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Abstract. Mutation Testing is a well-established technique for assessing the
quality of test cases by checking how well they detect faults injected into a
software artefact (mutant). Using this technique, the most critical activity is the
adequate design of mutation operators so that they reflect typical defects of the
artefact under test. This paper presents the design of a set of mutation operators
for Conceptual Schemas (CS) based on UML Class Diagrams (CD). In this
paper, the operators are defined in accordance with an existing defects classi-
fication for UML CS and relevant elements identified from the UML-CD
meta-model. The operators are subsequently used to generate first order mutants
for a CS under test. Finally, in order to analyse the usefulness of the mutation
operators, we measure some basic characteristics of mutation operators with
three different CSs under test.

Keywords: Mutation testing - Mutation operators - Test cases quality -
Conceptual schemas - Class diagram mutation

1 Introduction

A conceptual schema (CS) defines the general knowledge required by an information
system in order to perform its functions [1], so that an accurate representation of this
information (following the requirements) is a key factor in the successful development
of the system, especially in a Model-driven environment context [2]. The development
of a conceptual schema is an iterative process involving evaluation of the CS, its
accuracy and its improvement from the evaluation results. Testing is a well-established
technique that helps to accomplish this task. It provides a level of confidence in the end
product based on the coverage of the requirements achieved by the test cases.

In this context, we proposed an approach for testing-based validation of
Object-Oriented Conceptual Schemas in a Model-driven environment [3, 4], where one
group of engineers (e.g. requirements engineers) specifies requirement models
(RM) from which the test scenarios with test cases (i.e. an executable concrete story of
a user-system interaction and the expected result) are automatically generated. These
test cases are then used to test the conceptual schemas in an early phase of software
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analysis and design. Since testing is performed to provide insight into the accuracy of a
CS, we need to ensure the test suite quality (i.e. ability to reveal faults).

Mutation testing assesses the quality of a test suite [5] using mutation operators to
introduce small modifications or mutations into the software artefact under test, e.g.
CS. The artificial faults can be created using a set of mutation operators to change
(“mutate”) some parts of the software artefact. Mutants can be classified into two types:
First Order Mutants (FOM) and Higher Order Mutants (HOM) [6]. FOMs are generated
by applying mutation operators only once. HOMs are generated by applying mutation
operators more than once [5]. Assuming that the software artefact being mutated is
syntactically correct, a mutation operator must produce a mutant that is also syntac-
tically correct. Each faulty artefact version, or mutant, is executed against the test suite.
The ratio of detected mutants is known as the “mutation score” and indicates how
effective the tests are in terms of fault detection. Approaches that employ mutation
testing at higher levels of abstraction, especially on CS, are not common [5].

In Mutation testing the most critical activity is the adequate design of mutation
operators so that they reflect the typical defects of the artefact under test. This paper
presents the design of a set of mutation operators for Conceptual Schemas (CS) based
on Unified Modelling Language (UML) Class Diagrams (CD) [7]. The main potential
advantage of mutation operators is to describe precisely the mutants that can generate
and thus support a well-defined, fault-injecting process [8]. The main contributions of
this paper are:

e [t provides a classification of 50 mutation operators for UML CD-based CS, which
may be used in evaluating verification' and validation® approaches. The resulting
operators are mainly based on a defects classification reported previously [9].

e [t illustrates the application of an effective subset of 18 mutation operators, which
generate only first order mutants. These mutation operators were applied to three
UML CD-based CS with the aim of showing their usefulness in evaluating testing
approaches.

The paper is organized as follows. Section 2 describes an UML CD-based CS.
Section 3 reviews the defect types at the model level. Section 4 explains the design
process of the mutation operators. Section 5 demonstrates the application of the
operators in three CS. Section 6 summarizes related work. Finally Sect. 7 concludes.

2 UML CD-Based Conceptual Schemas

The aim of this work is to design mutation operators for evaluating the effectiveness of
test cases in finding faults in a CS during the analysis and design of the software. The
defects will be introduced by deliberately changing a UML CD-based CS, resulting in
wrong behaviour possibly causing a failure.

