
Extending HARM to make Test Cases
for Penetration Testing

Aparna Vegendla(&), Thea Marie Søgaard, and Guttorm Sindre(&)

Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU), Trondheim, Norway

{aparnav,guttors}@idi.ntnu.no

Abstract. [Context and motivation] Penetration testing is one key technique
for discovering vulnerabilities, so that software can be made more secure.
[Question/problem] Alignment between modeling techniques used earlier in a
project and the development of penetration tests could enable a more systematic
approach to such testing, and in some cases also enable creativity. [Principal
ideas/results] This paper proposes an extension of HARM (Hacker Attack
Representation Method) to achieve a systematic approach to penetration test
development. [Contributions] The paper gives an outline of the approach,
illustrated by an e-exam case study.

Keywords: Security � Penetration testing � Misuse cases � Socio-technical
systems � e-exams

1 Introduction

The alignment of requirements and testing has been emphasized as an important
problem in software development in general [1, 2] and also for security requirements in
particular [3], where testing might then be a combination of penetration testing [4] and
ethical hacking [5].

Penetration testing is often used for finding security vulnerabilities in software [6].
As observed by [4], it can be effective if combined with security-related findings from
earlier lifecycle stages, but less effective if done completely ad hoc. Even with a
systematic approach it is important to be aware that there may be other vulnerabilities
remaining in addition to those the tests have uncovered [4].

Previously, our research group has been involved in the development of a method
called HARM [7], with the purpose of representing hacker attacks in various ways. In
the current paper, we explore how this method could be extended to provide a bridge
between security requirements and testing. More precisely, our research question is
RQ1: How can HARM be extended to support the development of penetration test
cases from security requirements?

The rest of the paper is structured as follows: Sect. 2 provides background on
HARM, illustrating the method with a running example related to the case study, as
well as discussing related work. Section 3 discusses how HARM can be extended to
include manual human attacks in addition to technical attacks, and to support the
development of test cases. Section 4 then presents a case study where HARM is used to

© Springer International Publishing Switzerland 2016
J. Krogstie et al. (Eds.): CAiSE 2016, LNBIP 249, pp. 254–265, 2016.
DOI: 10.1007/978-3-319-39564-7_24



capture security requirements, analyze threats and suggest security test cases for a
digital exam system. Section 5 concludes the paper and outlines some ideas for further
work.

2 Background

2.1 Running Example: BYOD e-exams

Many universities are currently switching from traditional school exams using pen and
paper to e-exams, in some cases performed at home (e.g., remote exams), in some cases
in a controlled campus environment. For scalability and cost reduction, even the latter
type will often require students to use their own laptops (BYOD, Bring Your Own
Device), although this gives increased challenges with security [8]. Concentrating here
on individual school exams with invigilators, it is typically necessary to ensure the
rules/requirements related to cheating security as shown in Table 1.

Since the focus here is on BYOD, it makes most sense to focus specifically on some
key security requirements to prevent cheating via the laptop, such as:

SecR1. It shall be impossible to access other resources on the laptop than those
specifically allowed for the exam.

SecR2. It shall be impossible to use the laptop for communication with co-examinees
or outsiders during the exam.

A key approach to mitigate cheating with BYOD e-exams is the usage of so-called
lock-down browsers [9]. By locking the screen in a way that cannot be escaped while
connected to the exam server, this technology prevents examinees from starting up
other programs, opening documents or accessing other web sites than the exam server.
The e-exam application which delivers questions to the students and receives answers
will typically be running on top a lockdown browser. By these measures, examinees
should be prevented from accessing cheat material and getting illegitimate help from
accomplices via their laptops − if the technology is a 100 % effective.

However, a number of attacks could circumvent lock-down browsers. One simple
example: After starting up the lock-down browser, we may be unable to start up Skype

Table 1. Some rules against cheating during controlled school exams

Rule/requirement

R1 Only authenticated examinees shall be able to access and respond to exam questions
R2 It shall be possible to respond to exam questions only while seated at one’s assigned

place in a controlled venue
R3 Examinees are prohibited from communicating with each other or with outsiders during

the exam
R4 Examinees are prohibited from using tools or resources other than those listed as being

allowed for the specific exam
R5 Examinees are prohibited from peeking at and copying answers of other examinees

Extending HARM to make Test Cases for Penetration Testing 255



to communicate with an accomplice. But what if we have Skype running before we
start the lock-down browser? This is the outset of our running example. The problem of
many hands can easily be envisioned here. The invigilators in the exam room − and the
university administration, who give instructions for their conduct − might think that
skyping via the laptops during the exams is made impossible by some component of
the e-exam technology. The developers of the technology might have been thinking
that Skype conversations is something that the invigilators should prevent. There could
also be dispersion of responsibility between different technology providers. The
developers of the e-exam application might believe that the lock-down browser pre-
vents Skype conversations, while the developers of the lock-down browser consider
this outside the scope of their tool, rather to be done by the e-exam application or
monitoring software that the university should get from yet another vendor.

