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Abstract. Analyzing variability of software artifacts is important for increasing
reuse and improving development of similar software products, as is the case in
the area of Software Product Line Engineering (SPLE). Current approaches
suggest analyzing the variability of certain types of artifacts, most notably
requirements. However, as the specification of requirements may be incomplete
or generalized, capturing the differences between the intended software behav-
iors may be limited, neglecting essential parts, such as behavior preconditions.
Thus, we suggest in this paper utilizing testing artifacts in order to compre-
hensively analyze the variability of the corresponding requirements. The sug-
gested approach, named SOVA R-TC, which is based on Bunge’s ontological
model, uses the information stored and managed in Application Lifecycle
Management (ALM) environments. It extracts the behavior transformations
from the requirements and the test cases and presents them in the form of initial
states (preconditions) and final states (post-conditions or expected results). It
further compares the behavior transformations of different software products and
proposes how to analyze their variability based on cross-phase artifacts.

Keywords: Variability analysis � Ontology � Software reuse � Software product
lines � Application lifecycle management

1 Introduction

Variability analysis deals with determining the degree of similarity of different software
artifacts, commonly in order to improve the effectiveness and efficiency of their
development and maintenance through increase of reuse [7]. Variability analysis is
extensively studied in the field of Software Product Line Engineering (SPLE) [11, 21],
where variability is considered “an assumption about how members of a family may
differ from each other” [28]. Variability analysis is known as time consuming and
error-prone. Thus, various studies have suggested automatizing variability analysis
using different software development artifacts. Many of these studies concentrate on
analyzing the differences of requirements (e.g., [2, 12, 15]), perceiving reuse of
requirements very important since requirements are essential in all development
approaches and elicited and specified early in the software development lifecycle [11].
These studies frequently apply semantic, syntactic, metric-based, or graph-based
similarity measurements and utilize clustering algorithms. The result is presented in a
form of variability models, most notably feature diagrams [14]. Other types of
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software artifacts are also utilized in order to analyze variability, e.g., architecture [1]
and code [3]. In contrast, testing artifacts seem to attract less attention in variability
analysis [10]. This may be due to their reliance on other development artifacts (i.e., the
requirements that they aim to test) or their description of specific scenarios (that
sometimes include particular values or conditions). Moreover, to the best of our
knowledge, utilizing different types of development artifacts in order to coherently
analyze variability has not been studied. We claim that analyzing artifacts from dif-
ferent, but related, development phases may result in more comprehensive variability
analysis outcomes that better represent the similarities and differences among software
products and may consequentially increase reuse and improve software development
and maintenance.

To this end, we propose in this paper to utilize information stored and managed on
requirements and testing artifacts in existing software development tools. These kinds
of artifacts are highly related in most development approaches and refer to software
behaviors rather than to concrete implementations. Particularly, we explore Application
Lifecycle Management (ALM) environments whose aim is to plan, govern, and
coordinate the software lifecycle tasks. Although ALM environments are geared
towards development of single products, we propose here to utilize them in order to
analyze the variability of different software products managed in their repository.
Particularly, we introduce a method, named Semantic and Ontological Variability
Analysis based on Requirements and Test cases (or SOVA R-TC for short), that
extracts software behaviors from requirements and testing artifacts, enables their
comparison to other behaviors at different level of abstraction, and identifies variants of
similar behaviors. Those variants set the ground for comprehensive variability analysis.

The rest of the paper is structured as follows: Sect. 2 reviews the background and
related work, motivating the need to analyze variability of both requirements and
testing artifacts. Section 3 elaborates on the suggested approach, while Sect. 4 presents
insights from preliminary analysis of the approach outcomes. Finally, Sect. 5 concludes
and provides directions for future research.

2 Background and Literature Review

2.1 Application Lifecycle Management (ALM)

Application Lifecycle Management (ALM) environments [15, 16] aim to support the
development of software products from their initial planning through retirement. Their
main advantages are: (1) maintaining high level of traceability between artifacts
produced in different development phases, e.g., requirements and testing artifacts;
(2) reporting on the development progress in real time to different stakeholders; and
(3) improving stakeholders’ communication across development tasks, e.g., developers
can easily access the complete information about the failure of a test case and its results
which led to finding defects (bugs). Due to those benefits, different frameworks and
implementations of ALM can be found in the industry. Most of them support software
requirements definition and management, software change and configuration man-
agement (SCM), software project planning, quality management (testing), and defect
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management. The first generation of environments, called ALM 1.0, integrates a few
individual tools for helping stakeholders perform their tasks. The next generation,
called ALM 2.0, proposes a holistic platform (rather than a collection of tools) for
coordinating and managing development activities [15].