! Verification is to check that the conceptual schema meets its stated functional and non-functional
requirements (making the right product) [27].

2 Validation is to ensure that the conceptual schema meets the customer's expectations (making the
product right) [27].
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The CS of a system should describe its structure and its behaviour (constraints). In
this paper a UML-based class diagram is used to represent such a CS. A class diagram
(see Fig. 1) is the UML’s main building block that shows elements of the system at an
abstract level (e.g. class, association class), their properties (ownedAttribute), rela-
tionships (e.g. association and generalization) and operations. In UML an operation is
specified by defining pre- and post-conditions. Figure 1 shows an excerpt of the UML
structure for a class diagram and highlights eight elements of interest for this work.
Finally, mutation testing requires an executable CS for validating the behavioural
aspects included in the CS structural elements. Therefore, we used the Action Lan-
guage for Foundational UML (Alf [10]) and the virtual machine of Foundational UML
(fUML [11]) as the execution environment for mutation testing.
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Fig. 1. Excerpt of the meta-model of an UML class diagram [7]

3 Defect Types in UML-Based Conceptual Schemas

An important aspect when applying mutation testing to a CS is that the injected defect
should represent common modelling errors. In previous work [5] we classified UML
model defects reported in the literature and related the types of the defects with the CS
quality goals affected by them. Table 1 summarizes the defect types for CS.

Missing and unnecessary elements (i.e. redundant and extraneous) and incorrectly
modelled requirements are the main causes of a design model inaccuracy that can be
detected basing on requirement testing. Inconsistency defects require comparing CS
versions in order to find them. Finally, ambiguous elements require of user (e.g.
modeller, low-level designer) criteria for finding defects.
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Table 1. Defect types in a UML-based model (excerpt taken from [9])

Defect cause | Sub modes

MISSING Something is absent that should be present.

WRONG Inconsistent: There are contradictions in the models
Something is incorrect, (1) vertical inconsistency (i.e. contradictions between
inconsistent or ambiguous model versions) and (2) horizontal inconsistency (i.e.

contradictions between different model views)

Incorrect: There is a misrepresentation of modelling
concepts, their attributes and their relationships, as well
as the violation of the rules by combining of these
concepts at the time of building partial or complete
models

Ambiguous (wrong wording): The representation of a
concept in the model is unclear, and could cause a user
(e.g. modeller) to misinterpret its meaning

UNNECESSARY Redundant: If an element has the same meaning that other
(Extra) element in the model
Something is present that Extraneous: If there are items that should not be included
need not be in the model because they belong to another level of

abstraction, e.g. details of implementation, which are
decisions (e.g. type of data structure used at code level)
that are left to be made by the developers, and is not
specified at an earlier level (e.g. CS)

4 Design of Mutation Operators

As can be seen in Fig. 2, a CS mutant M,; is a faulty CS, which is generated by injecting
defects (adding, deleting or changing elements) into modelling elements (see Fig. 1 in
Sect. 2) of the original CS. A transformation rule that generates a mutant from the
original model is known as a mutation operator. If the mutant is generated by applying
only one mutation operator in the original CS, it is a first order mutant (e.g. CS with an
added constraint), otherwise, it is a higher order mutant if it applies various changes in
the CS by using nested operators. For example, a CS that has been mutated by deleting
a class has also evidently deleted associations, properties, constraints, operations and
parameters associated with the deleted class. During execution each CS mutant Mi will
be run against a test case suite T. If the result of running Mi is different from the result
of running CS for any test case in T, then the mutant Mi is said to be “killed”, otherwise
it is said to have “survived”. A CS mutant may survive either because it is equivalent to
the original model (i.e. it is semantically identical to the original model although
syntactically different) or the test set is inadequate to kill the mutant.