2.2 HARM (Hacker Attack Representation Method)

HARM [7] is a method for modeling threats and security attacks in combination with
the system architecture, so as to better understand the potential attacks. In this section
we summarize the method, so that the extensions that will be proposed later will be
understandable. HARM combines several different specification formats to give a
comprehensive view of the possible attacks. In the following, we will list these and
illustrate them by means of our running example.

Attack Sequence Descriptions (ASD): These are simple natural language descrip-
tions of the attack, forming a sequence of actions. An example ASD could be some-
thing like “(1) Start up a Skype call with an outside accomplice, and have it run in the
background. (2) Enter the exam venue and begin the exam in the normal way.
(3) Communicate questions to the accomplice and get answers back via Skype, using a
hidden wireless earpiece. (4) Type the answers into the e-exam system and submit.”

Misuse Sequence Diagrams (MUSD): If preferring a more formal form of expression
than the natural language ASD, a similar sequence can be described as a MUSD [10].
This is similar to a UML sequence diagram, but in addition to legitimate objects and
message calls, it also contain attacking objects and message calls (having red boxes and
red arrows). The diagram in Fig. 1 shows the cheating examinee setting up a Skype call
with an accomplice before the start of the exam. Then the examinee starts up the
lock-down browser and authenticates with an to get an access code to connect with the
exam server. Via the Skype connection, the examinee communicates the questions to
an accomplice, and the accomplice replies with answers. The dashed red ovals indicate
vulnerabilities that are utilized to make the attack work, and their labels are explained
to the right of the diagram.

Misuse Case Maps (MUCM): Like MUSD, MUCM [11] also show an attack
sequence. The difference is that Misuse Case Maps put more focus on the relationship
between the attack sequence and the architecture, showing each step in its architectural
context [12], just like Use Case Maps show how legitimate functionality propagates
through the architecture [13]. Figure 2 shows a MUCM for another one of the cheating
threats investigated in our study, usage of disallowed material. The naïve approach of

256 A. Vegendla et al.



putting cheat files on the laptop’s disk or memory sticks might fail if the lock-down
browser prevents the opening of any files during the exam. A more sophisticated
approach, as pointed out by Dawson [8], is to use a USB key injector containing the
cheat notes. It behaves just like a keyboard, and would thus be unlikely to raise
suspicion if there is automated monitoring - as students might be allowed to use
external keyboards to their laptops for improved ergonomics of typing a lot of text
quickly.

Fig. 1. MUSD for a cheat with pre-connected Skype call (Color figure online)

Fig. 2. MUCM for using a key injector with a cheat note

Extending HARM to make Test Cases for Penetration Testing 257



Misuse Case Diagrams (MUD): MUD extends UML use case diagrams to show how
mis-users perform regular as well as irregular activities with the system. Figure 3
shows the MUD for cheating threats studied in our study. Compared to MUSD and
MUCM, which show details of one particular type of attack, misuse case diagrams
show a broader overview. In the particular diagram in Fig. 3, this overview is made
extra broad by showing both the functions and threats particular to the e-exam appli-
cation (inner system boundary) and cheating threats outside this (e.g., more traditional
ways of cheating in the exam room).

Attack Trees (AT): These also show an overview of several threats. Unlike misuse
case diagrams, which focus on relationships between threats and legitimate behavior,
attack trees focus on the illegitimate behavior alone, breaking high level threats down
to more detailed ones. The non-leaf nodes are decomposed into trees of conjunctive
(“AND- branch”) and disjunctive (“OR-branch”) nodes. OR-nodes represent alterna-
tives, while AND nodes represent sub goals where all must be fulfilled to achieve the
goal. In Fig. 4, all branches are OR-branches, indicating various ways to perform the
high level attack “Cheat during BYOD exams”.

