

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

Enforcing Availability in Failure-Aware Communicating Systems

López-Acosta, Hugo-Andrés; Nielson, Flemming; Nielson, Hanne Riis

Published in:
Proceedings of the 36th IFIP WG 6.1 International Conference on Formal Techniques for Distributed Objects,
Components, and Systems (FORTE 2016)

Link to article, DOI:
10.1007/978-3-319-39570-8_13

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
López-Acosta, H-A., Nielson, F., & Nielson, H. R. (2016). Enforcing Availability in Failure-Aware Communicating
Systems. In E. Albert, & I. Lanese (Eds.), Proceedings of the 36th IFIP WG 6.1 International Conference on
Formal Techniques for Distributed Objects, Components, and Systems (FORTE 2016) (pp. 195-211). Springer.
https://doi.org/10.1007/978-3-319-39570-8_13

https://doi.org/10.1007/978-3-319-39570-8_13
https://orbit.dtu.dk/en/publications/c915693c-e7ff-4a42-9f81-c6c4060fdf0f
https://doi.org/10.1007/978-3-319-39570-8_13

Enforcing Availability in Failure-Aware
Communicating Systems

Hugo A. López, Flemming Nielson, and Hanne Riis Nielson

Technical University of Denmark
Kongens Lyngby, Denmark
{hulo,fnie,hrni}@dtu.dk

Abstract. Choreographic programming is a programming-language de-
sign approach that drives error-safe protocol development in distributed
systems. Motivated by challenging scenarios in Cyber-Physical Systems
(CPS), we study how choreographic programming can cater for dynamic
infrastructures where the availability of components may change at run-
time. We introduce the Global Quality Calculus (GCq), a process calculus
featuring novel operators for multiparty, partial and collective communi-
cations; we provide a type discipline that controls how partial communi-
cations refer only to available components; and we show that well-typed
choreographies enjoy progress.

1 Introduction

Choreographies are a well-established formalism in concurrent programming,
with the purpose of providing a correct-by-construction framework for distributed
systems [8, 11]. Using Alice-Bob’s style protocol narrations, they provide the
structure of interactions among components in a distributed system. Combined
with a behavioral type system, choreographies are capable of deriving distributed
(endpoint) implementations. Endpoints generated from a choreography ascribe
all and only the behaviors defined by it. Additionally, interactions among end-
points exhibit correctness properties, such as liveness and deadlock-freedom. In
practice, choreographies guide the implementation of a system, either by au-
tomating the generation of correct deadlock-free code for each component in-
volved, or by monitoring that the execution of a distributed system behaves
according to a protocol [8, 34, 3].

In this paper we study the role of availability when building communication
protocols. In short, availability describes the ability of a component to engage
in a communication. Insofar, the study of communications using choreographies
assumed that components were always available. We challenge this assumption
on the light of new scenarios. The case of Cyber-Physical Systems (CPS) is one
of them. In CPS, components become unavailable due to faults or because of
changes in the environment. Even simple choreographies may fail when including
availability considerations. Thus, a rigorous analysis of availability conditions
in communication protocols becomes necessary, before studying more advanced
properties, such as deadlock-freedom or protocol fidelity.

Practitioners in CPS take availability into consideration, programming appli-
cations in a failure-aware fashion. First, application-based QoS policies replace
old node-based ones. Second, one-to-many and many-to-one communication pat-
terns replace peer-to-peer communications. Still, programming a CPS from a
component viewpoint such that it respects an application-based QoS is difficult,
because there is no centralized way to ensure its enforcement.

This work reports initial steps towards a choreography-based approach for
the development of failure-aware communication protocols, as exemplified by
CPS. Our contribution is twofold. First, we present the Global Quality Calcu-
lus (GCq), a process calculus aimed at capturing the most important aspects of
CPS, such as variable availability conditions and multicast communications. It
is a generalization of the Global Calculus [11], enriched with collective commu-
nication primitives and explicit availability considerations. Central to GCq is the
inclusion quality predicates [35] and optional datatypes, whose role is to allow
for communications where only a subset of the original participants is available.
Models in GCq can accommodate in this way application-based QoS policies,
instead of a node-centric approach.

Our second contribution relates to the verification of failure-aware proto-
cols. We focus on progress. As an application-based QoS, a progress property
requires that at least a minimum set of components is available before firing
a communication action. Changing availability conditions may leave collective
communications without enough required components, forbidding the comple-
tion of a protocol. We introduce a type system, orthogonal to session types, that
ensures that well-typed protocols with variable availability conditions do not get
stuck, preserving progress.

Document Structure In §2 we introduce the design considerations for a calculus
with variable availability conditions and we present a minimal working example
to illustrate the calculus in action. §3 introduces syntax and semantics of GCq.
The progress-enforcing type system is presented in §4. Section §5 discusses re-
lated work. Finally, §6 concludes. Appendix includes additional definitions and
proof sketches of the main results, and is intended only for reviewing purposes.

2 Towards a Language for CPS Communications

The design of a language for CPS requires a technology-driven approach, that
answers to requirements regarding the nature of communications and devices in-
volved in CPS. Similar approaches have been successfully used for Web-Services
[10, 38, 33], and Multicore Programming [28, 13]. The considerations on CPS used
in this work come from well-established sources [2, 37]. We will proceed by de-
scribing their main differences with respect to traditional networks.

2.1 Unique Features in CPS Communications

Before defining a language for communication protocols in CPS, it is impor-
tant to understand the taxonomy of networks where they operate. CPS are

2

composed by sensor networks (SN) that perceive important measures of a sys-
tem, and actuator networks that change it. Some of the most important char-
acteristics in these networks include asynchronous operation, sensor mobility,
energy-awareness, application-based protocol fidelity, data-centric protocol de-
velopment, and multicast communication patterns. We will discuss each of them.

Asynchrony. Depending on the application, deployed sensors in a network have
less accessible mobile access points, for instance, sensors deployed in harsh envi-
ronmental conditions, such as arctic or marine networks. Environment may also
affect the lifespan of a sensor, or increase its probability of failure. To maximize
the lifespan of some sensors, one might expect an asynchronous operation, letting
sensors remain in a standby state, collecting data periodically.

