infinitely
often. This means that the property of progress satisfied by our calculus is stronger than
that of [4] and weaker than that of [12, 27, 8|.

7. CONCLUSIONS

This paper studies the interaction between communications and infinite data structures by
means of a calculus that combines sessions with lazy evaluation. A distinguished feature of
SID is the possibility of modelling computations in which infinite communications interleave
with the production and consumption of infinite data (cf. the examples in Section 1). Our
examples considered infinite streams for simplicity. However, more general infinite data
structures can be handled in SID. An evaluation of the expressiveness of SID in dealing with
(distributed) algorithms based on such structures is scope for future investigations.

The typing discipline we have developed for SID guarantees normalisation of expressions
with a type other than > and progress of (reachable) processes, besides the standard
properties of sessions (communication safety, protocol fidelity, determinism). The type
system crucially relies on a modal operator e which has been used in a number of previous
works [25, 18, 36, 6] to ensure productivity of well-typed expressions. In this paper, we
have uncovered for the first time some intriguing interactions between this operator and the
typing of impure expressions with the monadic I0 type constructor. Conventionally, the
type of future primitive is simply I0 ¢ — I0 ¢ and says nothing about the semantics of the
primitive itself. In our type system, the type of future reveals its effect as an operator that
turns a delayed computation into another that can be performed immediately, but which
produces a delayed result.

As observed at the end of Section 6 and formalised in Theorem 5.23, our notion of progress
sits somehow in between deadlock and lock freedom. It would be desirable to strengthen
the type system so as to guarantee the (eventual) execution of all pending communications
and exclude, for instance, the degenerate examples discussed in Section 5. This is relatively
easy to achieve in conventional process calculi, where expressions only consist of names or



28

SEVERI ET AL.

ground values [4, 27, 8|, but it is far more challenging in the case of SID, where expressions
embed the A-calculus. We conjecture that one critical condition to be imposed is to forbid
postponing linear computations, namely restricting the application of [eI] to non-linear types.
Investigations in this direction are left for future work.

Another obvious development, which is key to the practical applicability of our theory, is

the definition of a type inference algorithm for our type system. First steps in this direction
have already been taken in [35] by solving type inference for the pure part of SID (without

I0

and concurrency) combining unification of types with integer linear programming.
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APPENDIX A. PROOF OF THEOREM 4.12

Lemma A.1. (1) Lete — €. Then e € [t]; iff € € [t]; for all i € N and type t.
(2) Ifk:t and t € types(k), then k € ;o [];-
Proof. (Item 1). By induction on (i, rank(t)).
(Item 2). We only consider the case k = bind and prove that
bind € [I0 ¢t — (t — I0 s) — I0 5],
Suppose e € [I0 t]; and ez € [t —o I0 s]; for j <14. We show that bind e; e2 € [I0 s;. By
definition of [I0 t]; we have three cases:
(1) Case e; € M,,. Hence bind e; es —* bind £[z] ea. Taking £'[z] = bind E[z] e2 we have
that bind e; e € M, and N, C [I0 S]]j by Item 1 of Lemma 4.10.
(2) Case e; € MNyo. Hence e; —* Cleg] and e € {send a? €}, recv a?, open a, future ¢} }.
Then
bind e; e —* bind Cleg] e2 € Njo
which implies bind Cleo] ez € [I0 s]; by definition of [I0 s];. By Item 1 we conclude
that bind e ez € [I0 s];.
(3) Case e —* return e} and e} € [¢];. This gives es €} € [I0 s];. Since
bind e; e —* bind (return €}) es — ey €}
we conclude that bind e; ez € [I0 s; by Item 1. O

Lemma A.2. (1) If5 ):z [N+ Ty, then § ):1 I and 6 |:’L Iy.
(2) If 6 =i T, then 6 =5 T for all j <.

Proof. Ttem 1 is an easy consequence of Definition 4.11.
Item 2 follows from Item 3 of Lemma 4.10. ]

Proof of Theorem 4.12. We prove that I' |5; e : t for all i € N by induction on '+ e : t. We
only show some interesting cases.

Rule [consT].
It follows from Item 2 of Lemma A.1.