3 From Requirements to Penetration Test Cases via HARM

Whereas HARM as illustrated in the previous section has been described in earlier
publications, the new contribution of this article is to propose a method to develop
penetration test cases aided by HARM. Given some security requirements, like SecR1
and SecR2, there are actually two different approaches that can be used to develop a set
of penetration tests:

• Top down approach: For each security requirement

Fig. 3. Misuse case diagram including both electronic and traditional cheating

258 A. Vegendla et al.



• Make an attack tree, starting with the top level node being a generic violation of
that security requirement, then gradually breaking down towards concrete
attacks. Brainstorming might be one possible technique to use in developing this
tree.

• Make a misuse case diagram relating attacks to relevant legitimate use cases,
including mitigations that are known to be in place. This can be used to elim-
inate from the attack tree those attacks that are not worth trying, or to adjust
them to keep them worthwhile. For instance, if one attack is “Open document”
with a cheat file during the exam, this should not be possible with the mitigating
use case “Enforce lock-down browser” (cf. Fig. 3). So, to keep “Open docu-
ment” it should have to be in an AND-relation with “Escape lock-down” in the
attack tree.

• Make attack sequence descriptions explaining how the attack is going to be
executed. If necessary, e.g., to understand a technically complicated attack
which can be performed in several different ways, complement the simple
textual description of the attack sequence with MUCM (if it is useful to see it in
the architectural context) or MUSD (if it is useful to see how the cheat attack
propagates via various objects and agents).

• This should be continued until there are attack sequences described for all the
leaf nodes of the attack tree.

• Bottom up approach: For each security requirement
• Start with finding some concrete ways of breaking them, and describe these as

attack sequence diagrams, possibly also by MUCM and/or MUSD if this is
helpful to understand possible attacks and different ways of doing things.

• When you run out of ideas for concrete attacks, group the similar ones to make
the higher level nodes and form the complete attack tree. Make the misuse case
diagram to see relationship between attacks and possible countermeasures.

• It could be a good idea here when the overall attack tree has been formed to
work back down in a top down manner, to see if you get any new ideas for
possible attacks after seeing the whole picture.

Fig. 4. Attack tree for using a key injector with a cheat note, from [14].

Extending HARM to make Test Cases for Penetration Testing 259



Whatever combination of top-down and bottom-up is chosen, the final step in the
planning is to transform the attack sequence descriptions/misuse case maps/misuse
sequence diagrams into penetration test scenarios, typically described in tabular form.
With a situation similar to the e-exam case, tests would best be developed in two steps:

1. lab tests, with the purpose of finding out whether some attack is technically pos-
sible or not. Lab tests may investigate small partial attacks one at a time. Table 2
shows a lab penetration test scenario for the cheating via Skype example shown in
Fig. 1.

2. real world tests, with the purpose of finding out whether attacks are likely to
succeed in practice - which may hold bigger challenges than in the relaxed lab
setting. Such a test scenario for the Skype example is shown in Table 3.

Since real world tests are more time consuming and expensive than lab tests, it is a
good idea to describe the lab tests first. If it turns out that some type of attack was not
even possible in the lab, it may be a waste of time to develop a real-life test for it, so
resources should rather be spent on other attacks that were more likely of succeeding.
(E.g., if we were not even able to have a Skype connection in the lab, there would be
little point in trying in the exam-room with the additional challenge of invigilators,
etc.). In the planning stage, the rightmost column of Table 2 (Result) would of course
be left empty, to be filled in later, while here − to save space, we indicate at once the
results that came out of our tests.

Table 2. Penetration test scenario for communicating via Skype

Lab penetration test scenario: communicate via Skype

Step Action Success
criterion

Result

1 Establish Skype connection between examinee’s laptop
and accomplice’s PC

Connection
established

OK

2 Start lock-down browser (SEB) on examinee’s laptop SEB running
normally

OK

3 Examinee give info to accomplice At least one
works:

OK

3a Speak Accomplice
hears

OK

3b Visual (e.g., blink eyes) Accomplice
sees

OK

3c Share screen Accomplice
sees

–

4 Accomplice give info to examinee At least one
works:

OK

4a Speak Examinee hears OK
4b Visual (e.g., blink eyes) Examinee sees –

4c Share screen Examinee sees –

260 A. Vegendla et al.



It can be noted that the penetration test in Table 2 only explores vulnerability v1
and v4 of the MUSD in Fig. 1, namely those related to the lock-down browser. The
other vulnerabilities would be explored in the real-world test as described in Table 3.