Sensor Mobility. The implementation of sensors in autonomic devices brings
about important considerations on mobility. A sensor can move away from the
base station, making their interactions energy-intensive. In contrast, it might be
energy-savvy to start a new session with a different base station closer to the
new location.

Energy-Awareness. Limited by finite energetic resources, SN must optimize their
energy consumption, both from node and application perspectives. From a node-
specific perspective, a node in a sensor network can optimize its life by turning
parts of the node off, such as the RF receiver. From a application-specific per-
spective, a protocol can optimize it energy usage by reducing its traffic. SN cover
areas with dense node deployment, thus it is unnecessary that all nodes are oper-
ational to guarantee coverage. Additionally, SN must provide self-configuration
capabilities, adapting its behavior to changing availability conditions. Finally, it
is expected that some of the nodes deployed become permanently unavailable,
as energetic resources ran out. It might be more expensive to recharge the nodes
than to deploy new ones. The SN must be ready to cope with a decrease in some
of the available nodes.

Data-Centric Protocols. One of the most striking differences to traditional net-
works is the collaborative behavior expected in SN. Nodes aim at accomplishing a
similar, universal goal, typically related to maintaining an application-level qual-
ity of service (QoS). Protocols are thus data-centric rather than node-centric.
Moreover, decisions in SN are made from the aggregate data from sensing nodes,
rather than the specific data of any of them [36]. Collective decision-making
based in aggregates is common in SN, for instance, in protocols suites such as
SPIN [19] and Directed Diffusion [25]. Shifting from node-level to application-
level QoS implies that node fairness is considerably less important than in tra-
ditional networks. In consequence, the analysis of protocol fidelity [22] requires
a shift from node-based guarantees towards application-based ones.

Multicast Communication. Rather than peer-to-peer message passing, one-to-
many and many-to-one communications are better solutions for energy-efficient

3

1 t1[S]{Acc1}, t2[S]{Acc2}, t3[S]{Acc3} start t0[M]{Acc0} : temperature(k);
2 t0{Acc0;Ms0} 9> &q1(t1{Acc1;Ms1}, t2{Acc2;Ms2}, t3{Acc3;Ms3}) : k[measure];
3 &q2(t1{Ms1;E1}.“1”, t2{Ms2;E2}.“−2”, t3{Ms3;E3}.“5”) 9> t0{Ms0;E0} : xm : 〈k, avg〉; 0

Fig. 1: Example: Sensor network choreography

SN, as reported in [18, 14]. However, as the number of sensor nodes in a SN
scales to large numbers, communications between a base and sensing nodes can
become a limiting factor. Many-to-one traffic patterns can be combined with data
aggregation services (e.g.: TAG [30] or TinyDB [31]), minimizing the amount and
the size of messages between nodes.

2.2 Model Preview

We will illustrate how the requirements for CPS communications have been
assembled in the our calculus through a minimal example in Sensor Networks
(SN). The syntax of our language is inspired on the Global Calculus [8, 11]
extended with collective communication operations [28].

Example 1. Figure 1 portrays a simple SN choreography for temperature mea-
surement. Line 1 models a session establishment phase between sensors t1, t2, t3
(each of them implementing role S) and a monitor tm with role M . In Line 2,
tm executes a collective selection of method measure at each node. In Line 3,
an asynchronous many-to-one communication (e.g. reduce) is performed between
sensors and the monitor. Quality predicates q1,q2 model application-based QoS,
established in terms of availability requirements for each of the nodes. For in-
stance, q1 = q2 = ∀ only allows communications with all sensors in place, and
q1 = ∀,q2 = 2/3 tolerates the absence of one of the sensors in data harvesting.
Once nodes satisfy applications’ QoS requirements, an aggregation operation will
be applied to the messages received, in this case computing the average value.

Considerations regarding the impact of available components in a commu-
nication must be tracked explicitly. Annotations {X;Y } (in blue font) define
capabilities, that is, control points achieved in the system. The X in t{X;Y }
denotes the required capability for t to act, and Y describes the capability of-
fered after t has engaged in an interaction. No preconditions are necessary for
establishing a new session, so no required capabilities are necessary in Line 1. Af-
ter a session has been established, capabilities (Acci)i∈{0...3} are available in the
system. Lines 2 and 3 will modify which capabilities are present in the system de-
pending on the number of available threads. For example, a model with q1 = 2/3
can advance from Acc0, Acc1, Acc2, Acc3 to Ms0, Acc1,Ms2,Ms3. There may be
cases in which an execution of the protocol will not generate necessary capabil-
ities for a communication operation to be engaged, leaving a protocol stuck.
One case will be if q1 = 2/3,q2 = ∀, since not enough Msi capabilities can
be provided. We will defer the discussion about the interplay of capabilities and
quality predicates to Section 4.

4

3 The Global Quality Calculus (GCq)

In the following, C denotes a choreography; p denotes an annotated thread
t[A]{X;Y }, where t is a thread, X,Y are atomic formulae and A is a role anno-
tation. We will use t̃ to denote {t1, . . . , tj} for a finite j. Variable a ranges over
service channels, intuitively denoting the public identifier of a service, and k ∈ N
ranges over a finite, countable set of session (names), created at runtime. Vari-
able x ranges over variables local to a thread. We use terms t to denote data and
expressions e to denote optional data, much like the use of option data types in
programming languages like Standard ML [17]. Expressions include arithmetic
and other first-order expressions excluding service and session channels. In par-
ticular, the expression some(t) signals the presence of some data t and none the
absence of data. In our model, terms denote closed values v. Names m,n range
over threads and session channels. Finally, q stands for a quality predicate, that
determines when sufficient inputs/outputs are available. As an example, q can
be ∃, meaning that one sender/receiver is required in the interaction, or it can
be ∀ meaning that all of them are needed. We require q to be monotonic and
satisfiable.

Definition 1 (GCq syntax).