Rule [o1]. The derivation ends with the rule:

[oI]
et
N-e: of

Suppose i = 0. Then
i) etly=¢
Suppose ¢ > 0 and 0 |=; T. It follows from Item 2 of Lemma A.2 that 0 |=;_1 I'. By induction
hypothesis I' |=; e : ¢ for all j € N. In particular ' |=;_1 e : t. Hence d(e) € [t],_, and
d(e) € [t];—y = [ot];

Rule [-E].
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The derivation ends with the rule:
ke :e"(s—1t) [ Fey:os
MM 4+Tokeleg: o™t

with '=T; +T5 and e = ejes. By induction hypothesis for all ¢ € N
M Eier:o"(s—t) (A1)
M iey: s (A.2)
We have two cases:
(1) Case i < n. By Item 1 of Lemma 4.9 [e"t], = €. We trivially get

(5(6162) (S [[Ont]]i
(2) Case i > n. Suppose that ¢ |=; T'. It follows from Item 1 of Lemma A.2 that 0 |=; T} and
1) ’:z .
d(er) € [o"(s—1t)], by (A1)
= [(s = t)],_,, by Item 2 of Lemma 4.9
d(e2) € [o"s]; by (A.2)
= [s],_,, by Item 2 of Lemma 4.9
By Definition of [(s — t)],_,, and (A.3) there are two possibilities:
(a) Case d(e1) € Ny. Then

d(ere2) = d(er)d(e2) —* E[x]d(e2) (A.5)

(A.3)

(A.4)

Hence
d(eres) €M, by (A.5)
C [o"t], by Item 1 of Lemma 4.10.
(b) Case d(e1) —* Az.€’ or d(e;) —* E[k]. We also have that
5(61)6” S [[t]]ifn V@H € IIS]]ifn
In particular (A.4) implies
d(erez) = d(e1)d(e2) € [t];,

Since [t],_,, = [#"t], by Item 2 of Lemma 4.9 we are done.

Rule [-1].

The derivation ends with the rule:
Mrz:e"tke:o"s
M Az.e: o (t —s)
By induction hypothesis for all i € N

Mz:e'tk,e:o"s (A.6)

We have two cases:
(1) Case i <n. By Item 1 of Lemma 4.9 [e"(t — s)], = €. We trivially get

d(Az.e) € [o"(t — s)];
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(2) Case i > n. Suppose that § |=; I'. By Item 2 of Lemma 4.9 it is enough to prove that
d(Az.e) et —s],_,
For this suppose f € [t]; for j < i —n. We consider the substitution function defined as
0o = 0 U{(x, f)}. We have that
do Ejyn T,z 2 0"t (A.7)
because
(a) do(z) = f € [t]; = [¢"t];,,, by Item 2 of Lemma 4.9.
(b) do =j4n I' by Item 2 of Lemma A.2 and the fact that dg =; T
It follows from (A.6) and (A.7) that

do(e) € [o"s] 1, (A.8)
Therefore we obtain
(Ax.e)f — d(e){f/x} =do(e) € [[o”s]]j+n by (A.8)
= [s]; by Item 2 of Lemma 4.9
By Item 1 of Lemma A.1 we conclude
(Az.e)f € [s];- OJ

APPENDIX B. PROOF OF THEOREM 5.9

We use x <= e C; P as short for z <= e C P and there is only one thread named z in P. If
x < e C; P we denote by P[Q /z < e] the replacement of the unique occurrence of the
thread x < e by the process @ in the process P. In particular, if z <= C[send a? €] C; P we
will abbreviate

Plx < C[return aP] /x <= C[send a? €]]| as P[s a? e z].
Similarly, if z <= C[recv aP] C; P we will abbreviate
Pz < C[return (e,aP)] /x <= Clrecv aP]] as P[r aP e x].