To apply Mutation Analysis in the context of UML CD-based CS we need to
formulate mutation operators for CS. Mutation is based on two fundamental
hypotheses, namely, the Competent Programmer Hypothesis (CPH) and the Coupling
Effect Hypothesis (CEH), both introduced by DeMillo et al. [13]. The CPH states that a
program produced by a competent programmer is either correct or near the correct
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Fig. 2. Relationships among conceptual entities used in the mutant definition (adapted from

[12])

version. The CEH states that complex (or higher-order) mutants are coupled to simple
mutants in such a way that a test data set that detects all simple faults in a program will
detect a high percentage of the complex faults [14]. Consequently, we use the fol-
lowing guiding principles [15]:

— Mutation categories should model potential faults.
— Only syntactically correct mutants should be generated
— Only first-order mutants should be generated.

4.1 Mutation Operators Categories

There are several elements of a CS that can be subject to faults. The defined mutation
operator set takes the intrinsic characteristics of a UML CD-based CS into consider-
ation, where some UML elements are composed by other elements. They are thus
divided into seven categories: (1) constraint operators, (2) association operators,
(3) generalization operators, (4) class operators, (5) attribute operators, (6) operation
operators, and (7) parameters operators. Each element-based group is then sub clas-
sified according to the three defect types of UML models (i.e. unnecessary, wrong or
missing) [9]. However, as our research focuses on defining mutation operators for
evaluating testing approaches, the inconsistent and ambiguity defects are not addressed
in this work because they generate a faulty CS that is detected without requiring
execution (i.e. testing is not required). The faulty CS is not detected by comparing the
model against the requirements. Inconsistency defects are detected by comparing
models to detect contradictions between them. Ambiguity defect are detected by the
modeller which finds that the representation of a concept in the model is unclear. So
that twenty-one categories are obtained, such as Unnecessary Constraint (UCO),
Wrong Constraint (WCO), Missing Constraint (MCO), Unnecessary Association
(UAS), Wrong Association (WAS); Missing Association (MAS) and so on. Based on
the UML meta-model (see Fig. 1) and the defects and faults reported in the literature
[9, 16-18] we identified CD element features that can be mutated for their usefulness in
evaluating testing approaches:
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Mutating Classes: The attributes isAbstract and visibility can be mutated.
Mutating Class Attributes (i.e. Class Variables): The visibility, isDerived, and data
type of the variables can be mutated.

e Mutating Operations: The visibility and returned value type when the operation
isQuery can be changed. Additionally, swapping compatible parameters in the
definition of an operation can be another operation mutant.

e Mutating Parameters: The data type can be mutated.

e Mutating Associations: The visibility, isDerived can be mutated. Additionally,
swapping the member of the Association, the kind aggregation and multiplicity for
the members of the Association can be mutated.

Mutating Generalization: swapping the member of the Generalization.
Mutating Constraints: Changes the constraints by mutating operators (arithmetic,
conditional, and negation), references to class attributes, references to operations.

These categories and the main element features give rise to 50 mutation operators (see
Table 4 in Appendix). Each of the 50 mutant operators is represented by a three-letter
acronym of its category and a sequential number within its category if it is necessary.
Some of these operators resulted in a CS that is determined to be faulty without
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Fig. 3. Selection process of the mutation operators used for evaluating testing approaches
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requiring execution (i.e. testing is not required) and others resulted in behavioural faults
(i.e. testing is required). Some of them generate FOM and others HOM. Since we only
focus in FOM, 18 mutation operators (see the mutation operators marked with “*” in
Table 4) that can generate FOM were obtained through two iterations, as follows (see
Fig. 3).

First iteration (Exclude Equivalent and Non-valid Mutants). We obtained a detailed
list of actions that involve applying each mutation operator, to obtain the rules for each
mutation operator (see Table 4).

If the rule to generate the mutant is not followed, the mutant generated is a
non-valid mutant, which can be detected at parser level. For example, the mutation
operator MAS causes an association in a CS to be deleted, however, the constraints
related with this association must be deleted in order to generate a valid mutant,
otherwise this mutant will be detected by the parser and cannot be used for a testing
process. We analysed the mutation operators that always generate a non-valid or
equivalent mutant. These results are included in Table 4 as a restriction in the operator
rule. These mutation operators are described as follows:

e Adding duplicated elements (i.e. UCO1, UAS1, UAS2, UGEl, UCLI1, UCL2,
UATI, UOP1 and UPAL) within a scope (redundant type defect) is determined to
be faulty without requiring model execution (i.e. testing is not required). Therefore,
these operators are not considering in this work.