In Table 3 the Result column is empty because none of the real-world tests have
been performed yet. Whereas lab tests will tend to either succeed or fail, the real-world
tests will more often have some probability of succeeding. For instance, it may depend
on how far the penetration tester is seated from the nearest invigilator, how clever the
tester is at speaking so quietly that it is inaudible to others yet comes through clear
enough to the accomplice, how good the tester is at appearing calm in spite of cheating,
how attentive the invigilator is, and what kind of other mitigations are in place in the
exam room, such as monitoring software to discover suspicious communication from
laptops, not matching the profile of the typical interaction between the lock-down
browser and the e-exam server. Hence, while the lab test in Table 2 may only need to
be run once to establish that skyping was actually possible in spite of the lock-down
browser, the test in Table 3 would best be run several times, with different testers and
invigilators, in rooms with different types of background noise, seated in different
positions. This would enable to gather some statistics, like probability of getting
caught, or mean time to failure (i.e., getting caught), to rank the attack relative to other
attacks to determine which ones are most urgent to deal with.

4 Case-Study: Cheating-Related Exam Security

As part of a student project by the second author (supervised by the first and third
author), a number of attacks were tested on a certain lock-down browser, namely Safe
Exam Browser [15]. This browser was chosen because it is open source, and because

Table 3. Test case for cheating during exam through assistance from outsider

Real-world penetration test scenario: get help during exam via Skype

Step Action Success criterion Result

1 Establish Skype connection Connection established
2 Start lock-down browser (SEB) SEB running normally
3 Authenticate and access e-exam app E-exam app starting

normally
4 Open exam question Exam question appearing

on screen
5 Communicate question to accomplice (e.g.,

quietly speaking w/wireless hidden mic)
Accomplice receives
question; No cheating is
detected

6 Receive hints from accomplice (e.g.,
through wireless earpiece) and type
answer into e-exam app

Examinee receives and
types info; No cheating
is detected

7 Repeat 4-6 until all questions answered,
then submit

Exam answer submitted;
No cheating detected

Extending HARM to make Test Cases for Penetration Testing 261



the e-exam tool that our university is using, partly relies on that browser for security
during the exams. It should be noted that the project did not try to cover the complete
set of security related to e-exams. The following limitations were chosen:

• only look at threats during the exam, not before (e.g., getting premature access to
exam questions) or after (e.g., manipulating answers after delivery, or manipulating
grades).

• only look at cheating threats, not other kinds of security threats (e.g., like sabotage
of the exam, denial of service). Although such other threats may also need to be
handled, they are not threats that give a grade advantage and thus not classified as
cheating.

• due to time and resource limitations, only lab tests were actually executed, while the
real-world tests remained at the idea level.

Table 4 sums up results for all the different test cases that were tried in the project. Note
that “Success” in the Result column means from the penetration tester’s (i.e., attack-
er’s) point of view. From the secure e-exam point of view, then, it is the rows with
“Fail” that are the successful ones. So, it can be seen that SEB prevents well against
attempts to circumvent it by running on a virtual machine when starting the lockdown
browser (if this was not prevented against, the examinee could during the exam shift
execution from the virtual to the real machine and then run any forbidden application).
It also protects well against attempts to hide cheat text in the clipboard and then try to
paste it once the exam has started, and as far as we could find, the examinee would not
be able to share her desktop with an accomplice. As the table indicates, however,
several other cheating options were available, potentially enabling a candidate with
very little subject knowledge to get help from somebody much more clever, in the
worst case getting an A where an F would have been the correct account of the
examinee’s competence. The results of the tests have been communicated to SEB
developers, so these weaknesses may likely be mended in future versions of the
software. It should also be noted − as pointed out in the previous section - that the
success of the four lab attacks in Table 4 does not necessarily mean that the same
attacks would be certain to succeed in a real-world exam situation, where there would
be a combination of several tools involved, plus human invigilators to oversee the
candidates. But some of the attacks do not require much visibly suspicious behavior by
the examinee, so could be assumed hard to spot by invigilators.

5 Related Work

Dawson [8] presents five attacks against BYOD e-exams, whereof 4 were tried with
various e-exam tools and found successful with at least one tool each. Some of the
attacks tried out in our work are inspired by his proposals, especially the key injector
attack and the Skype call attack. Dawson, however, does not present any modeling
approach or other systematic approach to get from requirements to a test plan.

