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Abstract. In Hadoop cluster, the performance and the resource con-
sumption of MapReduce jobs do not only depend on the characteristics
of these applications and workloads, but also on the appropriate setting
of Hadoop configuration parameters. However, when the job workloads
are not known a priori or they evolve over time, a static configuration
may quickly lead to a waste of computing resources and consequently to a
performance degradation. In this paper, we therefore propose an on-line
approach that dynamically reconfigures Hadoop at runtime. Concretely,
we focus on balancing the job parallelism and throughput by adjusting
Hadoop capacity scheduler memory configuration. Our evaluation shows
that the approach outperforms vanilla Hadoop deployments by up to
40 % and the best statically profiled configurations by up to 13 %.

1 Introduction

Along the years, Hadoop has emerged as the de facto standard for big data
processing and the MapReduce paradigm has been applied to large diversity of
applications and workloads. In this context, the performance and the resource
consumption of Hadoop jobs do not only depend on the characteristics of appli-
cations and workloads, but also on an appropriately configured Hadoop environ-
ment. Next to the infrastructure-level configuration (e.g. the number of nodes
in a cluster), the Hadoop performance is affected by job- and system-level para-
meter settings. Optimizing the job-level parameters to accelerate the execution
of Hadoop jobs has been a subject to a lot of research work [2,9,13–16].

Beyond job-level configuration, Hadoop also includes a large set of system-
level parameters. In particular, YARN (Yet Another Resource Negotiator), the
resource manager introduced in the new generation of Hadoop (version 2.0)
defines a number of parameters that control how the applications (e.g. MapRe-
duce jobs) are scheduled in a cluster which influence jobs performance. Among
YARN parameters, the MARP (Maximum Application Master Resource in Per-
cent : yarn.scheduler.capacity.maximum-am-resource-percent) property directly
affects the level of MapReduce job parallelism and associated throughput. This
property balances the number of concurrently executing MapReduce jobs versus
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the number of the corresponding map/reduce tasks. An inappropriate MARP
configuration will therefore either reduce the number of jobs running in parallel
resulting in idle jobs, or reduce the number of map/reduce tasks and thus delay
the completion of jobs. However, finding an appropriate MARP value is far from
trivial. On the one hand, the diversity of MapReduce applications and workloads
suggests that a simple, one-size-fits-all application-oblivious configuration, will
not be broadly effective—i.e. one MARP value that works well for one MapRe-
duce application/workflow combination might not work for another [22]. On
the other hand, YARN configuration is static and as such it cannot reflect any
changes in workload dynamics. The only possibility is to do a best-effort config-
uration based on either experience or a static profiling in the case the jobs and
workloads are known as a priori. However, (1) this might not be always possible,
(2) it requires additional work, and (3) any unpredictable workload changes (e.g.
a load peak due to node failures) will cause performance degradation.

In this paper, we therefore focus on dynamic MARP configuration. The main
contributions are the following:

(1) an analysis of the effects of the MARP parameter on the MapReduce job
parallelism and throughput, and

(2) a feedback control loop that self-balances MapReduce job parallelism and
throughput.

Our evaluation shows that our approach systematically achieves better perfor-
mance than static configurations. Concretely, we outperform the default Hadoop
configuration by up to 40 % and up to 13 % for the best-effort statically profiled
configurations, yet without any need for prior knowledge of the application or
the workload shape, nor any need for any learning phase.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
architecture of YARN. The motivation of our research is placed in Sect. 3.
Section 4 illustrates the memory and performance issues usually faced by Hadoop
clusters. Section 5 describes the methodology we adopt and Sect. 6 evaluates our
solution using various Hadoop benchmarks. We discuss related work in Sect. 7
before concluding in Sect. 8.

2 Overview of YARN

YARN is a cluster-level computing resource manager responsible for resource
allocations and overall jobs orchestration. It provides a generic framework for
developing distributed applications that goes beyond the MapReduce program-
ming model. It consists of two main components (cf. Fig. 1): a per-cluster
ResourceManager acting as a global computing resource arbiter and a per-node
NodeManager responsible for managing node-level resources and reporting their
usage to the ResourceManager.

