
Software Vulnerability Life Cycles and the Age
of Software Products: An Empirical Assertion

with Operating System Products

Jukka Ruohonen, Sami Hyrynsalmi(B), and Ville Leppänen

Department of Information Technology, University of Turku,
20014 Turun yliopisto, Finland

{juanruo,sthyry,ville.leppanen}@utu.fi

Abstract. This empirical paper examines whether the age of software
products can explain the turnaround between the release of security
advisories and the publication vulnerability information. Building on the
theoretical rationale of vulnerability life cycle modeling, this assertion is
examined with an empirical sample that covers operating system releases
from Microsoft and two Linux vendors. Estimation is carried out with a
linear regression model. The results indicate that the age of the observed
Microsoft products does not affect the turnaround times, and only fee-
ble statistical relationships are present for the examined Linux releases.
With this negative result, the paper contributes to the vulnerability life
cycle modeling research by presenting and rejecting one theoretically
motivated and previously unexplored question. The rejection is also a
positive result; there is no reason for users to fear that the turnaround
times would significantly lengthen as operating system releases age.

Keywords: Security patching · Operating system · Negative result ·
Microsoft · Linux

1 Introduction

Vulnerability life cycle (VLC) modeling has been a popular methodology for
understanding the longitudinal evolution of a vulnerability, from the initial birth
at a version control system [18] through disclosure and patching [3,26] to the
release of information to the public sphere, the availability of industrially devel-
oped of exploits, and the final loss of relevance [2]. Akin to software life cycle
modeling [22], the primary interest in VLC modeling relates to the time lines
between these and other theoretical stages, the most important ones of which
are illustrated in Fig. 2. Different research questions emerge by shuffling the
state diagram appropriately. For instance, in the worst case scenario, there are
only three states: the birth, the discovery, and the development of an exploit;

The authors gratefully acknowledge Tekes – the Finnish Funding Agency for Inno-
vation, DIGILE Oy, and the Cyber Trust research program for their support.

c© Springer International Publishing Switzerland 2016
J. Krogstie et al. (Eds.): CAiSE 2016, LNBIP 249, pp. 207–218, 2016.
DOI: 10.1007/978-3-319-39564-7 20



208 J. Ruohonen et al.

Fig. 1. The principal vulnerability life cycle states (adopted from [2])

a zero-day vulnerability remains to be a zero-day vulnerability, never reaching
the states of disclosure, remediation, publication, and, over the years or decades,
the eventual lack of applicable computer systems.

In this paper, the empirical phenomenon of interest is located in the time
delays that occur between the patching and publication states; the case that is
marked with a � symbol in Fig. 1. Ideally, these delays should be small, given the
overall optimum of short vulnerability life cycles. Because the birth, discovery,
and disclosure have already occurred, the observed delays are also directly con-
trollable by the associated software vendors and the non-profit institutions that
are partially responsible for the systematic release of information to the public
sphere. Given this general efficiency rationale, the paper examines an assertion
that the time delays are associated with the age of operating system products
at the time of security advisory releases.

This assertion can be motivated by a common-sense software engineering rea-
soning: old and aging code bases are difficult to maintain, which leads to expect
that also the handling of vulnerabilities takes longer for older products. The
operating system context adds some weight to this reasoning. The code bases
are complex, containing large amounts of low-level code that often requires spe-
cial expertise to maintain. Because the discovery of new vulnerabilities tends to
slow down as operating systems age [22], and as maintenance is often a neces-
sary evil for software vendors, there may be a temptation to allocate insufficient
resources for maintenance, which may then cause delays in security patching.
Also the software life cycles are long. In fact, in some cases the life cycles are
so long that the still maintained code bases may attain a status of legacy code.
Although security has not been the driving force, analogous reasoning largely
applies to the so-called rapid releases, which have been an increasingly wide-
spread strategy for many products but apparently without notable quality and
security consequences [7,9,12]. While rapid releases have been adopted also for
Linux distributions, there has been also a trend to the opposite direction, as
manifested by the so-called long-term support (LTS) releases. Then, by hypoth-
esis, also security patching should vary according to the support periods.