Cota et al. [16] proposed a framework, RACOON, which is a semi-automatic
approach to configure accountability mechanisms (e.g. logging, auditing, monitoring)
and reputation mechanisms on the P2P systems. The accountability mechanism helps to

262 A. Vegendla et al.



monitor cheating whereas the reputation mechanism helps to punish in case of
cheating. The paper also discussed the approach to find cheating in the systems through
game based simulations using game theory. Although the approach discussed in their
paper useful to find cheating in digital exams, the details of penetration tests were not
provided in the paper, which is the main consideration for our paper.

Wang et al. [17] present an approach to security testing based on threat models.
Using UML sequence diagrams, there is some similarity with our approach (especially
the misuse sequence diagrams), but the approach of Wang et al. is more formal, aiming
to support automatic generation of test cases, while our approach aims to support
brainstorming of test cases that will be performed manually. Other approaches aiming
for partly automated generation of test cases from various types of models can be found
in [18, 19], and a review of various model-based security testing techniques can be
found in [20]. Agile security testing, proposed in [21], uses abuse stories or misuse
cases as a starting point, thus having some resemblance with our approach, and in [22]
it is further discussed how this can be fit into Scrum. These approaches have some
similarities with ours in the initial part, having misuse cases as a possible starting point.
Our approach however lacks the connection to agile/Scrum and does not make any
assumption about the process, and instead proposes the choice of several different
modeling representations, depending on what is found most fitting in the situation.

Table 4. Tests completed in the project [14] so far

Attack Result Description

Inject notes into exam software
with USB key injector

Success We saved a text on a rubber ducky USB and
the string was injected into the web page
open in SEB

Run SEB on a virtual machine Fail When initiating SEB, a pop-up window
appears, stating that SEB has detected a
virtual machine and will not work

Run SEB on a remote computer Success We managed to control SEB from a remote
computer, while using SEB

Use clipboard to import notes
into exam software

Fail We were not able to right click or use
CTRL + P to paste the clipboard content
into SEB

Get assistance by being accessed
from a remote computer

Success We managed to control and access an SEB
exam environment from a remote computer

Get assistance by sharing
desktop

Fail Neither Google Hangout nor Skype showed
SEB with remote desktop, when it was
initiated

Get assistance by
communicating with
audio/video

Success Both examinee and assistant can hear each
other and use their microphones. The
assistant can also see the examinee on
camera during a video conversation, but the
examinees only sees the SEB environment

Extending HARM to make Test Cases for Penetration Testing 263



6 Conclusions and Further Work

This paper has proposed an approach to using models as a basis for brainstorming
possible attacks and developing these into penetration tests. It must be admitted that the
validation is so far limited, with only 8 lab tests executed so far. Future work in the
investigation about e-exams would be to include a broader range of tests, including
real-world. Indeed, real-world testing could also be applied to traditional pencil and
paper exams, for instance to create a benchmark to establish if cheating is easier with
e-exams than with traditional paper exams, which − although often intuitively
assumed − need not be the case [23]. Since paper exams are not 100 % secure against
cheating either, e-exams may be preferred even in spite of weaknesses, if they are
found to have advantages in other respects [8, 24].

For the validation of the proposed method, future work could include experiments
to investigate whether people come up with more or better penetration tests if using
these modeling languages than if using other approaches (either completely ad hoc,
some of those presented in related work, or other modeling approaches like for instance
goal-oriented models). It would also be interesting to see if a top-down or bottom-up
process to attack brainstorming is the most effective, as well as whether brainstorming
is most effective in groups or individually.

References

1. Barmi, Z.A., Ebrahimi, A.H., Feldt, R.: Alignment of requirements specification and testing:
a systematic mapping study. In: 2011 IEEE Fourth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). IEEE (2011)

2. Unterkalmsteiner, M., Feldt, R., Gorschek, T.: A taxonomy for requirements engineering
and software test alignment. ACM Trans. Soft. Eng. Method. (TOSEM) 23(2), 16 (2014)

3. Talukder, A.K., et al. Security-aware software development life cycle (SaSDLC) - processes
and tools. In: IFIP International Conference on Wireless and Optical Communications
Networks, WOCN 2009 (2009)

4. Arkin, B., Stender, S., McGraw, G.: Software penetration testing. IEEE Secur. Priv. 1,
84–87 (2005)

5. Palmer, C.C.: Ethical hacking. IBM Syst. J. 40(3), 769–780 (2001)
6. McDermott, J.P., Attack net penetration testing. In: Proceedings of the 2000 Workshop on

