Skip to main content

Targeted X-Ray Computed Tomography: Compressed Sensing of Stroke Symptoms

  • Conference paper
  • First Online:
  • 649 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 471))

Abstract

The subject of reported research is model-based compressed sensing applied to CT imaging. Personalized CT examinations were designed according to requirements of CT-based stroke diagnosis in emergency care. Adaptive sensing was optimized to recover more accurately diagnostic information which is partially hidden or overlooked in standard procedures. In addition, limited number of measurements was used to reduce radiation dose. As a result, new paradigm of integrated optimization for CT system was proposed. Formalized diagnostic model is used to improve the relevance of CT imaging in emergency diagnosis. Simulated experiments confirmed a proof of concept realization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams, H.P., Davis, P.H., Leira, E.C., et al.: Baseline NIH stroke scale score strongly predicts outcome after stroke: a report of the trial of org 10172 in acute stroke treatment (TOAST). Neurology 53(1), 126–131 (1999)

    Article  Google Scholar 

  2. Baraniuk, R.C., Cevher, V., Duarte, M.F., Hegde, C.: Model-based compressive sensing. IEEE Tran. Inf. Theory 56(4), 1982–2001 (2010)

    Article  MathSciNet  Google Scholar 

  3. Baraniuk, R., Davenport, M.A., Duarte, M.F., Hegde, C. et al.: An introduction to compressive sensing. http://cnx.org/content/col11133/latest/ (2011)

  4. Beister, M., Kolditz, D., Kalender, W.A.: Iterative reconstruction methods in X-ray CT. Physica Med. 28, 94–108 (2012)

    Article  Google Scholar 

  5. Brenner, D.J., Hall, E.J.: Computed tomography—an increasing source of radiation exposure. N. Engl. J. Med. 357, 2277–2284 (2007)

    Article  Google Scholar 

  6. Brott, T., et al.: Measurements of acute cerebral infarction: a clinical examination scale. Stroke 20, 864–870 (1989)

    Article  Google Scholar 

  7. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duarte, M.F., Cevher, V., Baraniuk, R.C.: Model-based compressive sensing for signal ensembles. In: Proceedings of the 47rd Allerton Conference on Communication, Control and Computer, pp. 244–250 (2009)

    Google Scholar 

  9. Fink, J.N., et al.: Is the association of National Institutes of Health Stroke Scale scores and acute magnetic resonance imaging stroke volume equal for patients with right- and left-hemisphere ischemic stroke? Stroke 33, 954–958 (2002)

    Article  Google Scholar 

  10. Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haupt, J., Castro, R., Nowak, R.: Improved bounds for sparse recovery from adaptive measurements. IEEE ISIT, 1563–1567 (2010)

    Google Scholar 

  12. Hegde, C., Indyk, P., Schmidt, L.: Approximation-tolerant model-based compressive sensing. arXiv:1406.1579 (2014)

  13. Huang, J., Zhang, Y., Ma, J. et al.: Iterative image reconstruction for sparse-view CT using normal-dose image induced total variation prior. Plos One 8(11) (2013)

    Google Scholar 

  14. Iwen, M.A., Tewfik, A.H.: Adaptive compressed sensing for sparse signals in noise. In: Proceedings of the ASILOMAR Conference on Signals, Systems, and Computers, pp. 1240–1244 (2011)

    Google Scholar 

  15. Jauch, E.C., Saver, J.L., Adams, H.P., Bruno, A., et al.: Guidelines for the early management of patients with acute ischemic stroke. Stroke 44(3), 870–947 (2013)

    Article  Google Scholar 

  16. Joemai, R.M., Geleijns, J., Veldkamp, W.J.: Development and validation of a low dose simulator for computed tomography. Eur. Radiol. 20, 958–966 (2010)

    Article  Google Scholar 

  17. Jorgensen, J.S., Sidky, E.Y., Pan, X.: Quantifying admissible undersampling for sparsity-exploiting iterative image reconstruction in X-Ray CT. IEEE Tran. Med. Imag. 32(2), 460–473 (2013)