Notice that in both cases C and aP are uniquely determined by the body of the thread named
x, while the expression e occurs for send but not for recv. Writing e as argument of both s
and r allows us to easily express the exchanged message. These replacements are useful to
find the right re-arrangements of threads which are derivable after applying the rule [r-comm]
to P. Informally, the derivation of = P must contain a sub-derivation of the shape

[wP-PAR|
=P =P p i
WN(PI)\{G }# N(P)\ {a"}

with x < C[send a? ¢] C; P, and y < C'[recv aP] C; P,. We build the desired process
by replacing = <= C[send a” e] with x < C[return a?] | Py[r a? e y] in P;. Consider the
processes defined in Example 5.6 and the reduction P — @ using rule [r-comu]. Let

P,=x<«<senda’ 2| z < return 1 P, =y <recva

then P = P; | P». The process @ such that Q' = @ and |= @' is obtained by replacing in Py
the thread = < send a™ z by the process z < return a™ | y < return(z,a™), i.e.

Q' = (v <= return at | y < return(z,a”)) | z < return 1
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Lemma B.1. Let x < C[recv a?] C1 P and x+ & N(e). If = P and N(e) # N(e) and
N(P) # N(e), then |= P[r af e x].

Proof. By induction on the derivation of = P. ]

Lemma B.2. Let x < C[send aP e¢] C1 P and y < C'[recv aP] C; Q and aP occurs only
once in P. If = P | Q, then there is R such that = R and

R=Plsa’ ex] | Q[raf ey
Proof. Tt follows from = P | Q that = P and = @ and
N(P)\{a"} # N(Q) \ {a"} (B.1)
and
N(e) # Ne) (B.2)

We do induction on = P.
Suppose the last rule in the derivation is [we-rurean]. Then

we-TnrEAD] xt & N(C[send a? €])
=z < C[send a? €] N(C[send a” ¢]) # N(C[send a” e])

For the thread obtained applying the replacement [s a? e x] we derive:

[we-rireap) xt & N(C[return a”])
= z < C[return a?] N(C[return a?]) # N (C[return a?])

From (B.1) and a? € N (e) we get N (Q) # N (e). It follows from this, (B.2) and Lemma B.1
that

(B.3)

—Qlr e (B.4)
The condition N'(C[send a €]) # N (C[send a” ¢]) implies N (C[return a?]) # N (e). This
together with (B.1) gives N (C[return a?]) \ {a?} # N (Q[r a? e y]) \ {aP}. Applying [wr-rag|
to (B.3) and (B.4) we derive:
= x <= C[return a?] | Q[r a? e y]

Suppose the last rule in the derivation is

[WP-PAR]
= P E P ) .
TEAB N(PONAXP} # N(Po) \ {XP} (B.5)

and = < C[send a? €] C; P;. By induction hypothesis = R; for some
Ri=P[sa’ex] | Q[radl ey

It follows from (B.1) and a? & N (P,) that N (Q) # N (P2). Since N(Ry) = N(P1) UN(Q)
and using the side condition of (B.5), we get N'(R1) \ {X?} # N () \ {XP}. We can apply
[we-par] and derive
ER|IP
Clearly,
RilP=(P | P)[sa’ex] | Q[ral ey ]

Lemma B.3. Let x < C[send a” €] C1 P and y < C'[recv aP] Cy P and aP occurs only
once in P. If = P, then there exists Q such that = Q and Q = P[s aP e x| [r aP e y].
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Proof. By induction on = P. We only show the most interesting case:

[wWP-PAR]
P P _
SR DR N ) # M) ()
By Lemma B.2, there is @ such that = @ and
Q=P [sa’ex]| Plra’ eyl = (P | P2)[sal e z][r aP e y] U]

We now give some lemmas in order to find a right re-arrangements of the threads which
are derivable after applying the rule [r-rerurs] to (vz)P. Informally, if 2T € N(P), the
derivation of = P must contain a sub-derivation of the shape

[WP-PAR|
= P E P _
E o VPO ) # (P \ (a7

with z < return e C; Py. If 27 ¢ N(Py), then the desired process is obtained by replacing
x < return e with Po{e/x} in P;. Otherwise we need to parenthesise differently P; | P in
order to satisfy this condition. Consider the process P of Example 5.7 which we write as
P =P, | P, where

P, = (x < return (21,22) | 21 < return 29) | 29 < return 1
Py=y<senda’z | u<recva

Let (vz) P — @ using rule [r-rerurs]. The process @’ such that Q' = @ and = @’ is obtained
by replacing in P; the thread z <= return (z;,z22) by the process Q1 = Pa{(z1,22)/z}, i.c.
Q' =P [Q1/z < return (21,29)]

Lemma B.4. Letz < returne C; P and = P. If = Q and N(P) \ {z~} # N(Q) \ N(e),

then = P[Q /x < return e].