e A closer inspection of equivalent mutants generated by the WOP2 mutation oper-
ator (changes the visibility property of an operation) suggests that this operator
generates an equivalent mutant when it is applied to a constructor operation because
it only affects the access inherited by child classes (a private constructor of the super
class is not inheritable). It is therefore impossible to detect this mutation operator
when it is applied to a constructor operation. We therefore have to include this
restriction in the rule of the WOP2 mutation operator to avoid generating this type
of mutant.

e Changing a navigable association to a shared aggregation or vice versa (WAS2)
generates an equivalent mutant because “aggregation = shared” has no semantic
effect in a executable model using Alf [10]. Therefore, we only applied this operator
changing from aggregation =“none” to aggregation="composite” or vice versa.

e Changing an Association Class to a Class with two associations or vice versa
(WCL2 and WCL3). The association class effect can be equivalently modelled
when the CS is expressed in Alf [11] (i.e. our execution environment).

The following operators could generate both and equivalent and non-valid mutants:

e Changing the visibility kind of an attribute (WAT4) generates both equivalent and
invalid mutants, depending on whether the attribute is accessed internally by any
member of the class (it is equivalent because everyone has access) or externally for
any constraint that refers to this attribute through an association. In the last case, the
mutant is non-valid and is detected by the parser.

e Changing a class abstract or vice versa (WCL4) when it does not result in a fault
that the parser will detect when it tries to instantiate the class.
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e Adding extraneous elements to CS (i.e. UCO2, UAS3, UAS4, UGE2, UCL3,
UCLA4, UAT2 and UOP2) generate equivalent mutants. Apparently, these operators
did not inject a fault into a CS due to the nature of the test suite: only expected
elements are tested. So, any additional element will remain untested. However, the
operator that adds a Parameter to an Operation (UPA2) has to be considered
because this affects a CS element (operation) that is tested by the test suite and so
can be killed. These operators require a structural coverage analysis to be detected.

Finally, the operator that changes the order of the parameters in an operation (WOP1)
generates a defect of inconsistency between the signatures of the CS operations and the
operation calls from test cases. This defect affects the testing process more than the CS
itself and also is detected by the parser. Therefore, this operator is not considered in this
work. All the excluded operators generate mutants that require a static (without exe-
cution) technique for detecting.

Second Iteration (Exclude High Order Mutants). We next analysed each derivation
rule and identified the mutation operators that generate FOM and those that can gen-
erate HOM (see in Table 4 the relations between operators). Needless to say, if no other
nested elements exist, this mutation operator also generates a FOM. For example,
applying an operator to delete an operation (MOP) which has no parameters or related
constraints generates a FOM. According to the CEH, the HOM are coupled to simple
mutants (FOM) in such a way that a test data set that detects all FOM will detect a high
percentage of the HOM. The operators that generate HOM are the following: WCO?2,
MOP, WCL2, WCL3, WCL4, WATI1, WAT2, WAT3, WOP3, MCL, MGE, MOP and
MAT. We added restrictions to several of these operators in order to generate only
FOM. Table 4 shows the 18 operators that we used in this work (marked with “*”),
which were obtained as products of the described iterations. Figure 4 shows a partial
view of a CS in which five mutation operators have been applied. Four operators will
generate valid mutants and the MPA operator will generate a non-valid FOM because
there is a class attribute (i.e. product_name) that is related with the parameter (p_atr-
product_name), therefore more changes (i.e. HOM) are required so as not to be
detected by the parser. This CS is used in the literature to explain the development of a
requirements model [19] which is used for our test case generation approach. This CS
is included in our analysis in Sect. 5.