The overall research strategy is exploratory, of course. In other words, numer-
ous different factors influence the length between VLC states, ranging from tech-
nical aspects to organizational factors and communication obstacles. Neverthe-
less, on one hand: if the assertion holds, release engineering strategies could
benefit from a footnote that the support period lengths may also increase the
turnaround times in the coordination of vulnerabilities. On the other hand: if the
assertion is not passed for notable operating system product releases, there are
neither reasons to reserve space for such footnotes nor to complicate empirical
VLC models with unimportant explanatory variables.



Software Vulnerability Life Cycles and the Age of Software Products 209

2 The Assertion

Analytically, the interest relates to the difference

zi = Time of advisory − Time of publication (1)
= τ1 − τ0, given i and zi ∈ (−∞,∞),

and where τ1 refers to the date and time at which an operating system software
vendor released a security advisory that covered the i:th vulnerability, which
was publicized with a Common Vulnerabilities and Exposures (CVEs) identifier
at τ0. Note that zi is only theoretically restricted to be finite. If a vendor never
patches a vulnerability, the life cycle of the vulnerability approaches infinity.

The scalar zi can be understood as a simple efficiency metric for security
patching, and, more accurately, for the associated release of security advisories.
In general, a large positive value implies that a long time was required for
a vendor to patch a vulnerability and communicate the information to users.
When zi < 0, a vendor handled a vulnerability before it was publicized at the
infrastructure provided by MITRE, Inc. and related non-profit institutions. All
observed operating system vendors possess – either explicitly or via the com-
mercial sponsors – authorities for CVE assignments, and, thus, these negative
values are nothing special as such. For instance, Ubuntu released an advisory
(USN-2628-1) for CVE-2015-4171 in 8th of June 2015, which was timestamped
to the institutional databases two days later. Thus, an identifier was already
available during the time of the advisory release, while the CVE publication was
slightly delayed, possibly owning to additional processing and archiving work.

It should be also emphasized that a more traditional interest in empirical
VLC modeling has related to the difference between τ1 and the date at which
information was first disclosed to a vendor or a third-party [3,27]. While such
time lines are longer than the observed ones – disclosure must logically precede
the publication of CVEs, the analytical meaning remains more or less similar
(see Fig. 2). The reason to prefer the theoretical and conceptual state of pub-
lication, rather than the state of disclosure, relates to the well-known practical
limitations imposed by the availability of robust data [14,18]. In particular, the
date of disclosure is only seldom known in practice [23], and, hence, the attach-
ment to the publication state is necessary to maintain a degree of theoretical

Fig. 2. A time line for security advisory releases (motivated by [6,11])



210 J. Ruohonen et al.

and conceptual rigor. In general, thus, this paper observes the later states in
vulnerability life cycles (see Fig. 1). This observational focus is no less important
than the length of vulnerability disclosure; systematically positive or negative
but large values of zi indicate that the coordination between operating system
vendors, MITRE, and associated parties has been non-optimal.

Let y1, . . . , yn further denote a subset of time lines for which zi > 0 for all i,
that is, the cases that follow the route (b) in Fig. 2. Consider then that these
positive turnaround times are linear functions of the age, Ai, of an operating
system product at the time of patching. In other words,

yi = α + βAi, Ai = τ1 − t0, Ai ≥ 0, yi > 0, (2)

where α is a constant and β is a slope coefficient. When only fixed software
life cycles and publicly disclosed vulnerabilities are observed, the value of Ai is
always non-negative, meaning that security patching only applies to products
that have been released. A case Ai = 0 implies that a vulnerability was patched
already during a product’s release date – during the very first day of the prod-
uct’s life cycle. In general, however, the values A1, . . . , An should be relatively
large due to the so-called honeymoon effect [7,8]. That is, new software releases
tend to enjoy short grace periods before the first vulnerabilities are discovered.