(Choreographies) C ::= η; C | C + C | e@p?C : C | 0

(Annotated threads) p ::= t[A]{X;Y }
(Interactions) η ::= p̃r start p̃s : a(k) (init)

| pr.e 9> &q(p̃s : xs) : k (broadcast)

| &q(p̃r.er) 9> ps : x : 〈k, op〉 (reduce)

| pr 9> &q(p̃s) : k[l] (select)

For simplicity of presentation, all models in the paper are finite. We will focus
our discussion on the novel interactions. First, start defines a (multiparty)
session initiation between active annotated threads p̃r and annotated service
threads p̃s. Each active thread (resp. service thread) implements the behaviour

of one of the roles in Ãr (resp. Ãs), sharing a new session name k. We assume
that a session is established with at least two participating processes, therefore
2 ≤ |p̃r|+ |p̃s|, and that threads in p̃r ∪ p̃s are pairwise different.

The language features broadcast, reduce and selection as collective interac-
tions. A broadcast implements a one-to-many communication pattern, where a
session channel k is used to transfer the evaluation of expression e (located at
pr) to threads in p̃s, with the resulting binding of variable xi at pi, for each
pi ∈ p̃s. A reduce combines one-to-many communications and aggregation [30].
In &q(p̃r.er) 9> ps : x : 〈k, op〉, each annotated thread pi in p̃r evaluates an
expression ei, and the aggregate of all receptions is evaluated using op (an oper-
ator defined on multisets such as max,min, etc.) Interaction pr 9> &q(p̃s) : k[l]
describes a collective label selection: pr communicates the selection of label l to
peers in p̃s through session k.

5

Central to our language are progress capabilities. Pairs of atomic formulae
{X;Y } at each annotated thread state the necessary preconditions for a thread
to engage (X), and the capabilities provided after its interaction (Y). As we
will see in the semantics, there are no associated preconditions for session initi-
ation (i.e. threads are created at runtime), so we normally omit them. Explicit
x@p/e@p indicate the variable/boolean expression x/e is located at p. We of-
ten omit 0, empty vectors and atomic formulae {X;Y } from annotated threads
when unnecessary.

The free term variables fv(C) are defined as usual. An interaction η in η; C
can bind session channels, choreographies and variables. In start, variables
{p̃r, a} are free while variables {p̃s, k} are bound (since they are freshly cre-
ated). In broadcast, variables x̃s are bound. A reduce binds {x}. Finally, we
assume that all bound variables in an expression have been renamed apart from
each other, and apart from any other free variables in the expression.

Expressivity The importance of roles is only crucial in a start interaction. Tech-
nically, one can infer the role of a given thread t used in an interaction η by
looking at the start interactions preceding it in the abstract syntax tree. GCq
can still represent unicast message-passing patterns as in [8]. Unicast communi-
cation p1.e 9> p2 : x : k can be encoded in multiple ways using broadcast/reduce
operators. For instance, p1.e 9> &∀(p2 : x) : k and &∀(p1.e) 9> p2 : x : 〈id, k〉 are
just a couple of possible implementations.

3.1 Semantics

Choreographies are considered modulo standard structural and swapping con-
gruence relations (resp. ≡, 'C). ≡ is defined as the least congruence relation on
C supporting α−renaming, such that (C,0,+) is an abelian monoid. The swap
congruence [11] provides a way to reorder non-conflicting interactions, allowing
for a restricted form of asynchronous behavior. Non-conflicting interactions are
those involving sender-receiver actions that do not conform a control-flow de-
pendency. For instance, tA.eA 9> &q1(tB : xB) : k1; tC .eC 9> &q2(tD : xD) :
k2 'C tC .eC 9> &q2(tD : xD) : k2; tA.eA 9> &q1(tB : xB) : k1. Formally, let

T(C) be the set of threads in C, defined inductively as T(η; C)
def
= T(η)∪T(C),

and T(η)
def
=

⋃
i={1..j} ti if η = t1[A1].e 9> &q(t2[A2] : x2, . . . , tj [Aj] : xj) : k

(similarly for init, reduce and selection, and standardly for the other process
constructs in C). The swapping congruence rules are presented in Figure 2.

A state σ keeps track of the capabilities achieved by a thread in a session,
and it is formally defined as set of maps (t, k) 7→ X. The rules in Figure 3 define
state manipulation operations, including update (σ[σ′]), and lookup (σ(t, k)).

Because of the introduction of quality predicates, a move from η; C into
C might leave some variables in η without proper values, as the participants
involved might not have been available. We draw inspiration from [35], intro-
ducing effect rules describing how the evaluation of an expression in a reduce

6

T(η) # T(η′)

η; (η′; C) 'C η′; (η; C)

p /∈ T(η)

e@p? η; C1 : η; C2 'C η; e@p?C1 : C2

p 6= r

e@p? (e′@r?C1 : C2) :
(e′@r?C′1 : C′2)

'C
e′@r? (e@p?C1 : C′1) :

(e@p?C2 : C′2)

Fig. 2: Swap congruence relation, 'C

Y = X if (t, k,X) ∈ σ Y = ∅ o.w.

σ(t, k) = Y

δ = {(t, k,X) | (t, k,X) ∈ σ ∧ (t, k, Y) ∈ σ′}
σ[σ′] = (σ\δ), σ′

Fig. 3: State lookup and update rules

operation affects interactions. The relation −→→ (Figure 4) describes how evalua-
tions are partially applied without affecting waiting threads. Label ξ records the
substitutions of atomic formulae in each thread.

Finally, given φ ∈ {tt, ff}, the relation β ::φ θ tracks whether all required
binders in β have been performed, as well as substitutions used θ. Binder β is
defined in terms of partially evaluated outputs c:

sc ::= p.e | p.some(v) c ::= &q(sc1, . . . , scn)

The rules specifying β ::φ θ appear in Figure 5. A substitution θ = [(p1, some(v1)),
. . . , (pn, some(vn))/x1@p1, . . . , xn@pn] maps each variable xi at pi to optional
data some(vi) for 1 ≤ i ≤ n. A composition θ1 ◦ θ2(x) is defined as θ1 ◦ θ2(x) ::=
θ1(θ2(x)), and q(t1, . . . , tn) =

∧
i∈1≤i≤n ti if q = ∀, q(t1, . . . , tn) =

∨
i∈1≤i≤n ti

if q = ∃, and possible combinations therein. As for process terms, θ(C) denotes
the application of substitution θ to a term C (and similarly for η).