New Security Paradigms, pp. 15–21. ACM: Ballycotton, County Cork, Ireland (2000)
7. Karpati, P., Opdahl, A., Sindre, G.: HARM: hacker attack representation method. In:

Cordeiro, J., Virvou, M., Shishkov, B. (eds.) Software and Data Technologies, pp. 156–175.
Springer, Heidelberg (2013)

8. Dawson, P., Five ways to hack and cheat with bring‐your‐own‐device electronic
examinations. Br. J. Educ. Technol. (2015). http://onlinelibrary.wiley.com/doi/10.1111/
bjet.12246/epdf

9. Frankl, G., Schartner, P., Zebedin, G.: Secure online exams using students’ devices. In: 2012
IEEE Global Engineering Education Conference (EDUCON). IEEE (2012)

10. Katta, V., Karpati, P., Opdahl, A.L., Raspotnig, C., Sindre, G.: Comparing two techniques
for intrusion visualization. In: van Bommel, P., Hoppenbrouwers, S., Overbeek, S., Proper,
E., Barjis, J. (eds.) PoEM 2010. LNBIP, vol. 68, pp. 1–15. Springer, Heidelberg (2010)

264 A. Vegendla et al.

http://onlinelibrary.wiley.com/doi/10.1111/bjet.12246/epdf
http://onlinelibrary.wiley.com/doi/10.1111/bjet.12246/epdf


11. Karpati, P., Sindre, G., Opdahl, A.L.: Visualizing cyber attacks with misuse case maps. In:
Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 262–275. Springer,
Heidelberg (2010)

12. Karpati, P., Opdahl, A.L., Sindre, G.: Investigating security threats in architectural context:
Experimental evaluations of misuse case maps. J. Syst. Soft. 104, 90–111 (2015)

13. Amyot, D., et al.: Generating scenarios from use case map specifications. QSIC 3, 108–115
(2003)

14. Søgaard, T.M.: Cheating Threats in Digital BYOD Exams: A Preliminary Investigation.
NTNU, Trondheim (2015)

15. Schneider, D.: Safe exam browser 2.0 how to (Install, Configure, Deploy and Use SEB 2.0)
(2014). http://safeexambrowser.org/presentations/HowTo_SEB2.0.pdf

16. Cota, G.L., et al.: A framework for the design configuration of accountable selfish-resilient
peer-to-peer systems. In: 2015 IEEE 34th Symposium on Reliable Distributed Systems
(SRDS). IEEE (2015)

17. Wang, L., Wong, E., Xu, D.: A threat model driven approach for security testing. In:
Proceedings of the Third International Workshop on Software Engineering for Secure
Systems. IEEE Computer Society (2007)

18. Xu, D., et al.: Automated security test generation with formal threat models. IEEE Trans.
Dependable Secure Comput. 9(4), 526–540 (2012)

19. Marback, A., et al.: A threat model-based approach to security testing. Soft. Pract.
Experience 43(2), 241–258 (2013)

20. Schieferdecker, I., Grossmann, J., Schneider, M.: Model-based security testing (2012). arXiv
preprint arXiv:1202.6118

21. Tappenden, A., et al.: Agile security testing of web-based systems via httpunit. In:
Proceedings of the Agile Conference, 2005. IEEE (2005)

22. Erdogan, G., Meland, P.H., Mathieson, D.: Security testing in agile web application
development - a case study using the EAST methodology. In: Sillitti, A., Martin, A., Wang,
X., Whitworth, E. (eds.) XP 2010. LNBIP, vol. 48, pp. 14–27. Springer, Heidelberg (2010)

23. Sindre, G., Vegendla, A.: E-exams versus paper-based exams: a comparative analysis of
security threats and countermeasures. In: Norwegian Information Security Conference
(NISK 2015). Bibsys OJS: Ålesund (2015)

24. Sindre, G., Vegendla, A.: E-exams and exam process improvement. In: UDIT 2015. Bibsys
OJS: Ålesund (2015)

Extending HARM to make Test Cases for Penetration Testing 265

http://safeexambrowser.org/presentations/HowTo_SEB2.0.pdf
http://arxiv.org/abs/1202.6118

	Extending HARM to make Test Cases for Penetration Testing
	Abstract
	1 Introduction
	2 Background
	2.1 Running Example: BYOD e-exams
	2.2 HARM (Hacker Attack Representation Method)

	3 From Requirements to Penetration Test Cases via HARM
	4 Case-Study: Cheating-Related Exam Security
	5 Related Work
	6 Conclusions and Further Work
	References