Given the assumption of linearity, the sign of β is hypothesized to be pos-
itive: when the age of a product increases by one day, the mean length of the
turnaround times, yi, increase by β, all other things being equal. Thus, in gen-
eral, aging operating system releases would be more difficult to patch. While the
negative values from (1) have been also excluded in VLC modeling [26], in the
present context it is relevant to augment the β > 0 assumption with a reverse
formulation. That is, ψ can be asserted to be negative for an analogous relation

|xi| = α + ψAi, xi ≤ 0, (3)

given a subset x1, . . . , xn of observations for which zi ≤ 0. Because a modulus
is used in (3), values ψ < 0 imply that aging products would tend to reduce
the lead of vendors to the CVE-processing institutions; that is, the route (a)
from τ1 to τ0 in Fig. 2 would reduce. These dual assumption constitute the age
assertion of interest. Given that open source projects have been observed and
argued to be slower in patching and vulnerability handling in general [23,24], it
can be further expected that firing off the assertion is not universal among the
contemporary population of operating systems products.

3 Evaluation

To evaluate the assertion, a dataset comprised of 46 operating system releases
from three vendors is utilized by using a standard linear regression. While there
is plenty of data (35,760 observations, to be precise), the data is not a rep-
resentative sample from the contemporary operating system population. Thus,
the specific term assertion carries a specific meaning: when the assertion is not



Software Vulnerability Life Cycles and the Age of Software Products 211

passed for the products of the market leader, Microsoft, Inc., it can be safely
concluded that the assertion does not sufficiently characterize the contemporary
operating system population. The evaluation criterion itself is not statistical.

3.1 Data

The empirical sample covers operating system releases of Microsoft Windows,
openSUSE, and Ubuntu Linux. The case selection satisfies the desirable data col-
lection conditions: (a) open source software is included, and all observed products
(a) have (and have had) a broad and loyal user base as well as (c) a large popula-
tion of publicly disclosed vulnerabilities, which both allow to assume that (d) the
products have been frequent targets of attacks and exploitation attempts [7]. In
terms of operationalization, τ1 in (1) and Fig. 2 is fixed to the corresponding
security advisory release dates (see Table 1), while τ0 is attached to the publi-
cation date at the National Vulnerability Database (NVD). Given the temporal
resolution of days, it is plausible to assume (but not verify) that the released
advisories have corresponded with the availability of patches from the vendors’
download services. Finally, the age variable Ai in (2) is computed with respect
to the release dates of the observed operating system products listed in Table 2.

Table 1. Data sources

Institutions Vendors / products

NVD Microsoft openSUSE Ubuntu

Source(s) [19] [15,16] [20,21,25] [4,5]

Note that only openSUSE advisories are sampled,
although the advisories released for the commercial
SUSE often account also the openSUSE releases that
are affected.

The dataset is generally in accordance with previous observations [13]. When
the per-vendor frequency distributions of the differences in (1) are examined, it
is clear that Microsoft has been faster than openSUSE and Ubuntu in fixing the
specific vulnerabilities that have affected the observed Microsoft Windows oper-
ating system releases (see Fig. 3). A considerable amount of outliers is present,
but mainly for the openSUSE and Ubuntu products. In general, much less dis-
persion is seen for the Microsoft products (see Fig. 4). In fact, Microsoft has
patched as much as approximately 43 % of the observed vulnerabilities already
during the same day when these were timestamped to NVD. All in all, these
observations support the existing evidence that closed source vendors are faster
than open source vendors [24]. As a prior-analysis expectation, the effects of β
and ψ should thus be different for the Microsoft products.