5 Application and Analysis of Mutation Operators

The quality of mutants depends first on how well they reflect real errors that modellers
make and second on whether they can be injected into a CS in such a way that they can
be used for mutation testing. In order to analyse the effectiveness of the mutation
operators, we used three conceptual schemas and respective test suites, which are
described below.
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We applied our mutation operators to three CS under test (CSUT) to evaluate the
effectiveness of our mutation operators. These CS represent three kinds of systems:
(1) the Super Stationery system (SS), which makes use of classes with attributes and
derived attributes, associations and constraints but has no generalizations, (ii) an
Expense Report management system (ER) that uses fewer classes and relations but
more constraints, and lastly, (iii) the Sudoku Game (SG) system [20], which is more
variant-rich than the other two CS including generalization relations, derived associ-
ations and aggregations. The size of each CSUT is shown in Table 2 in terms of model

elements.

Table 2. Elements of the Conceptual Schemas Under Test
Element Super stationery | Expense report | Sudoku game
Classes 9 7 11
Attributes 44 36 26
Derived attributes 1 6 6
Operations 32 24 19
Parameters 91 75 48
Associations 9 8 6
Derived associations 0 0
Composite aggregations | 0 0 3
Constraints 12 21 19
Generalizations 0 0 4
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5.2 Mutant Generation

We developed a mutation tool prototype [21] to generate and analyse FOMs by
applying the 18 selected mutation operators. This tool is divided into three distinct
parts: (a) calculate a mutants list, (b) generate the mutants previously calculated; and,
(c) performing a syntactic analysis of the mutants. Figure 5 shows the number of valid
and non-valid mutants generated by each mutation operator and CSUT.
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Fig. 5. Valid and non-valid mutants by each mutation operator.

The number of valid mutants produced by the WCOS is the highest of the three CS (13,
21 and 47 respectively). Operators like UPA2, WCO1, WCO4, WCO5, WCO6,
WCO7, WCO8, WCO9, WAS2, WCL1 and WOP2 generated only valid mutants for
the CSUTs. However, the WCO7 and WCO9 operators generated only 1 mutant for the
CSUT of the Sudoku Game system, giving a total 528 valid mutants (195, 159 and 174
respectively) and 495 non-valid mutants (171, 174, 150 respectively).

5.3 Mutation Testing Results

In this section, we assess the usefulness of the mutation operator for injecting faults in
three CSUT. Test suites used in this study include tests checking all the CS class
operations and constraints. Finally the data resulting from applying mutation analysis to
the CS were collected by applying the following measures.

For a conceptual schema CS and test suite T, Mt let the total number of
non-equivalent mutants generated for CS and Mg (T) be the number of mutants killed
by T. Mutation score for a test suite (MS (T) = Mg (T)/Mr) is the main measure used
in mutation to measure the test suite effectiveness to kill mutants generated by applying
all mutation operators. Where, non-equivalent mutants (Mr) = killed mutants (Mg) +
the surviving mutants. The following measures, reflecting basic characteristics of
mutation operators, were defined to evaluate the usefulness of the mutation operators
[18]. Table 3 summarizes results of these calculations.



Mutation Operators for UML Class Diagrams 335

Table 3. Results of mutation operator evaluation

CS Super stationery | Expense report Sudoku game

OP |CF |MS |II CF |MS |1I CF |MS |1I

UPA2 |0.16 | 1.00 | 0.080|0.14|1.00 0.064 |0.10|1.00|0.119
WCO1 | 0.01 |0.00| 0.028|0.05|0.67 | 0.031|0.04 |0.86 | 0.088
WCO03|0.01|0.50| 0.037|0.03|0.80 | 0.040
WCO4 | 0.01 | 1.00| 0.042|0.05|0.75|0.036 | 0.07 | 0.54 | 0.063
WCO5 | 0.01 | 1.00| 0.042|0.06|0.73 |0.033|0.06 | 0.55|0.073
WCO6 | 0.01 | 1.00| 0.038|0.01|1.00|0.043|0.06|0.36 | 0.057