Proof. By induction on = P. Suppose P = z <= return e and the derivation of = P is:
[wWP-THREAD] T g N(e)
= 2 < return e N(e) # N(e)

In this case | P[Q /x < return e], since P[Q /x < returne] = Q.
Suppose P = P; | P, and the derivation of = P ends with the rule:

[WP-PAR]
Fh ER
=P | P
Let © < return e C; P} and X # z. By induction hypothesis = P, [Q /z < return e
since N'(Py) € N(P) and N(P)\{z™} # N(Q) \N(e) imply N'(P)\{z™} # N(Q) \N(e).

Now we apply [we-rar] using this new premise:

N (P)\{XP} # N(Py) \ {X7} (B.6)

[wWP-PAR]

=P [Q/x < return e }:PQN,
EP[Q/x<returne| | P,

(P [Q/x < return e]) \ {XP} # N(P) \ {XP}

(B.7)
We need to prove that the side condition of (B.7) holds. Since

N(P[Q/z < return e]) \ {X7} C N(P) \ {XP} UN(Q) \ (N (e) U{X"})
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it is enough to show that N'(Q) \ (M (e) U {XP}) # N (P,) \ {XP}. This is a consequence of
N(Q)\N(e) # N(P,), being N(P)\ {z~} # N(Q) \ N (e) and N(P2) S N (P)\ {=" }.

The case X = x is similar and simpler than the previous one. L]

Lemma B.5. If =P | Q andz < e Cy P | Q and 2t € N(P) and 2 € N(Q), then there
are P', Q' such that P' | Q' =P | Q and EP' 1 Q' andx <=e Cy P’ and z* & N (P).

Proof. We assume z < e C; P, the proof for x < e C; () being symmetric. The derivation
of = P | @ must end by:

[WP-PAR]
=P FQ ]
TEPIQ NP\ A{z"} # N(@Q)\ {z"} (B.8)

The proof is by induction on the derivation of = P. From x < ¢ C; P and 2t € N(P) and
2t € N(e) we get P =Py | Py. Let x <= e C;y Py, then the derivation of = P must end by:

[WP-PAR|
P ER -
WN(H)\{:E }H#N(P)\ {z} (B.9)
If 2T ¢ N(Py) we can choose P’ = P; and Q' = P2 | Q. In fact we can derive:
): P [wP-PAR| ): )Z2P2 | g Q N(PQ) # N(Q)
WP-PAR - +
g S8 S NP\ ) 4 (P21 Q) )

The first side condition follows from z= ¢ N (P,), N (P;) C N(P), and the side condition
of (B.8). The second side condition follows from N (P;) C N (P) and the side conditions of
(B.8), (B.9).

If x+ € N(Py) by induction there are P{, P} such that P{ | P, =P, | P, and = P| | P}
and z < e C; P{ and 2t € N(P[). We can choose P’ = P{ and Q' = P} | Q. In fact we can
derive:

): I 2/ Q /
WP-PAR
P [ ] PO N(Py) # N(Q)

[wp-paR] S0 NPH)\{z"} # N (P31 Q) \ {2}

The first side condition follows from =~ ¢ N(P3), N (P3) € N(P), and the side condition of
(B.8). Observe that = P| | Pj implies that

NP\ {z"} # N(Py) \ {z™} (B.10)
Then the second side condition follows from N (P{) C N(P), (B.10), and the side condition
of (B.8). [
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Lemma B.6. Let = P.
(1) If e= € N(P) and N(e) # N(e) and N(P) # N (e), then = P{e/x}.
(2) If x < return e Cy P, then = Q{e/x} for some Q such that Q | © < return e = P.