Finally, it is important to emphasize that (a) all three vendors support paral-
lel products, and, hence, a single CVE-referenced vulnerability typically affects
multiple products (see Fig. 5). The effect is pronounced in the case of Microsoft



212 J. Ruohonen et al.

Table 2. The dataset

Windows openSUSE Ubuntu

Prod N Ny Nx Prod N Ny Nx Prod N Ny Nx

XP SP1 82 21 61 11.0 215 181 34 4.10 435 285 150

XP SP2 430 76 354 11.1 470 401 69 5.04 454 385 69

XP SP3 866 82 784 11.2 901 770 131 5.10 448 378 70

XP Prof. x64 260 53 207 11.3 1156 969 187 6.06 LTS 1476 1213 263

XP Prof. x64 SP2 922 89 833 11.4 670 510 160 6.10 473 398 75

Vista 276 36 240 12.3 1277 1143 134 7.04 468 394 74

Vista SP1 413 48 365 13.1 1242 1134 108 7.10 544 459 85

Vista SP2 1161 76 1085 13.2 557 498 59 8.04 LTS 1606 1186 420

Vista x64 276 36 240 8.10 710 580 130

Vista x64 SP1 416 48 368 9.04 667 503 164

Vista x64 SP2 1163 76 1087 9.10 746 553 193

7 i386 493 46 447 10.04 LTS 2373 1588 785

7 i386 SP1 953 47 906 10.10 883 589 294

7 x64 497 47 450 11.04 895 563 332

7 x64 SP1 966 48 918 11.10 1017 640 377

8 i386 702 19 683 12.04 LTS 2124 1321 803

8 x64 700 19 681 12.10 1029 652 377

13.04 431 268 163

13.10 464 329 135

14.10 515 323 192

14.04 LTS 938 558 380

Given the data collection in July 27, 2015, the column N reports the raw number
of vulnerabilities that have affected a given product. The subsequent two symbols
denote the number of vulnerabilities in the subsets of positive and non-positive
values, respectively. The colored entries mark products that were still eligible for
security patches at the time of data collection.

for which product variety has generally been larger within the observed product
families. Moreover, there are (b) one-to-many references between advisories and
CVEs, which leads to a notable operationalization problem. This issue is solved
by using the largest per-product advisory timestamp (the latest day) for each
referenced CVE. While also the reverse (the earliest dates) have been used [26],
the present solution can be justified by maintaining that a given vulnerability
was not entirely fixed and communicated to users until the last advisory released.

3.2 Control Variables

The same data sources are used for two control variables. The first, say S, denotes
the severity of a vulnerability. The variable is based on the so-called base score in
the Common Vulnerability Scoring System (CVSS). The scores range from zero
to ten; the higher the value, the more severe the given vulnerability. The base



Software Vulnerability Life Cycles and the Age of Software Products 213

Microsoft

% of zeros = 42.5

Fr
eq

ue
nc

y

0
50

00
15

00
0

0

openSUSE

% of zeros = 1.66

Fr
eq

ue
nc

y

0
50

00
15

00
0

0

Ubuntu

% of zeros = 6.33

Fr
eq

ue
nc

y

0
50

00
15

00
0

0

Fig. 3. Distribution of zi

0 2000 6000 10000

−1
00

0
10

00
30

00

Microsoft (N = 10576)

Vulnerability (per−product)

Da
ys

 (z
)

0 2000 4000 6000

−1
00

0
10

00
30

00

openSUSE (N = 6488)

Vulnerability (per−product)

Da
ys

 (z
)

0 5000 10000

−1
00

0
10

00
30

00

Ubuntu (N = 18696)

Vulnerability (per−product)

Da
ys

 (z
)

Fig. 4. Dispersion of zi

0
5

10
15

Microsoft

Vulnerability (CVE)

Fr
eq

ue
nc

y p
er

 P
ro

du
ct

0
5

10
15

openSUSE

Vulnerability (CVE)

Fr
eq

ue
nc

y p
er

 P
ro

du
ct

0
5

10
15

Ubuntu

Vulnerability (CVE)

Fr
eq

ue
nc

y p
er

 P
ro

du
ct

Fig. 5. Vulnerabilities per product

score is a composite metric that is computed from two groups of metrics that
account for the impact and exploitability aspects of vulnerabilities [1]. Existing
research has used both the base scores [3] and the more fine-grained individual
metrics [26]. The theoretical rationale is simple either way: it is expected that the
time lines are shorter for more severe vulnerabilities. The empirical usefulness
of all CVSS metrics has been questioned [1], however, and, consequently, S is
included only as a control variable without further contemplations.