Although ALM environments typically relate to development of single products,
BigLever [6] – a leading vendor of product line solutions – has already suggested
multi-phase as one of three dimensions in their SPLE framework (the other two
dimensions are multi-baseline referring to evolution of artifacts over time and multi-
product referring to the diversity of products in the same software product line). The
multi-phase dimension directly refers to the development lifecycle phases. It concerns
consistency and traceability among asset variations in different lifecycle phases. Yet,
this dimension addresses the development of single software products.

A recent industrial survey [5] reveals that SPLE is commonly adopted extractively
(i.e., existing product artifacts are re-engineered into a software product line) or
reactively (i.e., one or several products are built before the core assets are developed).
In those scenarios the information stored in ALM environments for different software
products can be utilized to analyze their variability.

Although no study suggests utilizing ALM environments for analyzing variability,
different methods have been suggested for analyzing variability of different types of
software artifacts stored in ALM environments, most notably requirements [10]. Next
we review relevant studies on variability analysis at different development phases,
concentrating of requirements engineering and testing artifacts.

2.2 Variability Analysis at Different Development Phases

Recently, Bakar et al. [4] conducted a systematic literature review on feature extraction
from requirements expressed in a natural language. The main conclusions of this
review is that most studies use Software Requirements Specifications (SRS) as inputs,
but product descriptions, brochures, and user comments are also used due to practical
reasons. The outputs of the suggested methods are commonly feature diagrams [14],
clustered requirements, keywords or direct objects. Moreover, the extraction process
can be divided into four phases: (1) requirements assessment, (2) terms extraction
(using different techniques, such as algebraic models, similarity metrics, and natural
language processing tools), (3) features identification, and (4) feature diagram (or
variability model) formation. Most studies automatize the second phase of terms
extraction, while the other phases are commonly done manually. A work that addresses
the automatization of phases 3 and 4 in addition to that of phase 2 is SOVA (Semantic
and Ontological Variability Analysis) which analyzes requirements variability based on
ontological and semantic considerations [20, 22]. Due to the high relevance of SOVA
to this work, we elaborate on it in Sect. 2.3.

In contrast to requirements, testing artifacts seem to attract less attention in vari-
ability management [10]. According to [10], only FAST – Family-Oriented Abstrac-
tion, Specification and Translation – can be considered covering the full lifecycle
phases, from requirements engineering to testing. However, this approach concentrates
on documentation and representation of variability and not on its analysis.
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Other development artifacts, e.g., design artifacts [1, 17] and code [24], have also
been analyzed to find differences between software products. A few approaches, e.g.,
[1, 25], further propose utilizing several distinct sources of information for analyzing
variability. However, these sources commonly belong to the same lifecycle phase (e.g.,
textual feature descriptions and feature dependencies belonging to the requirements
engineering phase; or software architecture and plugin dependencies belonging to the
design phase). In our work, we aim to explore how analyzing the variability of artifacts
from different lifecycle phases, particularly, requirements engineering and testing, can
contribute to understanding the differences between various software products.

2.3 Semantic and Ontological Variability Analysis (SOVA)

SOVA aims to analyze variability among different software products based on their
textual requirements. Feature identification relies on software behaviors extraction [20,
22]. For each behavior, the initial states (pre-conditions), the external events (triggers),
and the final states (post-conditions) are identified. This is done by parsing the
requirement text utilizing the Semantic Role Labeling (SRL) technique [13]. Six roles
that have special importance to functionality are used in SOVA: (1) Agent – Who
performs?; (2) Action – What is performed?; (3) Object – On what objects is it
performed?; (4) Instrument – How is it performed?; (5) Temporal modifier – When is it
performed?; And (6) Adverbial modifier – In what conditions is it preformed?