WCO7 0.01]1.00|0.082
WCO8 | 0.06 | 0.69 | 0.034|0.11|1.00|0.054|0.22|0.68 | 0.058
WCO9 0.01]1.000.082

WAS1 |0.03|1.00| 0.046
WAS2 |0.040.00| 0.004|0.05|0.0 |0.000|0.060.00|0.038
WAS3 | 0.09 | 0.00|-0.035
WCL1 |0.04 | 1.00| 0.050|0.04|1.00|0.047|0.06 | 1.00|0.101
WOP2 |0.11 | 1.00| 0.028 | 0.10|1.00 | 0.018 | 0.04 | 1.00 | 0.053
WPA |0.13]1.00| 0.071|0.10|1.00 | 0.056 | 0.05 | 1.00 | 0.097
MCO [0.05 1.00| 0.052|0.09|1.000.055|0.06|1.00 0.101
MAS [0.03|1.00| 0.046
MPA |0.16|1.00| 0.080|0.13|1.00|0.063|0.06 | 1.00 |0.101

e Contribution Factor of mutation operator MO (CF (MO) = Mt (MO)/Mr). It shows
to what extend mutants generated by applying mutation operator MO contributes to
the total number of mutants generated for CS.

e Mutation Score of a mutation operator MO (MS (MO, T) = Mg (MO, T)/Mt
(MO)). It shows the degree of detection for mutants generated by applying MO.

e Impact Indicator of a mutation operator MO (II (MO, T) = MS (T)-(Mk (T)-Mg
(MO, T))/(Mt-Mt (MO))). It shows how the mutation score obtained for T changes
when operator MO was not applied.

For the SS, we ran 62 test cases. These test cases were executed against 206 mutated
CS created by the mutation operators, killing 82 % of the mutants. In the case of the
ER, we executed 88 test cases against 174 mutants created, killing 90 % of the mutants.
For the case of the SG, we executed 90 test cases against 185 mutants, killing 74 %.
Therefore 89 % of the mutation operators (16/18 operators) generate mutants that can
detected by the test suites. More detailed information on the mutation results can be
found at https://staq.dsic.upv.es/webstag/mutuml/mutation_operators.htm.

5.4 Discussion

The results in Table 3 show that the behaviour of the mutation operators may depend
on some characteristics of the CS they are applied to (such as complexity of constraints,
the number and type of elements included in the CS). However, the results suggest that
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some of these operators UPA2, WCO7, WCO9, WAS1, WCL1, WOP2, WPA, MCO,
MAS, and MPA generated mutants that were relatively easy to detect by the provided
test suites (the test suites had mutation scores of 100 %). Moreover, all the operators
had a “positive” impact (column value II > 0) in the test suite assessment results. This
means that the test suite quality is overestimated when any of these operators is not
used. An underestimation of test quality, especially when the test suite is under
development, would force an improvement of the test suite, while its overestimation
could compromise the quality of any testing performed by them. The mutation oper-
ators WCO1, WCO3, WCO4, WCOS5, WCO6, WCO8, WAS?2 and WAS3 all having a
low mutation score, should always be applied because they generate hard to detect
mutants and their application would stimulate selection of high quality tests. WAS?2
and WAS3 mutation operators suggest that there is a lack of use (test) in the test suite
of the CS elements affected by these operators.

Despite the mutation operator restrictions, all these mutation operators generated
mutants in one or other of the three CS, these restrictions ensure that the mutants
generated meet the condition “mutant has to be syntactically correct for mutation
testing”. Thus, these operators support a well-defined, fault-injecting process. Finally,
mutation testing is computationally expensive, so it is important to use a technique that
reduces the computational cost, the restrictions included in the mutation operator rules
avoid generating non-valid mutants (495 in total in the three CS), which has practical
benefits in the time saved in the mutation testing process. Additionally, the CEH states
that complex (or higher-order) mutants are coupled to simple mutants (FOM) in such a
way that a test data set that detects all FOM will detect a high percentage of the HOM.

6 Related Work

Mutation Testing has been widely studied since it was first proposed in the 1970s by
Hamlet [22] and DeMillo et al. [13]. In 2010, Jia and Harman [5] made a good survey
of mutation techniques and also created a repository containing many interesting papers
on mutation testing (last updated in 2014). This survey stated that mutation testing is
mainly applied at the software implementation level (i.e. more than 50 % of survey
papers). But it has also been applied to models at the design level, for example to Finite
State Machines [23], State Charts [24] and Activity Diagrams [25].