The other control variable, say references, R, is operationalized as the cumu-
lative amount of per-release security advisory references that were made to the
same CVE identifier. A comparable operationalization has been used previously
to measure the quality of security patches [26]. As the construct validity of R
as a measure of patch (or patching) quality is arguably rather limited, also this
quantity enters as a statistical control variable. In the ideal case of simplicity,
both S and R can be eliminated as empirically redundant.

3.3 Methods

The linear equation in (2) is estimated as it reads – as a regression model:

M1 : f(ui) = β0 + β1f(Ai) + β2f(Ai)2 + β3f(Si) + β4f(Ri) + εi, (4)



214 J. Ruohonen et al.

where ui refers either to yi or |xi|, f(v) = ln(v + 1), and εt is a residual term.
The quadratic age term, f(Ai)2, is included to account potential curvature. The
functionf(v) is used to improve the assumption of normality [3]. Three smaller
parsimonious models are sought with restrictions

M2 : β2 = 0, M3 : β1 = β2 = 0, and M4 : β1 = β2 = β4 = 0. (5)

The model M3 assesses the actual age assertion by excluding both f(Ai) and
f(Ai)2. In other words, the assertion implies that β1 �= β2 �= 0. While the single
restriction β2 = 0 can be evaluated with a t-test, all can be evaluated with the
so-called Wald-tests [10], including the joint restrictions over the parameters. All
models were estimated also with a so-called fixed effects strategy by including a
set of dummy variables to control for the per-product heterogeneity. As none of
the estimates changed notably, the results reported omit these effects, however.

Besides evaluating the assumption of normality with Q-Q plots, three diag-
nostic checks are computed to assess the overall statistical fits: (a) the so-
called RESET test is used to account for potential non-linearity; (b) residual
(auto)correlation (dependence betweenui andui+1) is evaluatedwith theBreusch-
Godfrey test; and (c) heteroskedasticity (systematic dispersion in the residual
terms) is checked with the Breusch-Pagan test (for details see, e.g., [10]). The ratio-
nale for the checks (b) and (c) relates to the sampling strategy that allows per-
product “duplicate” vulnerabilities to enter into the estimation samples. Finally,
estimation is carried out with R, using the lmtest package [29] for the three statisti-
cal tests. If required, the estimates are adjusted by using suitable covariance matrix
estimators from the sandwich package [28]. The general performance is evaluated
with adjusted R2

a-values; higher values are better.

3.4 Sampling

The three vendor subsamples are analyzed as three separate, statistically inde-
pendent cases. In general, however, the data in Table 2 cannot be directly esti-
mated because the software life cycles vary across the observed products. To
account for this variance, a vendor-specific sampling strategy is used on per-
product basis in two steps. Given a vendor’s all observed products, random
samples (without replacement) are first picked for the vendor’s each product. In
the second step these random samples are merged into a per-vendor estimation
sample, after which the sample split into yi and |xi| observations is computed
according to the zi > 0 and zi ≤ 0 criteria, respectively.

This procedure ensures that estimation is balanced with respect to a vendor’s
varying per-release software life cycle lengths. The size of these per-product ran-
dom samples is defined as the minimum per-product sample size in Table 2. For
instance, 431 random vulnerabilities are sampled for each of the Ubuntu releases,
given the minimum sample size of 431 observed vulnerabilities in Ubuntu 13.04.
Since 431 random vulnerabilities are sampled also for 12.04 LTS, the estimation
is not biased towards the longer age and, consequently, the larger amount of vul-
nerabilities in the long-term support releases. This random sampling procedure



Software Vulnerability Life Cycles and the Age of Software Products 215

is repeated 100 times. The statistical results are recomputed in each iteration.
Because the standard deviations are rather small across the iterations, arithmetic
mean is used for summarizing the results.