Figure 1 depicts the architecture of YARN. The ResourceManager contains a
scheduler that allocates resources for the running applications, like the Job-
Tracker in previous version of Hadoop. However, ResourceManager does not
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Fig. 1. High-level YARN architecture.

do any application monitoring or status tracking. This responsibility is left
for the per-job instance of Application Master (AM). AM is an application-
specific process that negotiates resources from the ResourceManager and collab-
orates with the NodeManager(s) to execute and monitor its individual tasks. The
scheduling is based on the application resource requirements and it is realized
using an abstract notion of containers. Essentially, each computing node is par-
titioned into a number of containers which are fixed-size resource blocks running
AMs and their corresponding tasks.

3 Motivation

To understand the limitation of static configuration, we first study how the
number of tasks to be processed and the MARP affects the overall completion
time of Hadoop jobs. All experiments were performed using an Hadoop cluster
made of 11 physical hosts1 (1 control node and 10 compute nodes) deployed on
the Grid5000 infrastructure. We use Hadoop 2.6.0.

Figure 2a reports on the completion time of the three applications provided
by the HiBench benchmark suite [11]: Wordcount, Terasort, and Sort. For each
of the input workloads—i.e. 30MB and 3GB—we observe the impact of the
MARP parameter on the mean completion time of 100 jobs. To guarantee the
comparisons visible, the values are normalized according to the absolute comple-
tion time of the vanilla Hadoop configuration—i.e. MARP = 0.1. The absolute
completion time can be found at the paper web companion page:
https://spirals-team.github.io/had-loop/DAIS2016.html
1 2 Intel Xeon L5420 CPUs with 4 cores, 15GB RAM, 298GB HDD.

https://spirals-team.github.io/had-loop/DAIS2016.html
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Fig. 2. Effects of MARP and an example of job distributions in SWIM.

As expected, the vanilla configuration does not provide the best configuration
for any of the workloads. Furthermore, one can observe that the best performance
is not achieved by a single value of MARP, but rather tends to depend on the
type and the size of the job. In particular, increasing the value of MARP—thus
allowing more jobs running in parallel—tends to benefit the smaller Hadoop
jobs, while large jobs complete faster when more resources is dedicated to the
YarnChild containers which are responsible for processing requests.

Next, we stress the Hadoop cluster by running a different number of jobs in
parallel in order to observe the impact of a load peak on the job mean com-
pletion time. Figure 2b shows the performance when running Terasort with 3GB
workload under various stress conditions. Compared to Fig. 2a, one can observe
that by increasing the number of concurrently running jobs, the optimal value of
MARP differs from the previous experiment. Therefore, while a MapReduce job
can be profiled for a best-effort MARP configuration in a specific Hadoop cluster,
any unpredictable changes in the workload dynamics will lead to a performance
degradation.
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Finally, we consider heterogeneous workloads. Concretely, we use SWIM (Sta-
tistical Workload Injector for Mapreduce) [3] to generate 4 realistic MapReduce
workload. SWIM contains several large workloads (thousands of jobs), with com-
plex data, arrival, and computation patterns that were synthesized from histori-
cal traces from Facebook 600-nodes Hadoop cluster. The proportion of job sizes
in each input workloads has been scaled down to fit our cluster size using a Zipfian
distribution (see http://xlinux.nist.gov/dads/HTML/zipfian.html). (cf. Fig. 2c).

As previously observed for homogeneous workloads, Fig. 2d demonstrates
that not a single MARP value fits all the workloads and the best configura-
tion can only be set by having a deep understanding of the Hadoop jobs and
their dynamics.

Synthesis. These preliminary experiments demonstrate that the MARP con-
figuration clearly impacts Hadoop performances. They show that the default
value is not optimal. While one can profile the different applications to identify
the best-effort static configuration, we have shown that any unforeseen change
in the workload dynamics can degrade the overall performance. We therefore
advocate for a self-adaptive approach that continuously adjusts the MARP con-
figuration based on the current state of the Hadoop cluster. In next section, we
will analyse How MARP affects the system performance of the Hadoop cluster.

4 Memory Consumption Analysis

In this section, we focus on memory consumption (YARN can manage CPU and
memory, but in this paper, we only consider memory) and analyze the causes of
the performance bottlenecks.

In an Hadoop cluster, the memory can be divided into four parts: Msystem,
MAM , MY C , and Midle. Msystem is the memory consumed by the system compo-
nents—i.e. ResourceManager, NodeManager in YARN and NameNode, DataNode
in HDFS. Msystem is constant in a Hadoop cluster.