As far as we know, the idea of applying mutation testing to modify a UML
CD-based CS and to assess the quality of test cases by checking how well they detect
faults injected into a CS has not been explored to date in practice. However, some
similarities can be found in Strug [18, 26] Dinh-Trong et al. [17] and Derezinska [16].
In the former [26], the author introduces nine mutation operators to apply manual
mutations to the test suite provided for a UML/OCL-based design model instead of
modifying the model, which is a different approach to that used in the present paper. In
the latter [18], the author presents a classification of 16 mutation operators defined for
constraints specified in OCL and used in UML/OCL-based design models. Constraints
are among the CS elements covered by our approach. Dinh-Trong et al. [17] describe a
set of mutation operators for a UML class diagram but do not include the restriction on
generating valid mutants. Finally, Derezinska introduced a set of mutation operators
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which can be applied to the UML CD specification but which are evaluated at the code
level (C ++) [16].

The present work is based on UML-based model defects classified in a previous
work [9]. We also adapted some mutation operators proposed by Derezinska [16],
Dinh-Trong et al. [17] and some operators for OCL constraints proposed by Strug [18].
Finally, in our approach the faults introduced include restrictions on generating only
valid mutants for detecting in the CS at the analysis and design phases. This differs
from current conventional mutation, in which the faults are introduced and detected at
the code level.

7 Conclusions and Future Work

Mutation testing applied at the CS level can improve early development of high quality
test suites (e.g. elements coverage) and can contribute to developing high quality
systems (i.e. it meets requirements) especially in a model-driven context. In this paper
we describe a mutation-testing based approach for UML CD-based CS level and report
our recent work: (1) classifying a set initial of 50 mutation operators in the context of
Conceptual Schemas based on a UML class diagram; (2) selecting and applying 18
mutation operators for FOM to evaluate the usefulness of the mutation operators in
three CS. The main potential advantage of the defined mutation operators is that can
support a well-defined, fault-injection process.

As opposed to code-based mutation, our mutation operators are based on the ele-
ment characteristics of a UML CD-based CS and although some of the proposed
operators perform syntactic changes at the constraints level, they are mainly focused
(i.e. 41 of 50 operators) on the semantic changes of the high-level CD constructs. Our
mutation operators are classified according to the element affected by the operator,
injected defect type, and the action required by the mutation operator to generate valid
mutants (syntactically correct). Since our purpose is to select mutation operators to be
used to evaluate testing approaches, the selection process of mutation operators was
divided into two iterations. In the first iteration, some operators were excluded because
they generated only equivalent mutants (e.g. UCO2, UAS3, UAS4) and non-valid
mutants, (e.g. WCL4, UCO1, UASI), which require a static technique (without CS
execution) for detecting (e.g. syntax analysis or structural coverage analysis), and so
are not useful for mutation testing. In the second iteration, we aimed to analyse the
dependencies between different operators and to reduce the cost of applying mutation
testing by selecting 18 mutation operators that generate only first order mutants. Based
on the results obtained by applying the mutation testing, 56% (10/18) of our mutant
operators generated a high number of killed mutants (score mutation = 100%). These
results suggest that these operators generated mutants that are relatively easy to detect
by the provided test suites. In the other case 44% (8/18) of the operators related to
characteristics of associations (i.e. multiplicity and aggregation type) and constraints
generated hard to detect mutants and their application would stimulate selection of high
quality tests. However, the behaviour of the mutation operators may depend on the
characteristics of the CS they are applied to, such as the number, element type and
complexity of constraints.
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This study is a part of a more extensive research project, whose principal goal is to
propose an approach for testing-based conceptual schema validation in a Model-Driven
Environment. Future work will proceed to extend the test suite for stimulating the
disabled behaviour detected in this mutation analysis. We hope to evaluate the use of
HOMs and compare them with FOMs. Finally, the proposed mutation analysis will be
performed on a significant number of CS.

Acknowledgments. This work has been developed with the financial support by SENESCYT of
the Republic of Ecuador, European Commission (CaaS project) and Generalitat Valenciana
(PROMETEOI1/2014/039).