3.5 Results

The regression analysis can be started from the diagnostic checks. To begin with,
normal approximation is generally reasonable with the f(v) transformation. By
embedding normal Q-Q curves for the residuals from the two hundred regression
models, the normality observation is illustrated in Fig. 6 for openSUSE. Thus,
inference with statistical significance is generally justified. The other diagnostic
checks indicate some problems, however. Only Microsoft passes all of the three
formal tests; the models for openSUSE and Ubuntu indicate heteroskedasticity
in the residual terms, and there appears to be also some (auto)correlation in the
models for Ubuntu. To account for these issues, the results are recomputed with
the Newey-West covariance matrix estimator [10,17] for openSUSE and Ubuntu.

−3 −2 −1 0 1 2 3

−4
−2

0
2

4

Model 1. (positives)

Theoretical Quantiles

Sam
ple

 Qu
ant

iles

Std. Normal

−3 −2 −1 0 1 2 3

−4
0

2
4

Model 1. (non−positives)

Theoretical Quantiles

Sam
ple

 Qu
ant

iles

Std. Normal

Fig. 6. Normal Q-Q plots for openSUSE (M1)

The regression results can be packed into the tight summary shown in Table 3.
The panel (a) shows the mean p-values from the Wald-tests for both subsets.
The conclusion is clear for Microsoft: the full model in (4) can be reduced all the
way to M4 in (5). That is, the age assertion does not hold for Microsoft. The
reduction, M1 �→ M3, cannot be done for Ubuntu and openSUSE with respect
to the subsets of positive zi values. As expected, the coefficients are positive for
the f(Ai) term in these subsets, as seen from the second column in the panel (b).
However, the same does not hold in the z ≤ 0 subsets; the reduction to M3 is
applicable to all vendors according to the fourth column in the panel (a). Because
the age assertion was specified in a dual fashion (see Sect. 2), openSUSE and
Ubuntu pass the assertion only partially. It is also worth remarking that the
coefficients for the severity variable attain their expected negative signs; severe
vulnerabilities are processed slightly faster. Finally, the statistical performance is
very limited; only approximately 10 % of the total variance is explained at best.
Taken together, these observations suggest the age assertion cannot be used to
characterize the contemporary operating system population.



216 J. Ruohonen et al.

Table 3. Regression results1

(a) Wald-tests (mean p-values) (b) Estimates (means, β2 = 0)

M1 �→ M2 M1 �→ M3 M1 �→ M4
̂β0

̂β1
̂β3

̂β4 R2
a

Subset y x y x y x y y y y y

Microsoft 0.52 0.48 0.49 0.14 0.07 0.58 6.00 -0.06 -1.55 2.47 0.10

openSUSE2 0.30 0.36 0.00 0.24 0.00 0.00 3.00 0.18 -0.76 1.04 0.08

Ubuntu2 0.57 0.08 0.00 0.20 0.10 0.00 3.31 0.17 -0.61 0.25 0.04
1 Colored entries refer to p < 0.05; due to lack of space, values 0.00 denote

p < 0.01.
2 Results are computed with the Newey-West estimator.

4 Discussion

This empirical paper investigated an assertion that the age of software products
can be used to predict the time delays between security advisory releases and
the publication of CVEs. The paper finds no systematic empirical evidence for
such an assertion. Three conclusions can be drawn from the regression analysis
of nearly fifty operating system releases. First, there is no notable statistical
relationship between the age of Microsoft Windows releases and the turnaround
times between Microsoft, Inc. and the institutional setup represented by MITRE,
NVD, and associated parties. Second, only the handling of vulnerabilities that
take the route (b) in Fig. 2 is mildly correlated with the age of openSUSE and
Ubuntu releases, but otherwise the results are mixed. Last, all of the examined
variables – age, severity, and amount of CVE-references – seem to be more or
less irrelevant for predicting the turnaround times. Only about a ten percent of
the total variation is explained by the three variables.

Thus, the observations constitute a negative result with respect to the the-
orized age assertion. By implication, it seems sensible to recommend that no
particular attention is required in release engineering strategies for the concern
that long support periods would systematically lengthen the delays between the
patching and publication VLC states. In this sense the negative result is a pos-
itive result: there is no particular reason for users to fear that patching would
take long for an old operating system release.