Proof. Both items are proved by induction on the derivation of = P.
(Item 1). We show only the case of [we-rurean]. Suppose that

[wP-THREAD] y+ %N(f)
Fy<f N # N

We can do the following inference:

[WP-THREAD] y+ ¢ N(f{e/x})
=y < fle/z} N(f{e/z}) # N(f{e/z})
The side condition y™ & N (f{e/z}) holds because y™ & N(f) and N(P) = N(f)U{y~}
and NV (f)U{y~} # N(e). The side condition N(f{e/x}) # N(f{e/x}) holds because
N(P) # N(e) and N (e) # N(e).
(Item 2). If 2T & N'(P) we can choose Q = P[0/ < return e| by rule [wr-empry] and
Lemma B.4. Otherwise suppose P = P; | P and the last rule of the derivation is:

[WP-PAR]
E P =P » .
TER B N(P)NAXP} # N(Po) \ {XP} (B.11)

We can assume z < return e C; P; since the case x < return e C; P is symmetric.

We distinguish three cases:

(1) Case at & N(Py). The key observation is that X? =z~ and X? = z*. From the side
condition of (B.11) and N(Py) \ {z7} 2 N(e) and =™ & N(e) we have N (Py) # N (e).
Since |= x < return e implies N'(e) # N (e), Item 1 gives = Py{e/x}. From this and
N(P)\ {z7} # N(P2{e/z}) \ N(e), it follows by Lemma B.4 that

E P [Py{e/z} | x < return e]
We can choose QQ = Py [ P» / © <= return e], since it is not difficult to check that
x<returne | P[Py /z < returne| =P | P»

(2) Case zt € N(Py) and zt € N(P). By Lemma B.5 there are P and Pj such that
P | P,=P] | Pjand x < return e C; P and 2t € N(P]). We can now proceed as in
the previous case. Note that this case and the previous one are sort of “base cases” for
which the induction hypothesis is not needed.

(3) Case x* ¢ N(P%). By induction hypothesis = Qq{e/x} for some Q1 such that Q1 | x <
return e = P;. We can apply rule [we-rag] to = Q1{e/z} and = P, since N (Q1{e/z}) =
N(P)\ {zt,27}. So we conclude = Q1{e/x} | P;. O

Since the definition of |= is not invariant under =, we cannot prove that the reduction

preserves well-polarisation by induction on —. Instead, we use the following lemma, which
immediately follows from the definition of —-:

Lemma B.7 (Inversion of —). If P — P’, then P = (vX; ... X,)Py and P' = (vX; ... X,,) P}
and one of the following cases hold:

(1) Py =server a e | x <= Clopen a] | Q and
Pl =server a el (vey)(x < Clreturn ¢t] ly<ec) | Q.
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(2) Ph=x < C[send a? ¢] | y < C'[recv a?] | Q and
P} =z < C[return a?] | y < C'[return (e,d?)] | Q.
(3) Py =z < Clfuture €] | Q and Pj = (vy)(z < Clreturn y] l y <€) | Q.
(4) Py = (vz)(z < return e | Q) and Py = Q{e/z}.
b) Ph=z<elQand Py=z <€ | Q withe — €.
Proof of Theorem 5.9. Well-polarisation of P implies that
P=wX;...X,)(QI|R)
where {X1,...,X,,} = bounds(P), Q = threads(P) and = @ and R = servers(P). Using
Lemma B.7, we analyse cases according to the shapes of P, Q and R. We only show the
interesting cases.

(1) Case x <= Clopen a| C @ and server a e C R. Hence,
P'=wX;...X,cy)(Qz < Clreturn ¢'] /z <= Clopen a]] | y <= e c” | R)
It is easy to show that
= Q[z < Clreturn ¢ /o <= C[open d]]
Since P is typeable, N'(e) = () and
Ey<ec
Using [wr-rar], we obtain that
= Q[x < Clreturn ¢7] /x <= Clopen a]] | y < ec™

Hence, P’ is well-polarised.
(2) Case Q =x < C[send a” ¢] | y < C'[recv aP] | Qp. Then,
P=wX:...X)(Q | R)
where Q' = x < C[return a?] | y < C'[return (e,aP)] | Qp. Typeability of P implies
that a? occurs only once and that the above threads are the unique ones named x and
y in P. By Lemma B.3 there exists Q" such that Q" = Q" and = @Q”. Then P’ is

well-polarised.
(3) Case X,, =z and Q = x < return e | Qy. Then

Pl = (VX1 . Xn_l)(Q(){e/l’} | R)
Typeability of P implies that the above thread is the only one named z in P. It follows

from Item 2 of Lemma B.6 that = Qp{e/z} for some Q) = Qo and hence P’ is well-
polarised. 0

APPENDIX C. PROOF OF THEOREM 5.15

Proof of Theorem 5.15. The proof is by induction on the definition of —. We only show
the most interesting cases.