A Appendix

Table 4. Mutation operators defined for a UML CD-based CS

# Code Mutation operator rule and relation with other mutation operators
1 |UCO1 Adds a redundant constraint to the CD
2 |UCO02 Adds an extraneous constraint to the CD
3 | UASI Adds a redundant association to the CD
4 | UAS2 Adds a redundant derived association to the CD. Relation: UCO2
5 |UAS3 Adds an extraneous association to the CD
6 |UAS4 Adds an extraneous derived association to the CD. Relation: UCO2
7 | UGE1 Adds a redundant generalization to the CD
8 | UGE2 Adds an extraneous generalization to the CD
9 |UCLI1 Adds a redundant class to the CD
10 | UCL2 Adds an extraneous class to the CD
11 | UCL3 Adds a redundant association class to the CD
12 |UCL4 Adds an extraneous association class to the CD
13 | UATI1 Adds a redundant attribute to a Class
14 | UAT2 Adds an extraneous attribute to a Class
15 |UOP1 Adds a redundant operation to a Class
16 |UOP2 Adds an extraneous operation to a Class
17 | UPAl Adds a redundant parameter to an Operation
18 | UPA2* Adds an extraneous Parameter to an Operation
19 | WCOI1* | Changes the constraint by deleting the references to a class Attribute
20 | WCO2 Changes the Attribute data type in the constraint. Relation: WPA, WAT3
21 | WCO3* | Change the constraint by deleting the calls to specific operation
22 | WCO4* | Changes an arithmetic operator for another and supports binary operators:
+, =%/
23 | WCOS5* | Changes the constraint by adding the conditional operator “not”

(Continued)
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Table 4. (Continued)

# Code Mutation operator rule and relation with other mutation operators

24 | WCO6* | Changes a conditional operator for another and supports operators: or, and

25 | WCO7* | Changes the constraint by deleting the conditional operator “not”

26 | WCO8* | Changes a relational operator for another operators: < , <=, >, >=, ==, I=

27 | WCO9* | Changes a constraint by deleting a unary arithmetic operator (-)

28 | WASI1* Interchange the members (memberEnd) of an Association

29 | WAS2#* | Changes the association type (i.e. normal, composite)

30 | WAS3* | Changes the memberEnd multiplicity of an Association (i.e. *-*, 0..1-0..1,
*-0..1)

31 | WGE Changes the Generalization member ends. Relation: MPA, UPA

32 | WCLI* Changes visibility kind of the Class (i.e. private)

33 | WCL2 Changes Class by an Association Class

34 | WCL3 Changes Association Class for a Class

35 |WCL4 Changes the Class feature “isAbstract “to true

36 | WATI1 Changes the Attribute feature “Is Derived” to true. Relation: UCO2

37 | WAT2 Changes the Attribute property “Is Derived” to false. Relation: MCO

38 | WAT3 Changes the Attribute data type. Relation: WPA, WCO2

39 | WAT4 Changes the Attribute visibility property

40 |WOP1 Changes the order of the parameters

41 | WOP2* | Changes the visibility kind of an operation. Restriction. WOP2 has to be
applied to operations that are not related with any constraints. Relation:
MCO

42 | WOP3 Changes the data type returned by operation. Relation: WAT3

43 | WPA* Changes the Parameter data type (i.e. String, Integer, Boolean, Date, Real).
Restriction. WPA has to be applied to parameters that are not related
with attributes in a constructor operation. To reduce mutants only a
change is counted

44 | MCO* Deletes a constraint (i.e. pre-condition, post-condition constraint, body
constraint)

45 | MAS* Deletes an Association. Restriction. MAS has to be applied to associations
that are not related with any constraints. Relation: MCO

46 MGE Deletes a Generalization relation. Relation: MPA, UPA

47 | MCL Deletes the class (i.e. normal or association class). Relation: MCO, MAT,
MOP, MGE

48 MAT Deletes an Attribute. Relation: MPA, MCO

49 MOP Deletes the operation. Relation: MPA, MCO, WCO3

50 | MPA* Deletes a Parameter from an Operation. Restriction. This mutation operator

has to be applied to operations without related constraints. Relation:
MCO
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