Although the results are generally in accordance with previous observations
regarding the severity of vulnerabilities [26], the overall lack of explanatory power
indicates that neither the statistical severity scoring deserves particular mentions
in the strategies. Rather, something else largely explains the variation in the
turnaround times. A plausible technical explanation may relate to the large
amount of code that is shared particularly between successive operating system
releases. That is, patching a vulnerability in a new release may often involve the
same code that is present in an older release, which implies that the turnaround
times should be rather similar for both releases.

Because the results are particularly clear for the observed Microsoft Win-
dows releases, it seems reasonable to end with a remark about the much more



Software Vulnerability Life Cycles and the Age of Software Products 217

fundamental assertion placed over the closed and open source continuum [23,24].
Because Microsoft is generally fast at the coordination (and irrespectively of the
three variables examined in this paper), a particularly worthwhile topic for fur-
ther research is to map and examine the potential reasons that may hinder the
efficiency at the open source front. As has been suspected [13], narrow time lines
are explicitly targeted by Microsoft, but it is unclear why large open source
vendors are unable to achieve the same level of efficiency. The reasons for this
divergence are presumably economical and socio-technical rather than technical.

References

1. Allodi, L., Massacci, F.: Comparing vulnerability severity and exploits using case-
control studies. ACM Trans. Inf. Syst. Secur. 17(1), 1:1–1:20 (2014)

2. Arbaugh, W.A., Fithen, W.L., McHugh, J.: Window of vulnerability: a case study
analysis. Computer 32(12), 52–59 (2000)

3. Arora, A., Forman, C., Nandkumar, A., Telang, R.: Competition and patching
of security vulnerabilities: an empirical analysis. Inf. Econ. Policy 22(2), 164–177
(2010)

4. Canonical Ltd.: Releases (2015). https://wiki.ubuntu.com/Releases. July 2015
5. Canonical Ltd.: Ubuntu Security Notices (2015). http://www.ubuntu.com/usn/.

March 2015
6. Cavusoglu, H., Cavusoglu, H., Raghunathan, R.: Efficiency of vulnerability disclo-

sure mechanisms to disseminate vulnerability knowledge. IEEE Trans. Softw. Eng.
33(3), 171–185 (2007)

7. Clark, S., Collis, M., Smith, J.M., Blaze, M.: Moving targets: security and rapid-
release in Firefox. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS 2014), pp. 1256–1266. ACM, Scottsdale
(2014)

8. Clark, S., Frei, S., Blaze, M., Smith, J.: Familiarity breeds contempt: the honey-
moon effect and the role of legacy code in zero-day vulnerabilities. In: Proceedings
of the 26th Annual Computer Security Applications Conference (ASAC 2010), pp.
251–260. ACM, Austin, Texas (2010)

9. Khomh, F., Adams, B., Dhaliwal, T., Zou, Y.: Understanding the impact of rapid
releases on software quality: the case of Firefox. Empir. Softw. Eng. 20(2), 336–373
(2015)

10. Kleiber, C., Zeileis, A.: Applied Econometrics with R. Springer, Berlin (2010)
11. Li, P., Rao, R.: An examination of private intermediaries’ roles in software vulner-

ability disclosure. Inf. Syst. Front. 9(5), 531–539 (2007)
12. Mäntylä, M.V., Adams, B., Khomh, F., Engström, E., Petersen, K.: On rapid

releases and software testing: a case study and a semi-systematic literature review.
Empir. Softw. Eng. 20(5), 1384–1425 (2014)

13. Marconato, G.V., Nicomette, V., Kaâniche, M.: Security-related vulnerability life
cycle analysis. In: Proceedings of the 7th International Conference on Risk and
Security of Internet and Systems (CRiSIS 2012), pp. 1–8. IEEE, Cork (2012)