We now have all the ingredients to understand the semantics of GCq. The set

of transition rules in
λ−→ is defined as the minimum relation on names, states, and

choreographies satisfying the rules in Figure 6. The operational semantics is given

in terms of labelled transition rules. Intuitively, a transition (νm̃) 〈σ,C〉 λ−→
(νñ) 〈σ′, C ′〉 expresses that a configuration 〈σ,C〉 with used names m̃ fires an
action λ and evolves into 〈σ′, C ′〉 with names ñ. We use the shorthand notation
A # B to denote set disjointness, A ∩ B = ∅. The exchange function [[X;Y]]Z
returns (Z\X)∪Y if X ⊆ Z and Z otherwise. Actions are defined as λ ::= {τ, η},
where η denotes interactions, and τ represents an internal computation. Relation
e@p ↓ v describes the evaluation of a expression e (in p) to a value v.

We now give intuitions on the most representative operational rules. Rule
bInitemodels initial interactions: state σ is updated to account for the new threads
in the session, updating the set of used names in the reductum. Rule bBcaste

models broadcast: given an expression evaluated at the sender, one needs to check

7

η = &q(t1[A1]{X1;Y1}.e1, . . . , tj [Aj]{Xj ;Yj}.ej) 9> tB [B]{XB ;YB} : x : 〈k, op〉 ei@ti ↓ vi
Xi ∈ σ(ti, k) σ′ = σ[(ti, k) 7→ [[Xi;Yi]](σ(ti, k))] i∈{1...j}

〈σ, η; C〉 (ti,k) : Xi::Yi−−−−−−−−→→
〈
σ′,

(&q(t1[A1]{X1;Y1}.e1, . . . , ti[Ai]{Yi;Yi}.some(vi), . . . ,
tj [Aj]{Xj ;Yj}.ej) 9> tB [B]{XB ;YB} : x : 〈k, op〉) ; C

〉

Fig. 4: Effects

p.e ::ff [] p.some(v) ::tt [(p, some(v))]

sc1 ::t1 θ1 . . . scn ::tn θn
&q(sc1, . . . , scn) ::q(t1,...,tn) θ1 ◦ . . . ◦ θn

Fig. 5: Rules for β ::φ θ

that there are enough receivers ready to get a message. Such a check is performed
by evaluating q(J). In case of a positive evaluation, the execution of the rule will:
(1) update the current state with the new states of each participant engaged in
the broadcast, and (2) apply the partial substitution θ to the continuation C. The
behaviour of a reduce operation is described using rules bRedDe and bRedEe: the
evaluation of expressions of each of the available senders generates an application
of the effect rule in Figure 4. If all required substitutions have been performed,
one can proceed by evaluating the operator to the set of received values, binding
variable x to its results, otherwise the choreography will wait until further inputs
are received (i.e.: the continuation is delayed).

In contrast to previous works in multiparty sessions (e.g. [12]), we present an
early semantics: it allows for transitions to match with distinct moves, depending
on which participants are available first. We opted to favor an application-based
QoS rather than a node-based QoS, as described in Section 2. Similar considera-
tions motivates the asymmetry between broadcast and reduce: while a broadcast
is a non-blocking operation that fires as long as enough receivers are ready to
be engaged, a reduce is a blocking operation, and will delay the transition until
there is enough senders.

The reader familiar with the Global Calculus may have noticed the absence
of a general asynchronous behaviour in our setting. In particular, rule:

(νm̃) 〈σ,C〉 λ−→ (νñ) 〈σ′, C ′〉 η 6= start snd(η) ⊆ fn(λ)
rcv(η) # fn(λ) ñ = m̃, r̃ ∀r∈r̃ (r ∈ bn(λ) r /∈ fn(η))

(νm̃) 〈σ, η; C〉 λ−→ (νñ) 〈σ′, η; C ′〉
bAsynche

corresponding to the extension of rule bC|ASYNCHe in [11] with collective commu-
nications, is absent in our semantics. The reason behind it lies in the energy con-
siderations of our application: consecutive communications may have different
energetic costs, affecting the availability of sender nodes. Consider for example
the configuration

(νm̃) 〈σ, (tA[A]{X;Y }.e 9> &∃(˜tr[Br] : xr) : k); tA[A]{X;Y }.e 9> &∀(˜ts[Bs] : xs) : k〉

8

η = ˜tr[Ar]{Xr;Yr} start ˜ts[Bs]{Ys} : a(k)

σ′ = [(ti, k) 7→ Yi]
|t̃r|+|t̃s|
i=1 ñ = t̃s, {k} ñ # m̃

(νm̃)
〈
σ, ˜tr[Ar]{Yr} start ˜ts[Bs]{Ys} : a(k); C

〉
η−→ (νm̃, ñ) 〈σ[σ′], C〉

bInite

η = tA[A]{XA;YA}.e 9> &q(˜tr[Br]{Xr;Yr} : xr) : k J ⊆ t̃r q(J) e@tA ↓ v

∀i∈{A}∪J : Xi ⊆ σ(ti, k) ∧ σ′(ti, k) = [[Xi;Yi]](σ(ti, k)) ∀i∈t̃r : θ(xi) =

{
some(v) i ∈ J
none o.w.