The other three parts represents the memory held by NodeManager(s) as a
result of processing MapReduce jobs:

MAM is the memory allocated to all the MRAppMaster containers across all
compute nodes. This is controlled by the MARP configuration—i.e. M∗

AM =
Mcompute × MARP. During the processing of jobs, MAM � M∗

AM .
MY C is the memory used by all the YarnChilds to process map/reduce tasks

across all the concurrently running jobs on all the computing nodes. This
part directly impacts the job processing rate. A larger MY C means that the
more map/reduce tasks can be launched in parallel and the faster ongoing
jobs are completed.

Midle is the unused memory across all the computing nodes. High Midle value
together with pending jobs is a symptom of a waste of resources.

Their relationship with the overall computing memory of a Hadoop cluster,
Mcompute, can be expressed as follows: Mcompute = MAM +MY C +MIdle. Upon
starting an Hadoop cluster, Mcompute is fixed (unless new computing nodes are
enlisted or existing discharged from the cluster).

http://xlinux.nist.gov/dads/HTML/zipfian.html
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4.1 Loss of Jobs Parallelism

The maximum number of concurrently running jobs, Nmax, in an Hadoop cluster
is Nmax = M∗

AM

Mcontainer
where Mcontainer is the NodeManager container size (by

default it is 1GB). The smaller the MARP value is, the smaller Nmax will be
and the less jobs will be able to run in parallel.

In the case the number of running jobs equals to Nmax, all available applica-
tion master containers are exhausted and ResourceManager cannot schedule any
more jobs. Therefore, Mcompute = M∗

AM+MY C+Midle. Where Midle will emerge
with a low Nmax. When the number of running jobs reaches Nmax, MAM = M∗

AM

and no more pending jobs can be run even though M∗
AM + MY C < Mcompute.

Therefore, we can observe that the lower M∗
AM + MY C is, the higher Midle is.

This indicates a memory / container waste that in turn degrades performances.
We call this situation the Loss of Jobs Parallelism (LoJP). Figure 3 illustrates
such a situation. An Hadoop cluster with 8 containers has the MARP value set
too low, allowing only one job to be executed at a time. Any pending job have
to wait until the current job has finished, despite the fact that some containers
are unused.

4.2 Loss of Job Throughput

As shown in the previous section, small Nmax limits the jobs parallelism within
an Hadoop cluster. However, large Nmax may also impact the job performance.
By increasing Nmax (or M∗

AM ) in order to absorb Midle, Mcompute can be rewrit-
ten as follow: Mcompute = MAM + MY C .

In this case, when an Hadoop cluster processes a large number of concurrent
jobs, MAM becomes a major part of Mcompute and thus it limits MY C . MRApp-
Master is a job-level controller and it does not participate in any map/reduce
task processing. Therefore, a limited MY C decreases significantly the processing
throughput of an Hadoop cluster. This symptom is identified as a Loss of Job
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Fig. 4. Amplitude of memory drops depending on the MARP value.

Throughput (LoJT) and is also illustrated in Fig. 3. In this case, we have set
the MARP too high, which allows many jobs to run in parallel, yet the actual
processing capacity is limited by the low number of available container for run-
ning YarnChild.

4.3 Large Drops of Memory Utilization

Depending on the size of the jobs and the memory used in YarnChild containers,
the dynamic allocation of resources can result in abruptly large drops of memory
utilization (cf. Fig. 4). This is especially true when the tasks are rather fast to
complete.

These memory drops usually appear at the end of concurrently running jobs.
When a job comes to the end, all its corresponding MY C will be quickly released.
But its MRAppMaster is still running to organize data, and to report results to
users. Due to the running MRAppMaster, idle jobs cannot get the permission to
access memory for processing. Meanwhile, if other concurrently running jobs do
not have enough unscheduled map/reduce tasks to consume these Midle (released
MY C), the memory utilization will drop. A higher MARP value means more
concurrently running jobs, which probably have more unscheduled map/reduce
tasks to avoid the memory drops, and vice versa.

The memory drops cause temporarily high Midle, and therefore reduce the
average memory utilization—i.e. this phenomenon also contributes to perfor-
mance degradation. Moreover, the frequent and large memory drops can also
disturb the users to accurately detect the state of the Hadoop cluster.

5 Memory Consumption Balancing

Based on the previous section, we propose a self-adaptive approach for dynami-
cally adjusting the MARP configuration based on the current state of the cluster.
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5.1 Maximizing Jobs Parallelism

The symptom of LoJP—i.e. small Nmax, large Midle leading to decrease the
memory utilization— can be detected from the ResourceManager component and
fixed by increasing the MARP parameter. However, it should not consequently
cause LoJT (cf. Section 4.2). We therefore propose a greedy algorithm to gradu-
ally increase the MARP parameter (cf. Algorithm 1). It is a simple heuristics that
periodically increments MARP by a floating step (inc) until a given threshold
(TLoJP ) is reached—i.e. the overall memory consumption MU = MAM + MY C

falls below the threshold MU < TLoJP . Both, the current MU and MARP values
can be observed from ResourceManager. Once the increment becomes effective,
ResourceManager will continue to schedule any pending jobs until the Nmax

limit is reached. A short delay between the increment steps (delay) is therefore
required to let the cluster settle and observe the effects of the increment.

Algorithm 1. Fixing LoJP by incrementing MARP.
procedure LoJP(TLoJP , inc, delay)

MU ← actual memory utilization
if MU < TLoJP then

MARP ← current MARP value
MARP ← MARP + inc
reload(MARP )
sleep(delay)

5.2 Maximizing the Job Throughput

The LoJT symptom is more difficult to detect since, at the first glance, the
Hadoop cluster appears to fully utilize its resource. However, this situation can
be also a result of the cluster saturation with too many jobs running in parallel.
It therefore requires to better balance the resources allocated to MAM and MY C .
Algorithm 2 applies another greedy heuristics to gradually reduce the amount
of memory allocated to MRAppMaster by a floating step (dec) until we detect
that the overall memory utilization (MU ) falls below the maximum memory
utilization threshold TLoJT .

To avoid an oscillation between the two strategies, we combine them in a
double-threshold (TLoJP , TLoJT , where TLoJP < TLoJT ) heuristic algorithm
that ensures that they work in synergy (cf. Algorithm3). When memory usage
is higher than 0.9, it is enough to prove that LoJP disappears. Meanwhile, an
stably over-high memory usage (e.g. 0.95) is probably caused by LoJT. The
increment and decrement steps are not fixed. Instead, they are computed in
each loop iteration based on the difference between the memory utilization and
the target threshold. This allows the system to automatically achieve the trans-
lation between rapid and fine-gained tuning—i.e. if the MU is near a threshold,
the square root will be small, while shall the memory utilization be far from a
threshold, the increment or decrement will be large.
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Algorithm 2. Fixing LoJT by decrementing MARP.
procedure LoJT(TLoJT , dec, delay)

MU ← actual memory utilization
if MU > TLoJT then

MARP ← current MARP value
MARP ← MARP − dec
reload(MARP )
sleep(delay)

Algorithm 3. Balancing LoJP and LoJT.
procedure Balance(delay)

Mcompute ← overall maximum memory
TLoJP ← 0.9 × Mcompute

TLoJT ← 0.95 × Mcompute

loop
MU ← actual memory utilization
if MU < TLoJP then

LoJP(TLoJP ,

√
TLoJP−MU

Mcompute
, delay)

else if MU > TLoJT then

LoJT(TLoJT ,

√
MU−TLoJT

Mcompute
, delay)

5.3 Handling Drops of Memory Utilization

Drops of memory utilization are caused by the completion of map/reduce tasks
that release large blocks of memory. Such memory fluctuation can result in
MARP oscillations when the Algorithms 1, 2 and 3 will be constantly scaling
up and down the MARP value. To prevent this, we use a Kalman filter to
smooth the input—i.e. the memory utilization. It helps to stabilize the value
and eliminate the noise induced by the memory fluctuation [18]. Concretely, we
apply a 1D filter defined as: M(t + δt) = A · M(t) + N(t). where M refers to
the state variable—i.e. the memory usage—A is a transition matrix and N the
noise introduced by the monitoring process.

6 Evaluation

In this section, we evaluate the capability of our self-balancing approach to
address the problem of MapReduce job parallelism and throughput. We start
with an quick overview of the implementation of the self-balancing algorithm
followed by a series of experiments. The evaluation has been done using a clus-
ter of 11 physical hosts deployed on the Grid5000 infrastructure, the same as
we used in Sect. 3. We use Hadoop 2.6.0. Additional configuration details and
experiment raw values are also available at the paper web companion page.
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6.1 Implementation Details

The implemation is based on the feedback control loop that implements the
balancing algorithm introduced in the previous section. It follows the classical
MAPE (Monitor-Analyze-Plan-Execute) decomposition [12].

The control loop is implemented in Java and runs on the control node along-
side with YARN. The memory information are collected using the Resource-
Manager services. The MARP value is accessed via YARN configuration and
is changed by the YARN ResourceManager admin client (yarn rmadmin com-
mand). For the Kalman filter, we used the jkalman library2. It can smooth the
memory utilization to avoid unnecessary MARP adjustments. The completion
time of one map task is about 10 seconds. It is a reasonable value for delay to
ensure the capture of memory fluctuation.

6.2 Job Completion Time

We start the evaluation by running the same set of MapReduce benchmark as
we did at the beginning in Sect. 3—i.e. Wordcount, Terasort and Sort
from the HiBench benchmark suite, each with two datasets (30MB and 3GB).
Figure 5 shows the mean job completion time of 100 jobs using, the vanilla
Hadoop 2.6.0 configuration (MARP = 10%), the best-effort statically profiled
configuration where the values were obtained from our initial experiments (cf.
Fig. 2a), and finally our self-balancing approach (dyn). The values were normal-
ized to the vanilla configuration.

For each of the considered applications and workloads, our self-balancing
approach outperforms both other configurations. Often the difference between
the statically profiled configuration and our dynamic one is small. This is because
the best-effort MARP value already provides a highly optimal configuration so
the applications cannot execute much faster. The important thing to realize is
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Fig. 5. Performance comparisons of 3 HiBench applications and 2 datasets.

2 http://sourceforge.net/projects/jkalman.

http://sourceforge.net/projects/jkalman
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Fig. 6. Performance comparisons

that our approach adapts to any application and does not require any profiling
effort. It continuously finds a MARP configuration under which the application
executes at least as fast as under the best-effort configuration.

Next, we evaluate how the approach performs under different workload sizes.
Figure 6 shows the completion time of the Terasort with 3 GB input data size
benchmark under varying number of concurrently running jobs—i.e. 10, 50, 100
and 150. In this case, the self-balancing algorithm outperforms the other config-
urations in all but the first case of a small number of jobs. The reason is that
our solution always starts with the default MARP configuration which is 10 %
and converges towards the optimal value (20 % in this case) along the execution.
However, the overall completion time of the 10 jobs is too short and the jobs
finish before our algorithm converges. Furthermore, the dynamic MARP values
are also available at the paper web companion page.

Finally, we evaluate our approach with 4 time-varying workloads generated
by SWIM. We use the same workloads as we presented in Sect. 3. The job size
distribution varies across the different workloads: each job has only one reduce
task and a varying number of map tasks chosen randomly from a given map
size set. The actual configuration of the 4 workloads is given in Table 1. Each
map task manipulates (reads or writes) one HDFS block; in our case 64MB. The
complete input size of the workload is shown in the last column.

Figure 7 compares the per-job completion time distributions for static and
dynamic MARP values. For each workloads, one can observe that, compared

Table 1. Configuration of SWIM workloads.

#Jobs #Maps Map size set Total input size

W1 500 10460 {5, 10, 40, 400} 335 GB

W2 500 25605 {5, 10, 50, 100, 300, 400} 819 GB

W3 1000 5331 {1, 2, . . . , 35} 342 GB

W4 500 15651 {26, 27, . . . , 50} 500 GB
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Fig. 7. The comparison of per-job completion time distribution observed for static and
dynamic configuration parameters.

to the vanilla configuration, our approach can significantly reduce the job com-
pletion times (e.g. up to 40 % in W1). It also systematically delivers a better
performance than the best-effort configurations.

The job-level accelerations can be accumulated and lead to the improvement
of workloads-level performance. The overall completion times of the four SWIM
workloads is further shown in Fig. 6. Similarly, our approach outperforms all the
other configurations.

7 Related Work

Recently, the performance optimization for MapReduce systems has become a
main concern in the domain of Big Data. This has resulted in a number of
different approaches that aim to improve Hadoop performances.

Auto-Configuration in Hadoop. AROMA [14] is an automatic system that
can allocate resources from a heterogeneous cloud and configure Hadoop para-
meters for the new nodes to achieve the service-quality goals while minimizing
incurred cost. But, the VMs in the Cloud require to be provisioned and installed
with the required Hadoop system a priori. Changlong et al. [15] also propose a
self-configuration tool named AACT to maintain the performance of an Hadoop
cluster. However, the adjustment of configurations for parallel requests are likely
to conflict each others. The purpose of Starfish [9] is to enable Hadoop users and
applications to get good performance automatically throughout the data life-
cycle in analytics. Starfish measures the resource consumption of MapReduce
jobs like CPU cycles and I/O throughput of HDFS to estimate average map
execution time. However, the prediction may largely differ from the runtime sit-
uation. In concurrent case, due to its complex analytic steps, the over-head will
also increase significantly. Gunther [16] is a search-based approach for Hadoop
MapReduce optimization. It introduces an evolutionary genetic algorithm to
identify parameter setting, resulting in near-optimal job performance. But, due
to the complexity of the genetic algorithm, identifying an optimal configuration
requires Gunther to repeat computing, thus causing performance to degrade.
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Many other researches focusing on dynamic configuration like [19,20,23] also
exist. Authors design self-adaptive models to optimize system performance, but
their compatibility needs to be reconsidered for YARN.

Scalability at Runtime. Ghit et al. [5] have investigated a multi-allocation
policies design, FAWKES, which can balance the distribution of hosts among
several private clusters. In this case, FAWKES is focused on the dynamic redis-
tribution of compute nodes between several clusters while the sum of compute
nodes is fixed. However, due to the strict isolation between users, the clusters
need to frequently grow or shrink to balance the scales, thereby penalizing each
cluster. Chen et al. [2] propose a resource-time-cost model, which can display
the relationship among execution time, input data, available system resource
and the complexity of Reduce function for an ad-hoc MapReduce job. This
model is a combination of the white-box [8] and machine-learning approaches.
Its main purpose is to identify the relationship between the amount of resources
and the job characteristics. Hadoop clusters can benefit from this research to
optimize resource provisioning while minimizing the monetary cost. Finally,
Berekmeri et al. [1] introduce a proportional-integral controller to dynamically
enlist and discharge existing compute nodes from live Hadoop cluster in order
to meet a given target service-level objectives.

Other Optimization Approaches. Some other studies look beyond Hadoop
configuration optimization and scalability to library extensions and runtime
improvements. FMEM [24] is a Fine-grained Memory Estimator for MapReduce
jobs to help both users and the framework to analyze, predict and optimize mem-
ory usage. iShuffle [6] decouples shuffle-phase from reduce tasks and converts it
into a platform service. It can proactively push map output data to nodes via a
novel shuffle-on-write operation and flexibly schedule reduce tasks considering
workload balance to reduce MapReduce job completion time. Seokyong et al. [10]
propose an approach to eliminate fruitless data items as early as possible to
save I/O throughput and network bandwidth, thus accelerating the MapRe-
duce data processing. Benjamin et al. [7] deal with a geo-distributed MapRe-
duce system by a two-pronged approach, which provide high-level insights and
corresponding cross-phase optimization techniques, to minimize the impact of
data geo-localization. Manimal [13] performs static analysis of Hadoop programs
and deploys optimizations, including B-tree indexing, to avoid reads of unneeded
data. Panacea [17] is a domain-specific compiler which performs source-to-source
transformations for jobs to reduce the synchronization overhead of iterative jobs.
Twister [4] introduces a new in-memory MapReduce library to improve the per-
formance of iterative jobs. Some researches like [21,25] propose new MapReduce
task scheduler to improve resource utilization while observing job completion
time goals.

Since our contribution works on the YARN level, we believe that it comple-
ments these approaches.
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8 Conclusion

Optimizing the performance of Hadoop clusters has become a key concern for big
data processing. In YARN, inappropriate memory usage may lead to significant
performance degradation. In this paper, we propose a self-adaptation approach
based on a closed feedback control loop that automatically balances the memory
utilization between YARN MapReduce processes. We have shown that it out-
performs the default Hadoop configuration as well as the best-effort statically
profiled ones. While in this paper we focus on MapReduce, our approach works
on YARN level and therefore we plan to look for other applications based on
YARN. For the further work, CPU management of YARN will be considered as a
new part of this research. Furthermore, we look forward to explore the potential
of this research on multi-queues basis, and also focus on HDFS I/O throughput
to complement our approach with a support for I/O intensive jobs.
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