Based on these roles, the different phrases of the requirements (called vectors) are
classified into initial states, external events, and final states. External events are:
(1) Action vectors (i.e., vectors identified by verbs) whose agents are external and their
actions are active, or (2) Action vectors whose agents are internal and their actions are
passive. Oppositely, states are: (1) Action vectors whose agents are internal and ac-
tions are active, or (2) Action vectors whose agents are external and actions are
passive. The decision whether a vector is classified as an initial state or a final state is
done according to the place of the vector with respect to other vectors classified as
external events. Particularly, initial states are: (1) Action vectors classified as states that
appear before the first external events in the requirements, or (2) Non-action vectors
(identified by temporal or adverbial modifiers) that appear before the first external
events in the requirements. Conversely, final states are action vectors classified as
states that appear after the last external event in the requirements.

As an example, consider Fig. 1 which presents SOVA’s parsing outcome for the
requirement: When a borrower returns a book copy, the system updates the number of
available copies of the book. In this case, no initial state is extracted; the external event
is returning a book copy by a borrower; and the final state is derived from updating the
number of available copies of the book.

Fig. 1. An example of SOVA’s parsing outcome
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After parsing the requirements and classifying their parts into initial states, external
events, and final states, SOVA enables comparison of requirements, belonging to
different software products, based on different perspectives. In [20], two perspectives
are mainly discussed: structural – in which focus is put (through controlling weights)
on differences in the initial and final states – and functional – which concentrates on
differences in the external events. The final outcomes of SOVA are feature diagrams
organized according to selected perspectives.

Despite the benefits of SOVA to analyze the commonality and variability of
software behaviors [22], its success heavily depends on the level of details of the
requirements and especially on their ability to express the initial state, external event,
and final state. From practice, it is known that requirements are not always complete
and particularly do not explicitly specify all pre-conditions and post-conditions. Hence,
we aim to overcome this limitation by using the corresponding testing artifacts. To
motivate the need, consider the following two requirements which may appear in
different library management systems to describe book return functionality:

1. When a borrower returns a copy of a book that can be pre-ordered by other bor-
rowers, the system sends a message to the borrower who is waiting for this book.

2. When a borrower returns a book copy, the system updates the number of available
copies of the book.

The requirements are similar since they both handle returning a book copy.
However, they differ in their pre- and post-conditions. While the post-conditions are
specified in the requirements (“the system sends a message to the borrower who is
waiting for this book” for the first requirement and “the system updates the number of
available copies of the book” for the second requirement), the preconditions in this
example are not explicitly specified. Specifically, in the first case, the precondition that
there is a borrower waiting for the returned book is not mentioned. As a result, the
similarity of these requirements will not reflect the difference in their preconditions and
the variability analysis will be negatively affected. As we claim next, utilizing test
artifacts associated with those requirements may improve variability analysis (in-
creasing or decreasing the similarity of the corresponding requirements).

3 The Suggested Approach – SOVA R-TC

Our working hypothesis is that what commonly matters to stakeholders involved in
different development lifecycle phases, including requirement engineers and testers, is
the expected behavior of the implemented software. This premise is manifested by
concepts such as functional requirements or functional testing. Therefore, the suggested
approach, called SOVA R-TC, concentrates on functional requirements (hereafter
requirements, for short) and the test cases associated to them. SOVA R-TC employs a
view of a software product as a set of intended changes in a given application domain.
We term such changes software behaviors. The approach uses an ontological model of
behaviors based on concepts from Bunge’s work [8, 9]. This model is described in
Sect. 3.1. We further develop an ALM metamodel that concentrates on requirements
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and testing artifacts (Sect. 3.2) and use it for identifying variants based on the onto-
logical model (Sect. 3.3).

3.1 The Ontological Model of Bunge

Bunge’s work [8, 9] describes the world as made of things that possess properties.
Properties are known via attributes, which are characteristics assigned to things by
humans. Software products can be considered things.

To define or represent things and compare them, we have to define the point of
view from which we wish to conduct the analysis. For example, libraries and car rental
agencies may be perceived differently, since the first one deals with borrowing books
that are different in terms of structure and functionality from cars, the focus of the
second thing. However, these things can be perceived as very similar if we conduct the
analysis from the point of view of checking out of items: both libraries and car rental
agencies handle checking out of physical items (either books or cars).