(νm̃)
〈
σ,
(
tA[A]{XA;YA}.e 9> &q(˜tr[Br]{Xr;Yr} :xr) : k

)
;C
〉

θ(η)−−−→ (νm̃) 〈σ[σ′], θ(C)〉
bBcaste

η = tA[A]{XA;YA} 9> &q(˜tr[Br]{Xr;Yr}) : k[lh] J ⊆ t̃r q(J)
∀i∈{A}∪J : Xi ⊆ σ(ti, k) ∧ σ′(ti, k) = [[Xi;Yi]](σ(ti, k))

(νm̃)
〈
σ,
(
tA[A]{XA;YA} 9> &q(˜tr[Br]{Xr;Yr}) : k[lh]

)
; C
〉

η−→ (νm̃) 〈σ[σ′], C〉
bSele

η = &q(˜tr[Ar]{Xr;Yr}.er) 9> tB [B]{XB ;YB} : x : 〈k, op〉
〈σ, η; C〉 ξ−→→ 〈σ′, η′; C〉 η′ ::ff θ

(νm̃) 〈σ, η; C 〉 τ−→ (νm̃) 〈σ′, η′; C〉
bRedDe

η = &q(˜tr[Ar]{Xr;Yr}.er) 9> tB [B]{XB ;YB} : x : 〈k, op〉
〈σ, η; C〉 ξ−→→ 〈σ′, η′; C〉 η′ ::tt θ (tB , k,XB) ∈ σ′

(νm̃) 〈σ, η; C〉 θ(η′)−−−→ (νm̃) 〈[[(tB , k,XB); (tB , k, YB)]]σ′, C[op(θ)/x@tB]〉
bRedEe

CRC′ (νm̃) 〈σ,C′〉 λ−→ (νñ) 〈σ′, C′′〉 C′′RC′′′ R ∈ {≡,'C}

(νm̃) 〈σ,C〉 λ−→ (νñ) 〈σ′, C′′′〉
bConge

i = 1 if e@t ↓ tt, i = 2 o.w.

(νm̃) 〈σ, e@t?C1 : C2〉
τ−→ (νm̃) 〈σ,Ci〉

bIfe
(νm̃) 〈σ,Ci〉

λ−→ (νñ) 〈σ′, C′〉 i∈{1,2}

(νm̃) 〈σ,C1 + C2〉
λ−→ (νñ) 〈σ′, C′〉

bSume

Fig. 6: GCq: Operational Semantics

with t̃r#t̃s andX ⊆ σ(tA, k). If the order of the broadcasts is shuffled, the second
broadcast may consume all energy resources for tA, making it unavailable later.
Formally, the execution of a broadcast update the capabilities offered in σ for
tA, k to Y , inhibiting two communication actions with same capabilities to be
reordered. We will refrain the use Rule bAsynche in our semantics.

Definition 2 (Progress). C progresses if there exists C ′, σ′, ñ, λ such that

(νm̃) 〈σ,C〉 λ−→ (νñ) 〈σ′, C ′〉, for all σ, m̃.

4 Type-checking Progress

One of the challenges regarding the use of partial collective operations concerns
the possibility of getting into runs with locking states. Consider a variant of

9

Example 1 with q1 = ∃ and q2 = ∀. This choice leads to a blocked configuration.
The system blocks since the collective selection in Line (2) continues after a
subset of the receivers in t1, t2, t3, have executed the command. Line (3) requires
all senders to be ready, which will not be the most general case. The system
will additionally block if participant dependencies among communications is not
preserved. The choreography in Figure 7 illustrates this.

2 ... Lines 1,2 in Figure 1.
3 &∃(t1{Ms1;E1}.“1”, t3{Ms3;E3}.“5”) 9> tm{Ms0;E0} : x0 : 〈k, avg〉; 0

Fig. 7: Variant of Example 1 with locking states

The choreography in Figure 7 blocks for q1 = ∃, since the selection operator
in Line (2) can execute a communication over t2, blocking the reduce in Line 3.

We introduce a type system to ensure progress on variable availability con-
ditions. A judgment is written as Ψ ` C, where Ψ is a list of formulae in Intu-
itionistic Linear Logic (ILL) [16]. Intuitively, Ψ ` C is read as the formulae in
Ψ describe the program point immediately before C. Formulae ψ ∈ Ψ take the
form of the constant tt, ownership types of the form p : k [A] B X, and the
linear logic version of conjunction, disjunction and implication (⊗,⊕,(). Here
p : k [A] B X is an ownership type, asserting that p behaves as the role A in
session k with atomic formula X. Moreover, we require Ψ to contain formulae
free of linear implications in Ψ ` C1.

Figure 8 presents selected rules for the type system for GCq. The full defini-
tion is included in Appendix A.1. Since the rules for inaction, conditionals and
non-determinism are standard, we focus our explanation on the typing rules for
communications. Rule bTInite types new sessions: Ψ is extended with function

init(˜tp[A]{X}, k), that returns a list of ownership types ˜tp : k [A] BX. The con-
dition {t̃s, k} # (T(Ψ) ∪K(Ψ)) ensures that new names do not exist neither in
the threads nor in the used keys in Ψ .

The typing rules for broadcast, reduce and selection are analogous, so we
focus our explanation in bTBcaste. Here we abuse of the notation, writing Ψ ` C
to denote type checking, and Ψ ` ψ to denote formula entailment. The semantics
of ∀≥1J s.t. C : D is given by ∀J s.t. C : D ∧ ∃J s.t. C. The judgment

Ψ ` (tA[A]{XA;YA}.e 9> &q(˜tr[Br]{Xr;Yr} : xr) : k); C

succeeds if environment Ψ can provide capabilities for sender tA[A] and for

a valid subset J of the receivers in t̃r[Br]. J is a valid subset if it contains
enough threads to render the quality predicate true (q(J)), and the proof of
ψA, (ψj)j∈J , φ(φ′ ` φ′ is provable. This proof succeeds if ψA and (ψj)j∈J con-
tain ownership types for the sender and available receivers with corresponding

1 We do, however, use the full set of operators when performing proof search

10

Choregraphy Formation (Ψ ` C),

Ψ, init(˜tr[Ar]{Yr}, ˜ts[Bs]{Ys}, k) ` C {t̃s, k} # (T(Ψ) ∪K(Ψ))

Ψ ` ˜tr[Ar]{Yr} start ˜ts[Bs]{Ys} : a(k); C
bTinite

∀≥1J. s.t.

(
J ⊆ t̃r ∧ q(J) ∧ Ψ = ψA, (ψj)j∈J , Ψ

′

∧ ψA, (ψj)j∈J ` tA : k [A] BXA
⊗

j∈J(tj : k [Bj] BXj)

)
:

tA : k [A] B YA, (tj : k [Bj] B Yj)j∈J , Ψ
′ ` C ` e@tA : opt.data (` xi@ti : opt.data)

|t̃r|
i=1

Ψ `
(
tA[A]{XA;YA}.e 9> &q(˜tr[Br]{Xr;Yr} : xr) : k

)
; C

bTbcaste

∀≥1J. s.t.

(
J ⊆ t̃r ∧ q(J) ∧ Ψ = ψB , (ψj)

|J|
j=1, Ψ

′

∧ ψB , (ψj)
|J|
j=1 ` tB : k [B] BXB

⊗
j∈J(tj : k [Aj] BXj)

)
:

tB : k [B] B YB , (tj : k [Aj] B Yj)
|J|
j=1 , Ψ

′ ` C (` ei@ti : opt.data)
|t̃r|
i=1 ` x@tB : opt.data

Ψ `
(

&q(˜tr[Ar]{Xr;Yr}.er) 9> tB [B]{XB ;YB} : x : 〈k, op〉
)
; C

bTrede

((as in bTbcaste∗))

Ψ `
(
tA[A]{XA;YA} 9> &q(˜tr[Br]{Xr;Yr}) : k[lh]

)
; C
bTsele

Ψ ` 0
bTinacte

Ψ ` C1 Ψ ` C2

Ψ ` e@t?C1 : C2
bTconde

Ψ = ψ ⊕ ψ′ ψ ` C ψ′ ` C′

Ψ ` C + C′
bTsume

Fig. 8: GCq: Type checking rules (excerpt): Premises for bTsele are the same as
for bTbcaste, without opt.data premises

capabilities. Finally, the type of the continuation C will consume the resources
used in the sender and all involved receivers, updating them with new capabilities
for the threads engaged.

Example 2. In Example 1, tt ` C if (q1 = ∀) ∧ (q2 = {∀,∃}). In the case
q1 = ∃,q2 = ∀, the same typing fails. Similarly, tt 6` C if q1 = ∃, for the
variant of Example 1 in Figure 7.

A type preservation theorem must consider the interplay between the state and
formulae in Ψ . We write σ |= Ψ to say that the tuples in σ entail the formulae
in Ψ . For instance, σ |= t : k [A] BX iff (t, k,X) ∈ σ. Its formal definition is
included in Appendix A.1.

Theorem 1 (Type Preservation). If (νm̃) 〈σ,C〉 λ−→ (νñ) 〈σ′, C ′〉, σ |= Ψ ,
and Ψ ` C, then ∃Ψ ′. Ψ ′ ` C ′ and σ′ |= Ψ ′.

Theorem 2 (Progress). If Ψ ` C, σ |= Ψ and C 6≡ 0, then C progresses.

The decidability of type checking depends on the provability of formulae in
our ILL fragment. Notice that the formulae used in type checking corresponds
to the Multiplicative-Additive fragment of ILL, whose provability is decidable

11

[27]. For typing collective operations, the number of checks grows according to
the amount of participants involved. Decidability exploits the fact that for each
interaction the number of participants is bounded.

Theorem 3 (Decidability of Typing). Ψ ` C is decidable

5 Related Work

Availability considerations in distributed systems has recently spawned novel
research strands in regular languages [21, 1], continuous systems [2], and endpoint
languages [35]. To the best of our knowledge, this is the first work considering
availability from a choreographical perspective.

A closely related work is the Design-By-Contract approach for multiparty
interactions [4]. In fact, in both works communication actions are enriched with
pre-/post- conditions, similar to works in sequential programming [20]. The
work on [4] enriches global types with assertions, that are then projected to
a session π−calculus. Assertions may generate ill-specifications, and a check for
consistency is necessary. Our capability-based type system guarantees temporal-
satisfiability as in [4], not requiring history-sensitivity due to the simplicity of
the preconditions used in our framework. The most obvious difference with [4] is
the underlying semantics used for communication, that allows progress despite
some participants are unavailable.

Other works have explored the behavior of communicating systems with col-
lective/broadcast primitives. In [24], the expressivity of a calculus with bounded
broadcast and collection is studied. In [28], the authors present a type theory
to check whether models for multicore programming behave according to a pro-
tocol and do not deadlock. Our work differs from these approaches in that our
model focuses considers explicit considerations on availability for the systems in
consideration. Also for multicore programming, the work in [13] presents a calcu-
lus with fork/join communication primitives, with a flexible phaser mechanism
that allows some threads to advance prior to synchronization. The type system
guarantees a node-centric progress guarantee, ideal for multicore computing, but
too coarse for CPS. Finally, the work [26], present endpoint (session) types for
the verification of communications using broadcast in the Ψ -calculus. We do not
observe similar considerations regarding availability of components in this work.

The work [12] presented multiparty global types with join and fork operators,
capturing in this way some notions of broadcast and reduce communications,
which is similar to our capability type-system. The difference with our approach
is described in Section 3. On the same branch [15] introduces multiparty global
types with recursion, fork, join and merge operations. The work does not provide
a natural way of encoding broadcast communication, but one could expect to be
able to encode it by composing fork and merge primitives.

12

6 Conclusions and Future Work

We have presented a process calculus aimed at studying protocols with vari-
able availability conditions, as well as a type system to ensure their progress.
It constitutes the first step towards a methodology for the safe development of
communication protocols in CPS. The analysis presented is orthogonal to ex-
isting type systems for choreographies (c.f. session types [11].) Our next efforts
include the modification of the type theory to cater for recursive behavior, the
generation of distributed implementations (e.g. EndPoint Projection [8]), and
considerations of compensating [7, 9, 29] and timed behavior [6, 5]. Type check-
ing is computationally expensive, because for each collective interaction one must
perform the analysis on each subset of participants involved. The situation will
be critical once recursion is considered. We believe that the efficiency of type
checking can be improved by modifying the theory so it generates one formulae
for all subsets.

Traditional design mechanisms (including sequence charts of UML and chore-
ographies) usually focus on the desired behavior of systems. In order to deal with
the challenges from security and safety in CPS it becomes paramount to cater for
failures and how to recover from them. This was the motivation behind the devel-
opment of the Quality Calculus that not only extended a π-calculus with quality
predicates and optional data types, but also with mechanisms for programming
the continuation such that both desired and undesired behavior was adequately
handled. In this work we have incorporated the quality predicates into chore-
ographies and thereby facilitate dealing with systems in a failure-aware fashion.
However, it remains a challenge to incorporate the consideration of both desired
and undesired behavior that is less programming oriented (or EndPoint Projec-
tion oriented) than the solution presented by the Quality Calculus. This may
require further extensions of the calculus with fault-tolerance considerations.

Acknowledgments. We would like to thank Marco Carbone and Jorge A. Pérez
for their insightful discussions, and to all anonymous reviewers for their help-
ful comments improving the paper. This research was funded by the Danish
Foundation for Basic Research, project IDEA4CPS (DNRF86-10). López has
benefitted from travel support by the EU COST Action IC1201: Behavioural
Types for Reliable Large-Scale Software Systems (BETTY).

References

1. P. A. Abdulla, M. F. Atig, R. Meyer, and M. S. Salehi. What’s decidable about
availability languages? In FSTTCS, volume 45 of LIPIcs, pages 192–205. Schloss
Dagstuhl, 2015.

2. R. Alur. Principles of Cyber-Physical Systems. MIT Press, 2015.

3. L. Bocchi, T. Chen, R. Demangeon, K. Honda, and N. Yoshida. Monitoring net-
works through multiparty session types. In FMOODS/FORTE, volume 7892 of
LNCS, pages 50–65. Springer, 2013.

13

4. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract
for distributed multiparty interactions. In CONCUR, volume 6269 of LNCS, pages
162–176. Springer, 2010.

5. L. Bocchi, J. Lange, and N. Yoshida. Meeting deadlines together. In CONCUR,
volume 42 of LIPIcs, pages 283–296. Schloss Dagstuhl, 2015.

6. L. Bocchi, W. Yang, and N. Yoshida. Timed multiparty session types. In CONCUR,
volume 8704 of LNCS, pages 419–434. Springer, 2014.

7. M. Carbone. Session-based choreography with exceptions. Electr. Notes Theor.
Comput. Sci., 241:35–55, 2009.

8. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred pro-
gramming for web services. In ESOP, pages 2–17, 2007.

9. M. Carbone, K. Honda, and N. Yoshida. Structured interactional exceptions in
session types. In CONCUR, volume 5201 of LNCS, pages 402–417. Springer, 2008.

10. M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, and S. Ross-Talbot. A
theoretical basis of communication-centred concurrent programming. Web Services
Choreography Working Group mailing list, to appear as a WS-CDL working report,
2006.

11. M. Carbone and F. Montesi. Deadlock-freedom-by-design: Multiparty asyn-
chronous global programming. In POPL, pages 263–274. ACM, 2013.

12. G. Castagna, M. Dezani-Ciancaglini, and L. Padovani. On global types and multi-
party sessions. In FORTE, pages 1–28. Springer, 2011.

13. T. Cogumbreiro, F. Martins, and V. T. Vasconcelos. Coordinating phased activities
while maintaining progress. In COORDINATION, volume 7890 of LNCS, pages
31–44. Springer, 2013.

14. J. Deng, Y. S. Han, W. B. Heinzelman, and P. K. Varshney. Balanced-energy
sleep scheduling scheme for high-density cluster-based sensor networks. Computer
communications, 28(14):1631–1642, 2005.

15. P. Denielou and N. Yoshida. Multiparty session types meet communicating au-
tomata. In ESOP, volume 7211, pages 194–213. Springer, 2012.

16. J.-Y. Girard. Linear logic. Theor. Comp. Sci., 50:1–102, 1987.
17. R. Harper. Programming in Standard ML. Working Draft, 2013.
18. W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan. An application-

specific protocol architecture for wireless microsensor networks. Wireless Commu-
nications, IEEE Transactions on, 1(4):660–670, 2002.

19. W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for infor-
mation dissemination in wireless sensor networks. In MobiCom, pages 174–185.
ACM, 1999.

20. C. A. R. Hoare. An axiomatic basis for computer programming (reprint). Commun.
ACM, 26(1):53–56, 1983.

21. J. Hoenicke, R. Meyer, and E. Olderog. Kleene, Rabin, and Scott are available. In
CONCUR, volume 6269 of LNCS, pages 462–477. Springer, 2010.

22. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Dis-
cipline for Structured Communication-Based Programming. In ESOP, pages 122–
138. Springer, 1998.

23. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
POPL, 43(1):273–284, 2008.

24. H. Hüttel and N. Pratas. Broadcast and aggregation in BBC. In PLACES, EPTCS,
pages 51–62, 2015.

25. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In MobiCom, pages 56–67.
ACM, 2000.

14

26. D. Kouzapas, R. Gutkovas, and S. J. Gay. Session types for broadcasting. In
PLACES, volume 155 of EPTCS, pages 25–31, 2014.

27. P. Lincoln. Deciding provability of linear logic formulas. London Mathematical
Society Lecture Note Series, pages 109–122, 1995.

28. H. A. López, E. R. B. Marques, F. Martins, N. Ng, C. Santos, V. T. Vasconcelos,
and N. Yoshida. Protocol-based verification of message-passing parallel programs.
In OOPSLA, pages 280–298. ACM, 2015.

29. H. A. López and J. A. Pérez. Time and Exceptional Behavior in Multiparty
Structured Communications. In WS-FM, volume 7176 of LNCS, pages 48–63.
Springer, 2012.

30. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A tiny aggregation
service for ad-hoc sensor networks. ACM SIGOPS Operating Systems Review,
36(SI):131–146, 2002.

31. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an ac-
quisitional query processor for sensor networks. In SIGMOD/PODS international
conference on Management of data, pages 491–502. ACM, 2003.

32. F. Montesi. Choreographic Programming. Ph.D. thesis, IT University of Copen-
hagen, 2013. http://www.fabriziomontesi.com/files/m13_phdthesis.pdf.