14. Massacci, F., Nguyen, V.H.: Which is the right source for vulnerability studies?
an empirical analysis on Mozilla Firefox. In: Proceedings of the 6th International
Workshop on Security Measurements and Metrics (MetriSec 2010), pp. 4:1–4:8.
ACM, Bolzano (2010)

https://wiki.ubuntu.com/Releases
http://www.ubuntu.com/usn/


218 J. Ruohonen et al.

15. Microsoft Inc.: Microsoft Security Bulletin Data (2015). http://www.microsoft.
com/en-us/download/details.aspx?id=36982. July 2015

16. Microsoft Inc.: Windows Life Cycle Fact Sheet (2015). http://windows.microsoft.
com/en-us/windows/lifecycle. July 2015

17. Newey, W.K., West, K.D.: A simple, positive-definite, heteroskedasticity and auto-
correlation consistent covariance matrix. Econometrica 55(3), 703–708 (1987)

18. Nguyen, V.H., Massacci, F.: The (un)reliability of NVD vulnerability versions data:
an empirical experiment on Google chrome vulnerabilities. In: Proceedings of the
8th ACM SIGSAC Symposium on Information, Computer and Communications
Security (ASIACCS 2013), pp. 493–498. ACM (2013)

19. NIST: NVD Data Feed and Product Integration (2015), National Institute of Stan-
dards and Technology (NIST), Annually Archived CVE Vulnerability Feeds: Secu-
rity Related Software Flaws, NVD/CVE XML Feed with CVSS and CPE Mappings
(Version 2.0). https://nvd.nist.gov/download.cfm. June 2015

20. Novell Inc. and others.: openSUSE: Lifetime (2015). https://en.opensuse.org/
Lifetime. July 2015

21. Novell Inc. and others: openSUSE: Roadmap (2015). https://en.opensuse.org/
openSUSE:Roadmap. July 2015

22. Ruohonen, J., Hyrynsalmi, S., Leppänen, V.: The sigmoidal growth of operat-
ing system security vulnerabilities: an empirical revisit. Comput. Secur. 55, 1–20
(2015)

23. Schryen, G.: Is open source security a Myth? Commun. ACM 54(5), 130–140 (2011)
24. Shahzad, M., Shafiq, M.Z., Liu, A.X.: A large scale exploratory analysis of software

vulnerability life cycles. In: Proceedings of the 34th International Conference on
Software Engineering (ICSE 2012), pp. 771–781. IEEE, Zurich (2012)

25. SUSE LLC: Published SUSE Linux Security Updates by CVE Number (2015).
https://www.suse.com/security/cve/. June 2015

26. Temizkan, O., Kumar, R.L., Park, S., Subramaniam, C.: Patch release behaviors
of software vendors in response to vulnerabilities: an empirical analysis. J. Manag.
Inf. Syst. 28(4), 305–337 (2012)

27. Vache, G.: Vulnerability analysis for a quantitative security evaluation. In: Proceed-
ings of the 2009 3rd International Symposium on Empirical Software Engineering
and Measurement (ESEM 2009), pp. 526–534. IEEE, Orlando (2009)

28. Zeileis, A.: Econometric computing with HC and HAC covariance matrix estima-
tors. J. Stat. Softw. 11(10), 1–17 (2004)

29. Zeileis, A., Hothorn, T.: Diagnostic checking in regression relationships. R News
2(3), 7–10 (2002)

http://www.microsoft.com/en-us/download/details.aspx?id=36982
http://www.microsoft.com/en-us/download/details.aspx?id=36982
http://windows.microsoft.com/en-us/windows/lifecycle
http://windows.microsoft.com/en-us/windows/lifecycle
https://nvd.nist.gov/download.cfm
https://en.opensuse.org/Lifetime
https://en.opensuse.org/Lifetime
https://en.opensuse.org/openSUSE:Roadmap
https://en.opensuse.org/openSUSE:Roadmap
https://www.suse.com/security/cve/

	Software Vulnerability Life Cycles and the Age of Software Products: An Empirical Assertion with Operating System Products
	1 Introduction
	2 The Assertion
	3 Evaluation
	3.1 Data
	3.2 Control Variables
	3.3 Methods
	3.4 Sampling
	3.5 Results

	4 Discussion
	References