    Article  Google Scholar 

  18. Kak, A.C., Slaney, M.: Principles of computerized thomographic imaging. Society of Industrial and Applied Mathematics, chapter 7 (2001)

    Google Scholar 

  19. Liu, Y., Ma, J., Fan, Y., Liang, Z.: Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction. Phys. Med. Biol. 57, 7923–7956 (2012)

    Article  Google Scholar 

  20. Michailovich, O., et al.: Spatially regularized compressed sensing for high angular resolution diffusion imaging. IEEE Tran. Med. Imag. 30(5), 1100–15 (2011)

    Article  MathSciNet  Google Scholar 

  21. National Council on Radiation Protection and Measurements (NCRP) Report 160. Ionizing radiation exposure of the population of the US. NCRP, Bethesda (2009)

    Google Scholar 

  22. Oliveira, M.S., Fernandes, P.T., Avelar, W.M., et al.: Texture analysis of computed tomography images of acute ischemic stroke patients. Braz. J. Med. Biol. Res. 42(11), 1076–1079 (2009)

    Article  Google Scholar 

  23. Patel, V.M., et al.: Gradient-based image recovery methods from incomplete Fourier measurements. IEEE Trans. Image Process. 21(1), 94–105 (2012)

    Article  MathSciNet  Google Scholar 

  24. Przelaskowski, A.: Recovery of CT stroke hypodensity—an adaptive variational approach. J. Comp. Med. Imag. Graph. 46, 131–141 (2015)

    Article  Google Scholar 

  25. Przelaskowski, A., Ciszek, B., Jozwiak, R., Domitrz, I., Sobieszczuk, E.: Stroke bricks—the segments of interests to analyze early stages of the disease evolution. Report submitted to International Journal of Medical Informatics (2016)

    Google Scholar 

  26. Przelaskowski, A., Sklinda, K., Bargieł, P., et al.: Improved early stroke detection: wavelet-based perception enhancement of computerized tomography exams. Comp. Biol. Med. 37(4), 524–533 (2007)

    Article  Google Scholar 

  27. Qi, H., Chen, Z., Zhou, L.: CT image reconstruction from sparse projections using adaptive TpV regularization. Comp. Math. Met. Med. (2015)

    Google Scholar 

  28. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777–4807 (2008)

    Article  Google Scholar 

  29. Smith-Bindman, R., Lipson, J., Marcus, R., et al.: Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch. Intern. Med. 169, 2078–86 (2009)

    Article  Google Scholar 

  30. Tang, J., Nett, B.E., Chen, G.-H.: Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms. Phys. Med. Biol. 56(18), 5949–5967 (2011)

    Article  Google Scholar 

  31. Tian, Z., Jia, X., Yuan, K., et al.: Low dose CT reconstruction via edge-preserving total variation regularization. Phys. Med. Biol. 56(18), 5949–5967 (2011)

    Article  Google Scholar 

  32. Xu, Q., Mou, X., Wang, G., Sieren, J., Hoffman, E.A., Yu, H.: Statistical interior tomography. IEEE Tran. Med. Imag. 30(5), 1116–1128 (2011)

    Google Scholar 

  33. Yang, Y., et al.: A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J Sel. Top. Sig. Proc. 4(2), 288–297 (2010)

    Article  Google Scholar 

  34. Yu, H., Wang, G.: Compressed sensing based interior tomography. Phys. Med. Biol. 54(9), 2791–2805 (2009)

    Article  Google Scholar 

  35. Zhu, Z., et al.: Improved compressed sensing-based algorithm for sparse-view CT image reconstruction. Comp. Math. Met. Med. (2013)

    Google Scholar 

Download references

Acknowledgments

This publication was funded by the National Science Centre (Poland) based on the decision DEC-2011/03/B/ST7/03649.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Przelaskowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Przelaskowski, A. (2016). Targeted X-Ray Computed Tomography: Compressed Sensing of Stroke Symptoms. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technologies in Medicine. ITiB 2016. Advances in Intelligent Systems and Computing, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-319-39796-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39796-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39795-5

  • Online ISBN: 978-3-319-39796-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics