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Abstract. Concept maps represent a significant tool in education, used
to plan and guide learning activities and to help teachers in some en-
deavors such as analyzing and refining their teaching strategies, retriev-
ing suitable learning material, and supporting the provision of adaptive
guidance in adaptive learning environments. Here we propose seven mea-
sures of similarity among concept maps, representing course modules.
They deal with both structural and didactic aspects of the maps, to
find out educational similarities among their associated course modules.
The performance of the proposed similarity measures are analyzed and
evaluated by means of some significant case studies.
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1 Introduction

A Concept Map (CM) is a well established means for organizing concepts and
the relationships among them in a easy and useful visual way. It is used in vari-
ous fields, such as knowledge management, information systems development [3,
6, 4], collaborative work [10, 9] and industrial fields [5]. A CM can be managed
as either an ontology or a graph. In the literature the problem of computing the
similarity among ontologies has been already addressed and many approaches
have been suggested [11]. On the other hand, very few works consider the par-
ticular case of educational CMs. [2] proposes some ways to suggest the user for
additional concepts and learning material during the creation of her CM. In [8]
is addressed the matching of elements or parts among CMs, based on a simi-
larity flooding algorithm, with the aim to support comparisons and merging of
maps. This paper focuses on educational CMs, taking into account both struc-
tural aspects of the associated graphs and some didactic aspects, such as the



prerequisite relationships and the commonality of concepts, which are of capital
importance to state the educational similarity between two CMs. An evaluation
of the suggested measures is conducted to check the following research question:
Given two CMs, do the proposed similarity measures capture the didactic aspects
of concepts commonality and prerequisite relationships?

Sec. 2 presents the proposed measures, and Sec. 3 reports a first evaluation
of the measures, concluding in Sec. 4 with foreseen future works.

2 Similarity Measures

In the following we present some different and independent ways for comparing
two CMs. Let CM be a CM represented by a Direct Acyclic Graph (DAG),
where nodes and edges represent, respectively, concepts and “prerequisite” rela-
tionships among concepts. We define the set of common nodes CN between two
CMs CM1 and CM2 as follows: CN = {CM1 ∩ CM2}. The distance between
nodes, δ(c1, c2, CM), given a concept map CM and two nodes (c1, c2) ∈ CM ,
is defined as the length of the shortest path from c1 to c2 (or ∞, if there is no
path). Moreover, the Predecessor of a node c in a concept map CM is defined
as: Preds(c, CM) = {∀ci ∈ CM such that there exists a path from ci to c}.
Overlapping Degree (OD). This measure analyses if there is a significant
number of CN (note that |CN | is the cardinality of the set) (1) and how such
nodes are placed in the maps (2). The following formula expresses how significant
is the set of common nodes:

a =
|CN |

min(|CM1|, |CM2|)
∈ [0 . . . 1] (1)

Then, adjacency matrices of the common nodes are built for both maps.The
elements of these matrices are δ(ci, cj , CM) for each pair of nodes ci, cj ∈ CN .
The formula (2) computes the cosine similarity of the vectors of the two matrices,
allowing to determine the similarity of the arrangement of the CN in the two
maps.

b = CosineSimilarity(
−−→
Adj(CN,CM1),

−−→
Adj(CN,CM2)) (2)

where
−−→
Adj(CN,CMi) is the vector obtained from the linearization of the adja-

cency matrix of the common nodes in CMi. The criteria pursued in (1) and (2)
are then unified in (3):

OD =
a+ b

2
· α, with α =

2|CM1 ∩ CM2|
|CM1|+ |CM2|

(3)

Basically, the higher is the OD, the more similar and important is the ar-
rangement of the common nodes in the maps. In other words, the same common
nodes could be placed as a common subgraph of the two maps (higher similarity)
or just be differently scattered in the maps (lower).
Prerequisites Constraints Measure (PCM). This measure determines the
shared predecessors Preds of CN in the two maps. Given a concept k ∈ CN ,



let P1 and P2 be respectively Preds(k,CM1) ∪ k and Preds(k,CM2) ∪ k. The
PCM is the sum of the following three elements:

ak =
|P1 ∩ P2|
|P1 ∪ P2|

, bk =
|CN ∩ (P1 ∪ P2)|

|P1 ∪ P2|
, ck =

min{|P1|, |P2|}
max{|P1|, |P2|}

ak is the ratio of common predecessors on the total number of predecessors.
bk is the ratio of the number of predecessors in CN (they may not be common

predecessors) on the total number of predecessors.
ck says the similarity of the amount of knowledge required by k in the two

maps.

Given the three aforementioned elements, PCM is stated as follows:

PCM =
1

|CN |
∑

∀k∈CN

ak + bk + ck
3

(4)

In summary, this measure analyses the required knowledge for the CN shared
in the two maps.
Topological Similarity Measure (TSM). TSM combines the purely struc-
tural measure given in (3) with the semantic information given in (4). Con-
cepts might be differently scattered in the maps, so considering only their co-
occurrence in the maps might be not enough. On the other hand, the structural
information provided by OD can be an improvement to the PCM, so the follow-
ing definition (5) tries to express a level of integration between the two previous
measures:

TSM =
OD+PCM

3
· α (5)

where α is given in (3).
Flux-Based Similarity Measure (FBSM). By flux we mean a property of a
node of the CM representing how much information is passing through it. The
higher the flux of a node, the more “important” is the associated concept in
the map. FBSM computes the similarity of importance of concepts in the two
maps, expressed by the accumulated flux φ(c, CM) of the associated map nodes.
The computation of FBSM is based on the spread activation technique [1]. In
particular, let |CM1| < |CM2| and let c ∈ CM1, when c is activated it receives
flux equal to 1 in CM1. If c ∈ CM2, c is activated in the second map too. In
general, when a node receives flux, it retains at most an amount T (= 0.3 in our
case) that is added to its total flux: φ(c, CM) = φ(c, CM) + T . If there is any
exceeding flux (which is flux−T ), such flux is spread to the child nodes evenly.
So, a concept may receive flux from its own activation or from the predecessors.
FBSM computes the sum of flux differences of the concepts in CM1 in the two
maps. If c /∈ CM2, then φ(c, CM2) is equal to 0.

FBSM = 1−
∑

c∈CM1
abs(φ(c, CM1)− φ(c, CM2))

|CM1|
(6)



Flux-Based Similarity Measure on Common Nodes (FBSM-CN). In
this case, the same spread activation algorithm of measure (6) is used, but only
the flux on CN is considered. This measure results in high scores if common
nodes are similarly distributed in the two maps. Given the two vectors of the

flux on c1, . . . , ci ∈ CN in CM1 and CM2,
−→
V1 = ⟨φ(c1, CM1), . . . φ(ci, CM1)⟩,

and
−→
V2 = ⟨φ(c1, CM2), . . . φ(ci, CM2)⟩ respectively, FBSM-CN is computed as

follows:

FBSM-CN = CosineSimilarity(
−→
V1,

−→
V2) (7)

Comprehensive Flux-Based Similarity Measure (C-FBSM). This mea-
sure combines the two previous flux-based measures given in (6) and (7):

C-FBSM =
FBSM+ FBSM-CN

2
(8)

Comprehensive Similarity Measure (C-SM). This measure is a linear com-
bination of the Topological Similarity Measure (5) and the Flux-Based one (8):

C-SM = TSM · (1− β) +C-FBSM · β (9)

Where

β =

(∑
c∈CM1

outgoingArcs(C,CM1)

|CM1| − |sinks(CM1)|
+

∑
c∈CM2

outgoingArcs(C,CM2)

|CM2| − |sinks(CM2)|

)
· 1

2 ·N

here, N ∈ [7..10] is a parameter of the algorithm, and sinks denotes the nodes
having no successors. In practice, β is expected to express the significance of
the flux-based measures according to the structure of the concept maps: the
more the concept maps are linear or sequential, the less flux-based measures are
expressive.

3 Evaluation

This section presents an evaluation of the similarity measures presented in Sec. 2
and Fig. 1 shows the sample of CMs used for this goal. The sample is composed
by a set of five CMs which includes the seed ontology CM0 and its progressive
variations; CM0 will be compared Vs. all the others, including itself. The ratio-
nale is to show the behavior of the proposed measures for different variations of
the seed ontology CM0, as suggested by ontology matching literature [11].
Here we discuss the five comparison cases, whose results are reported in Tab. 1:
Evaluation I: CM0 Vs. CM0. This is the comparison between two identical
maps, so all the similarity measures must be equal to 1, (cfr. Tab. 1).
Evaluation II: CM0 Vs. CM2. This is the case where two CMs differ for a
concept only, namely concept C. Not surprisingly, all the measures report a
lower similarity than the previous case (refer to Tab. 1) but with different trends.
FBSM-CN falls very slightly from 1 to 0.998, whereas TSM is the most sensible
falling to 0.853. The other measures are in between.



Fig. 1. The sample of CMs. CM0 represents the seed CM.

Evaluation III. CM0 Vs. CM3. As expected, the similarity measures still de-
crease because CM3 is a very small subset of CM0; it consists of only the source
concept A and the target concept E of CM0. All the similarity measures capture
such situation, especially the flux based measures with the highest similarity val-
ues. This happens because A has the same amount of flux and E is a sink in
both maps.
Evaluation IV. CM0 Vs. CM4. This is the case where the FBSM-CN similarity
presents the highest value with respect to the other measures: almost 1. This is
because the Flux-Based measure captures a similar knowledge dissemination on
concepts C and D in both maps; all the other measures increase report a more
didactic similarity.
Evaluation V: CM0 Vs. CM1. The two CMs are formed by all different con-
cepts. Consequently, all the measures return a similarity score equal to 0.

In all the evaluation cases, we notice that the similarity measures were able
to capture both topological and educational aspects (common concepts and pre-
requisites relationships) shared by a pair of CMs.

Eval. CMs OD PCM TSM FBSM FBSM-CN C-FBSM C-SM

I (CM0, CM0) 1.0 1.0 1.0 1.0 1.0 1.0 1.0

II (CM0, CM2) 0.889 0.888 0.853 0.975 0.998 0.986 0.899

III (CM0, CM3) 0.571 0.700 0.514 0.750 0.886 0.818 0.615

IV (CM0, CM4) 0.976 0.967 0.973 0.680 0.958 0.819 0.890

V (CM0, CM1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Table 1. Results of Evaluations I-V using the similarity measures presented in Sec. 2.

4 Conclusions

In this paper we addressed the problem of measuring the similarity among ed-
ucational CMs. Seven similarity measures have been presented and evaluated



in order to test their capability to capture both topological and educational
differences between two concept maps. The evaluation shows that the research
question is strengthened: all the measures are able to capture both topological
and educational aspects. As a future work we plan to strengthen the evaluations
of all the measures with a larger set of CMs involving teachers to asses their
validity. Finally, the proposed measures would significantly benefit of tools for
domain-based retrieval of synonyms, like SynFinder [7] or Word2Vec4 for a more
appropriate identification of common nodes of two CMs.
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