To define the point of view, we use Bunge’s notion of a state variable – a function
which assigns a value to an attribute of a thing at a given time. The state of a thing is the
vector of state variables’ values at a particular point in time. The abstraction level of
states can be controlled by selecting different sets of state variables, e.g., ISBN of a book
and the license number of a car vs. an item identity. An event is a change of a state of a
thing and can be external or internal: an external event is a change in the state of a thing
as a result of an action of another thing (e.g., borrowing a book by a person or renting a
car by a client), whereas an internal event arises due to an internal transformation in the
thing (e.g., operations triggered by the library itself or the car rental agency). Corre-
spondingly, a state can be stable or unstable: a stable state can be changed only by an
external event while an unstable state may be changed by an internal event.

Bunge’s ontological concepts have been widely adapted to conceptual modeling in
the context of systems analysis and design [26, 27]. In [23], Bunge’s ontological model
is suggested to define software behavior as a triplet of an initial state describing the
stable state the system is in before the behavior occurs, a sequence of external events
that trigger the behavior, and a final state specifying the stable state the system reaches
after the behavior terminates. Both initial and final states are described with respect to
relevant state variables, allowing for variability analysis in different granularity levels.
Formally expressed:

Definition 1 (Behavior). Given a stable state s1 and a sequence of external events
<ei>, a behavior is a triplet (s1, <ei>, s

*), where s* is the first stable state the thing
reaches when it is in state s1 and the sequence of external events <ei> occurs. s1 is
termed the initial state of the behavior and s* – the final state of the behavior. s1 and s*

are defined over a set of state variables SV = {x1…xn}, namely, s1 and s* are
assignments to x1…xn.

3.2 An ALM Metamodel

In order to use Bunge’s concepts as a basis for comprehensively analyzing variability
of software products, we turn now to the introduction of a partial ALM metamodel that
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depicts the characteristics of requirements and testing artifacts, as well as their rela-
tions. Exploring IBM’s Collaborative Lifecycle Management (CLM) solution1, which
is one of the leading ALM environments [29], and different ISO standards, most
notably, ISO/IEC/IEEE 29119-3 on software testing documentation [19], we drafted
the metamodel in Fig. 2. A requirement exhibits just a textual description (in a natural
language), besides some identification. The testing artifacts are described via test cases.
According to [19], a test case is a set of “preconditions, inputs (including actions,
where applicable), and expected results, developed to drive the execution of a test item
to meet test objectives, including correct implementation, error identification, checking
quality, and other valued information”. A test case precondition describes “the required
state of the test environment and any special constraints pertaining to the execution of
the test case,” whereas inputs are the “data information used to drive test execution.”
An expected result is “observable predicted behavior of the test item under specified
conditions based on its specification or another source.” Later in the standard, inputs
are defined as actions “required to bring the test item into a state where the expected
result can be compared to the actual results.” This is in-line with the realization of
inputs in existing ALM environments as fields named actions or test steps.

The mapping of the test case related elements to Bunge’s terminology is quite
straightforward: the preconditions define the initial state of the behavior (test case
scenario), but also some technical constraints (e.g., regarding the environment); the
inputs are the events that trigger (“drive”) the behavior (“execution”); and the expected
results partially2 define the final states of the behavior.

Considering the two requirements mentioned earlier, Table 1 depicts a possible test
case for each one of them. Generally, a single requirement may be validated by several
test cases, e.g., a test case that validates the main scenario and test cases for different
exceptions. Similarly, a single test case can validate more than one requirement, e.g., a
test case that validates an exception common to different behaviors (requirements).
Thus, the relations between requirements and test cases are many-to-many.

Given the suggested metamodel, a requirement or a test case is represented by the
parts of the behavior they represent. For a requirement s1, <e>, s* are extracted using
SOVA, while for a test case s1 is the set of preconditions, <e> is the sequence of inputs,
and s* is the set of expected results.

Definition 2 (A Requirement). A requirement3 R is represented by R = (rs1, <re>,
rs*), where rs1 is the initial state of the behavior described in the requirement, <re> is
the sequence of events triggering that behavior, and rs* is the final state of that
behavior.

1 http://www-03.ibm.com/software/products/en/ratlclm.
2 The reason why the expected results only partially define the final state is that expected results
concentrated on “observable predicted behavior of the test item,” and not necessarily refer to internal
changes.

3 Remember we refer here only to functional requirements.
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Definition 3 (A Test Case). A test case TC is represented by TC = (pre, <inp>, rst),
where pre is the set of the preconditions of the behavior tested in the test case, <inp> is
an ordered set of inputs, and rst is a set of expected results of the tested behavior.

In this paper, we assume that the test case inputs are actually realizations of the
requirement external events (describing how the external events are captured by the
system) and therefore we concentrate on the state of the system before the behavior
occurs (as specified both in the initial states of the requirements and the preconditions
of the test cases) and the state of the system after the behavior occurs (as specified both
in the final states of the requirements and the expected results of the test cases). Note
that these two parts of the behavior (s1 and s*) represent states and hence can be
perceived as defined by possible assignments to state variables. Returning to the
examples in Table 1, the precondition of the first test case refers to two assignments of
state variables – the book can be pre-ordered (book = can_be_preordered) and a
borrower is waiting for the book (borrower = is_waiting_for_the_book). Each of the
post-conditions of the two test cases refers to an assignment to a state variable: sending
a message (message_to_the_borrower = sent) for the first test case and updating the

Fig. 2. A metamodel specifying the information on requirements and test cases

Table 1. Examples of test cases in the form of preconditions, inputs, and expected results

Requirement Preconditions Inputs Expected results

When a borrower returns a
copy of a book that can be
pre-ordered by other
borrowers, the system sends
a message to the borrower
who is waiting for this book

- The book can
be
pre-ordered
by other
borrowers

- A borrower is
waiting for
the book to
be returned

A borrower
returns a
book
copy

The system sends a
message to the
borrower who is
waiting for this
book

When a borrower returns a
book copy, the system
updates the number of
available copies of the book

—— A borrower
returns a
book
copy

The system updates
the number of
available copies of
the book
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number of available copies (number_of_available_copies = increased_by_1) for the
second test case. Next we formally define states (e.g., rs1, rs*, pre, and rst) as sets of
pairs describing assignments to state variables.

Definition 4 (States). Let SV = {x1, …xn} be a set of state variables, such that Dom
(xi) = {vi1, vi2, …} is the possible values (domain) of xi. A state s is defined as
s = {(xi, vij)| xi 2 SV and vij 2 Dom(xi)}.

Since the suggested method assumes descriptions of behavior in a natural language
(in the form of requirements and test cases), the extraction of state variables and
assignments uses a natural language processing technique. Particularly, using the
Semantic Role Labeling (SRL) technique mentioned in Sect. 2.3, the state variables are
extracted from the object parts of the phrases, while the assignments are extracted from
the action parts. The examples above follow these rules.

3.3 Behavior Transformations Deduced from Requirements
and Test Cases

Using Bunge’s ontological model and the metamodel introduced above, we aim to
explore the relations between a requirement and its associated test cases in order to
improve variability analysis. Particularly, SOVA R-TC compares the different parts of
behaviors as specified in the requirements and their associated test cases.

While requirements describe what the system should do, namely, specify the high
level functionality of the system, test cases detail how the functionality should be
tested. Therefore, the initial state of a requirement may be different from the precon-
ditions of the test cases associated to it. Particularly, the initial state of the requirement
may be missing or the preconditions of the test cases may refine the initial state of the
requirement. Similarly, the expected results of the test cases may differ (at least in the
level of details) from the final state of the requirements. We do not refer to these
differences as inconsistencies, but as differences in scope or in level of specification.
Moreover, a single requirement may be associated to different test cases, each of which
describes a different scenario to be tested. We thus consider the intersection of these
scenarios (which describes the characteristics of the behavior rather than of a particular
scenario/test case) and unify this intersection with the requirement in order to enrich the
specification of the initial and final states. This is expressed through the notion of
behavior transformation defined next.

Definition 5 (Behavior Transformation). Given a requirement R = (s1, <e>, s*) and a
set of test cases {TC1, …TCn} associated to it, such that TCi = (<prei>, <inpi>, <rsti>),
we define the behavior transformation bt as (uis, ufs), where uis = s1 [ i¼1::nprei is the
unified initial state of the behavior and ufs = s* [ i¼1::nrsti is its unified final state.