Case (vx)(z < return e | P) — P{e/x}.

Let P, and P, be such that P = P; | P, and P; contains all and only the threads in whose
bodies the variable x occur. It follows from I' - (vx)(x < return e | P) > A and the
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Inversion Lemmas for Processes and Expressions (Items 1, 3 and 5 of Lemma 5.11 and Items
1 and 5 of Lemma 4.3) that

Fol—e:t Fl,x:tl—Plel r2|_P2[>A2
where ' =Ty + T} + Ty and A = A; + Ag. Since (vz)(x < return e | P) is well-polarised, if

y < fisin P (i.e. z occurs in f), then y cannot occur in e by Item 2 of Lemma 5.8. Hence,
dom(Ty) Ndom(A;) = (. Then we can apply Lemma 5.12 to P; and obtain

Io+T1 - Pl{e/x} > Ay

By rule [par] we derive
lh+T+ 15 l—Pl{e/x} | P, > A

Case x <= Cy[send a? €] | y < Calrecv aP] — = < Ci[return a?] | y <= Ca[return (e,a?)].

It follows from 'k z <= Cy[send a” €] | y < Ca[recv aP] > A and the Inversion Lemmas for
Processes (Items 1 and 3 of Lemma 5.11) that T =T, + Ty and A = z : "¢,y : 2ty and
Ik Cl[send a? 6] : 0”1(]:0 tl) (Cl)
Iy Co[recv aP] : @"2(10 t3) (C.2)
Using the fact that I' is balanced, it is not difficult to show that
al : e™(1t.T) ey
aP : o™ (7t.T) € Ty
for some m such that m < nq and m < no by Lemma 5.14. By applying Lemma 5.13 to
(C.1), we have Ty = T3 + Iy, aP : @ (1t.T) with

[3,2:MI0 T Cy[z] : @1 (I0 t1)

Ty,aP : @™ (1t.T) F send af e : "1 (10 T) (C:3)
Items 1, 2 and 5 of Lemma 4.3 give
Tybe:elt (C.4)
Using rules [const]|, [axiom], [o]], [-E] being m < n; we derive
al : @™ F return a? : "1 (I0 T) (C.5)
By applying Lemma 4.4 to (C.3) and (C.5) we get
I3,aP : @"T - Ci[return aP] : ¢"1(I0 ¢;)
hence by [rureap] we derive
[3,aP : @"T -z <= Ci[return a?] > x : e"'{; (C.6)
By applying Lemma 5.13 to (C.2)
I5,2: 0210 (t x T) F Ca[2] : @"2(10 t9) )

aP : @7t T recv aP : 210 (t x T))

for Ty = T5,aP : @7t T. From (C.4) and m < ns using rules [const|, [axionm], [oI], [2E] We
derive

Iy,aP : T |- return (e,aP) : @210 (t x T) (C.8)
Applying Lemma 4.4 to (C.7) and (C.8) it follows that

Ty +T5,aP : T I Cy[return (e,aP)] : @"2(10 t3) (C.9)



ON SESSIONS AND INFINITE DATA 39

From well-polarisation and Item 3 of Lemma 5.8, y cannot occur in e. Then we can apply
rule [rurean] to (C.9) deriving

Ty +T5,aP : T I y <= Cy[return (e,aP)] > y: o 2ty (C.10)
By applying rule [par] to (C.6) and (C.10) we conclude

M3+ Ty +T5,aP : T, aP : ¢"T |- x <= Cy[return @] | y < Co[return (e,a’)] > A
where T3 + Ty + I5,a? : o™T,aP : T is balanced. []
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a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
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