33. F. Montesi, C. Guidi, and G. Zavattaro. Composing services with jolie. In ECOWS,
pages 13–22. IEEE Computer Society, 2007.

34. R. Neykova, L. Bocchi, and N. Yoshida. Timed runtime monitoring for multiparty
conversations. In BEAT, volume 162 of EPTCS, pages 19–26, 2014.

35. H. R. Nielson, F. Nielson, and R. Vigo. A calculus for quality. In FACS, pages
188–204. Springer, 2013.

36. S. Pattem, B. Krishnamachari, and R. Govindan. The impact of spatial correlation
on routing with compression in wireless sensor networks. ACM Transactions on
Sensor Networks (TOSN), 4(4):24, 2008.

37. M. A. Perillo and W. B. Heinzelman. Wireless sensor network protocols. In
A. Boukerche, editor, Handbook of Algorithms for Wireless Networking and Mobile
Computing, pages 1–35. Chapman and Hall/CRC, 2005.

38. N. Yoshida, R. Hu, R. Neykova, and N. Ng. The scribble protocol language. In
TGC, pages 22–41. Springer, 2013.

A Additional Definitions

A.1 Type System

Figure 9 presents the complete type system for GCq.

Definition 3 (State satisfaction). The entailment relation between a state
σ and an environment Ψ , and the entailment relation between a state σ and
a formula ψ are written σ |= Ψ and σ |= ψ, respectively. They are defined as
follows:

σ |= · ⇐⇒ σ is defined

σ |= ψ, Ψ ⇐⇒ σ |= ψ and σ |= Ψ

σ |= tt ⇐⇒ σ is defined

σ |= t : k [A] BX ⇐⇒ (t, k,X) ∈ σ
σ |= ψ1 ⊗ ψ2 ⇐⇒ σ = σ′, σ′′ | σ′ |= ψ1 ∧ σ′′ |= ψ2

15

Choregraphy Formation (Ψ ` C),

Ψ, init(˜tr[Ar]{Yr}, ˜ts[Bs]{Ys}, k) ` C {t̃s, k} # (T(Ψ) ∪K(Ψ))

Ψ ` ˜tr[Ar]{Yr} start ˜ts[Bs]{Ys} : a(k); C
bTinite

∀≥1J. s.t.

(
J ⊆ t̃r ∧ q(J) ∧ Ψ = ψA, (ψj)j∈J , Ψ

′ ∧ φ = tA : k [A] BXA
⊗

j∈J(tj : k [Bj] BXj)

∧ φ′ = tA : k [A] B YA
⊗

j∈J (tj : k [Bj] B Yj) ∧ ψA, (ψj)j∈J , φ(φ′ ` φ′
)

:

tA : k [A] B YA, (tj : k [Bj] B Yj)j∈J , Ψ
′ ` C ` e@tA : opt.data ` xi@ti : opt.data i∈{1...|t̃r|}

Ψ `
(
tA[A]{XA;YA}.e 9> &q(˜tr[Br]{Xr;Yr} : xr) : k

)
; C

bTbcaste

∀≥1J. s.t.

(
J ⊆ t̃r ∧ q(J) ∧ Ψ = ψB , (ψj)j∈J , Ψ

′ ∧ φ = tB : k [B] BXB
⊗

j∈J(tj : k [Aj] BXj)

∧ φ′ = tB : k [B] B YB
⊗

j∈J (tj : k [Aj] B Yj) ∧ ψB , (ψj)j∈J , φ(φ′ ` φ′
)

:

tB : k [B] B YB , (tj : k [Aj] B Yj)j∈J , Ψ
′ ` C ` ei@ti : opt.data ` x@tB : opt.data i∈{1...|t̃r|}

Ψ `
(

&q(˜tr[Ar]{Xr;Yr}.er) 9> tB [B]{XB ;YB} : x : 〈k, op〉
)
; C

bTrede

∀≥1J. s.t.

(
J ⊆ t̃r ∧ q(J) ∧ Ψ = ψA, (ψj)j∈J , Ψ

′ ∧ φ = tA : k [A] BXA
⊗

j∈J(tj : k [Bj] BXj)

∧ φ′ = tA : k [A] B YA
⊗

j∈J (tj : k [Bj] B Yj) ∧ ψA, (ψj)j∈J , φ(φ′ ` φ′
)

:

tA : k [A] B YA, (tj : k [Bj] B Yj)j∈J , Ψ
′ ` C

Ψ `
(
tA[A]{XA;YA} 9> &q(˜tr[Br]{Xr;Yr}) : k[lh]

)
; C

bTsele

Ψ ` 0
bTinacte

Ψ ` C1 Ψ ` C2

Ψ ` e@t?C1 : C2
bTconde

Ψ = ψ ⊕ ψ′ ψ ` C ψ′ ` C′

Ψ ` C + C′
bTsume

Data Typing

` t@p : data
bTD1e ` v@p : data

bTD2e

` e@p : opt.data
bTOD1e

` v : data

` some(v)@p : opt.data
bTOD2e ` none@p : opt.data

bTOD3e

State Formation (σ : state),

∅ : state
bTS1e

σ : state σ(t[A], k) = ∅ X ∈ dom(Σ)

σ, (t[A], k,X) : state
bTS2e

σ : state (t[A], k,X) ∈ σ Y ∈ dom(Σ)

[[X;Y]](σ(t, k)) : state
bTS3e

σ : state δ : state

σ\δ : state
bTS4e

Formulae Formation (Ψ : form),

· : form bTF1e
ψ : form Ψ : form

ψ, Ψ : form
bTF2e

tt : form
bTF3e

t : k [A] BX : form
bTF4e

ψ : form ψ′ : form ◦ ∈ {⊗,⊕}
ψ ◦ ψ′ : form bTF5e

ψ : form δ : state

ψ\δ : form
bTF6e

Fig. 9: GCq: Type checking - Complete rules

σ |= ψ1 ⊕ ψ2 ⇐⇒ σ |= ψ1 or σ |= ψ2

σ |= ψ\δ ⇐⇒ ∃σ′ s.t. σ′ |= ψ ∧ σ = σ′\δ

16