For exemplifying behavior transformations, consider Table 2 which refers to a
single requirement with two associated test cases. The initial state of behavior does not
explicitly appear in the requirement and thus SOVA does not extract it. The final state
generally refers to update of a certain variable (the number of available copies of the
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book). Using the two test cases associated to this requirement, we learn on two possible
scenarios: one in which “no borrower pre-ordered the book” and the other in which “at
least one borrower is waiting for the book.” In both scenarios it is assumed that “the
book was borrowed” and thus we can conclude that this assignment of the state variable
(book_status) characterizes the behavior rather than provides technical conditions of
specific test cases. As a result the unified initial state of the behavior transformation is
“the book was borrowed.” For similar reasons, the expected result of notifying the first
borrower who is waiting for the book about the arrival is considered scenario-specific
and hence the unified final state of the behavior transformation refers only to the state
variable “number of available copies of the book.” Here both requirement and test
cases refer to this state variable, but slightly differently: the requirement generally refers
to the need to update this state variable, while the test cases refer to how this state
variable needs to be updated – increase by 1. Assuming that test cases are more detailed
than requirements and refer to state variables in a higher level of details, we adopt the
assignment proposed to a state variable by test cases. In other words, if the same state
variable appears both in the requirements and in the test cases with different proposed
assignments, the unified final state adopts the assignment suggested to the state variable
in the test cases. Hence, in our case the unified final state of the behavior transformation
is “the system increases the number of available copies of the book by 1.”

3.4 Calculating the Similarity of Requirements Considering Their
Associated Test Cases

The basis for analyzing variability in SOVA R-TC is identifying variants of similar
behaviors. Thus, given a set of software products, each represented by requirements
and their associated test cases, we calculate the similarity of behaviors as follows.

Table 2. Examples of a requirement and two possible associated test cases

s1 (rs1 or pre) <e> (<re> or
<inp>)

rs* or post (rs1 or pre)

Requirement a borrower
returns a
book copy

the system updates the number
of available copies of the
book

Test case 1 - The book was
borrowed

- No borrower
pre-ordered the
book

a borrower
returns a
book copy

- The system increases the
number of available copies
of the book by 1

Test case 2 - The book was
borrowed

- At least one
borrower is
waiting for the
book

a borrower
returns a
book copy

- The system increases the
number of available copies
of the book by 1

- The first borrower who waits
for the book is notified about
the arrival

Behavior
transformation

- The book was
borrowed

- The system increases the
number of available copies
of the book by 1
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Definition 6 (Behavior Similarity). Given two requirements R1 and R2, their asso-
ciated transformation behaviors bt1 = (uis1, ufs1) and bt2 = (uis2, ufs2), respectively,
and a semantic similarity sim, the behavior similarity, SimR-TC, is the weighted average
of the pair-wise semantic similarities of their unified initial and final states. Formally
expressed:

SimR�TC R1;R2ð Þ
¼ wuis �

P
xi2uis1

maxxjuis2 sim xi;xjð Þþ P
xi2uis2

maxxjuis1 sim xi;xjð Þ
uis1j j þ uis2j j

þwufs �
P

xi2ufs1
maxxjufs2 sim xi;xjð Þþ P

xi2ufs2
maxxjufs1 sim xi;xjð Þ

ufs1j j þ ufs2j j

Where:

– wuis and wufs are the weights of the unified initial and final states, respectively;
wuis þwufs ¼ 1.

– sim xi; xj
� �

is the semantic similarity of xi and xj – assignments to state variables in
the unified initial or final states of a requirement.

– uis1j j; uis2j j; ufs1j j; ufs2j j are the numbers of assignments in the unified initial states
of the two requirements and in the unified final states of the two requirements,
respectively.

Simplifying this definition, behavior similarity is calculated by matching the most
similar assignments both in the unified initial and final states of the compared
behaviors. To this end, different semantic similarity measures can be used. Those
measures are commonly classified as corpus-based or knowledge-based [18].
Corpus-based measures identify the degree of similarity based on information derived
from large corpora, while knowledge-based measures use information drawn from
semantic networks. Combining corpus- and knowledge-based semantic approaches, the
measure suggested by Mihalcea et al. (MSC) [18] calculates sentence similarity by
finding the most similar words in the same part of speech class. The derived word
similarity scores are weighted with the inverse document frequency scores that belong
to the corresponding word.

We made the calculation of behavior similarity flexible by introducing weights of
the unified initial and final states. Basically, we could assume wuis ¼ wufs ¼ 0:5,
however, we wanted to enable the analysts to fine tune the calculation, based on
observations they may have, e.g., regarding the accuracy and completeness of the
unified initial states vs. the unified final states of the compared software products.

As an example to the benefits of calculating requirements taking into consideration
their associated test cases, consider Fig. 3. The two requirements, taken from different
products, are similar in the sense that they handle borrowing books. However, the
similarity value of SOVA is 0.5 and the similarity value of MCS is 0.6, pointing on
medium similarity. Calculating the behavior similarity of these requirements in SOVA
R-TC, using the same basic semantic metric (MCS), we get a higher value of 0.7 which
better depicts the expected conclusion that the behaviors can be considered variants of
each other.
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4 Implications and Discussion

We developed a tool supporting SOVA R-TC and analyzed a set of requirements and
their associated test cases. Based on these examples we extracted patterns that worth
further discussion and explorations. Note that although we are interested in the dif-
ferences between analyzing the variability based only on requirements (the output of
SOVA) and additionally utilizing test cases (the output of SOVA R-TC), the patterns
are presented and explained based on the relations between the requirements and the
test cases in the compared behaviors. Particularly, we refer to the requirement using the

Fig. 3. An example of requirements and their associated test cases from different products
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notation of rs1 and rs*, and to the intersection of test cases via the notation of tcs1 =
and tcs* = \ i¼1::nrsti. Remember that s1 = rs1 [ tcs1 and s* = rs* [ tcs*. Ana-
lyzing the four intersection possibilities between sets, Table 3 summarizes eight pat-
terns, their characteristics, and implications on requirements similarity (and
consequently on their variability analysis). Those patterns can be used in the future to
study the impact of utilizing different types of software artifacts on the comprehen-
siveness of the variability analysis of their corresponding software products.

5 Summary and Future Research

Perceiving requirements as essential artifacts in software development, we advocate for
utilizing test cases in order to better understand the similarity, and consequently the
variability, of software products. Analyzing the similarity of requirements not just from
their textual descriptions but also from their associated artifacts (test cases in our
research), may improve understanding the requirements context and improve their
reuse. This is especially important when the requirements are known to be incomplete

Table 3. Patterns of similarity in requirements

# Name Characteristics Implications
on
similaritya

Explanations

1 Initial state
refinement

rs1 � tcs1 " # The requirements may become
more or less similar, depending
on the similarity of the added
information (tcs1–rs1 or tcs*–
rs*)

2 Final state
refinement

rs* � tcs* " #

3 Initial state
consolidation

tcs1 � rs1 — The similarity of the
requirements are unchanged as
s1 = rs1 or s* = rs*4 Final state

consolidation
tcs* � rs* —

5 Initial state
exceptions

rs1– tcs1 6¼ ∅
^

tcs1– rs1 6¼ ∅

" # This can happen due to
specification of exceptions in
the test cases. The core
characteristics of the
requirements appear also in the
test cases. The exceptions may
increase or decrease
requirements similarity

6 Final state
exceptions

rs*– tcs* 6¼ ∅
^

tcs*– rs* 6¼ ∅

" #

7 Initial state
conflict

tcs1 \
rs1 = ∅

unexpectedly This can happen due to reuse of
generic test cases that are not
directly related to the
examined requirements. As a
result the requirements
similarity can unexpectedly be
changed (increased or
decreased)

8 Final state
conflict

tcs* \
rs* = ∅

unexpectedly

a"# = similarity changes (increases or decreases), — similarity unchanged.
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or less detailed (e.g., in agile development approaches). The relevant information to do
that is already stored and managed in Application Lifecycle Management (ALM) en-
vironments that are commonly used in software development. We suggest SOVA R-TC
which utilizes ALM environments in order to extract the unified initial and final states
of the behavior transformations and calculate the similarity of requirements considering
the associated test cases. Based on this analysis, decisions on SPLE adoption (in
extractive and reactive scenarios) can evidentially be taken.

In the future, we plan to further explore the patterns and evaluate their existence
and potential meanings in different case studies. The evaluation will be done in
comparison to existing methods and interviewing developers. We also intend to explore
combination of patterns and examine similarity and variability of events (inputs) and
how they impact requirements reuse, potentially adding patterns. Moreover, we plan to
explore the impact of different types of relations between requirements and test cases
(e.g., main scenarios vs. exceptions) on requirements similarity and variability.
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