
Analysis and Evaluation of OpenFlow Message
Usage for Security Applications

Sebastian Seeber1(B), Gabi Dreo Rodosek1, Gaëtan Hurel2,
and Rémi Badonnel2

1 Department of Computer Science, Universität der Bundeswehr München,
85577 Neubiberg, Germany

{sebastian.seeber,gabi.dreo}@unibw.de
2 Inria Nancy Grand-Est, Université de Lorraine,

Campus Scientifique, 54600 Villers-les-nancy, France
gaetan.hurel@inria.fr, remi.badonnel@loria.fr

Abstract. With the advances in cloud computing and virtualization
technologies, Software-Defined Networking (SDN) has become a fertile
ground for building network applications regarding management and
security using the OpenFlow protocol giving access to the forwarding
plane. This paper presents an analysis and evaluation of OpenFlow mes-
sage usage for supporting network security applications. After describ-
ing the considered security attacks, we present mitigation and defence
strategies that are currently used in SDN environments to tackle them.
We then analyze the dependencies of these mechanisms to OpenFlow
messages that support their instantiation. Finally, we conduct series of
experiments on software and hardware OpenFlow switches in order to
validate our analysis and quantify the limits of current security mecha-
nisms with different OpenFlow implementations.

1 Introduction

Software-defined networking (SDN) has become a major paradigm for network
programmability with the large-scale deployment of cloud infrastructures and the
virtualization of network functions. It currently provides a convenient support to
the design and implementation of different services, including security mitigation
mechanisms, through the abstraction of higher-level functionality. In particular,
it is often perceived or expected as a potential solution for enabling fast recon-
figuration operations in order to address the growing complexity of networking
environments. Indeed, decision making processes can be facilitated at the SDN
controllers level, e.g. about forwarding paths, based on the logical global view
of the network that is abstracted and given to applications. Moreover, the close
relationship between network intelligence and the forwarding plane enables a
faster reply and a more flexible way to react to security incidents, in comparison
to other traditional solutions.

The abstraction induced by software-defined networking poses also impor-
tant security issues with respect to the reliability and dependencies of solutions
c© IFIP International Federation for Information Processing 2016
R. Badonnel et al. (Eds.): AIMS 2016, LNCS 9701, pp. 84–97, 2016.
DOI: 10.1007/978-3-319-39814-3 9

Analysis and Evaluation of OpenFlow Message Usage 85

that are built on top of them. This statement is even more critical when these
applications using network programmability facilities are intended to detect or
prevent security attacks. Typically, these solutions are based on the OpenFlow
standardized protocol, which is one of the most prominent software-defined solu-
tions for supporting communications between network controllers and program-
mable switches. It therefore plays a central role in the effective reliability of
applications. However, the various implementations of this protocol react in dif-
ferent ways. For instance, the timing and count of OpenFlow messages may
differ for hardware and software implementations and among multiple vendors,
which may have a direct impact on the overall performances of software-defined
applications. In that context, a major challenge is to analyze the dependencies of
security solutions to software-defined networking protocols, such as the exploita-
tion of OpenFlow messages. It is also important to evaluate their performance
impact on different hardware implementations to draw conclusions about the
effectiveness of security approaches based on OpenFlow messages. Otherwise,
vendors of OpenFlow-based security applications are bound to specific hardware
and thus dashes the expectations of software-defined networking with respect to
open vendor independent and standardized interfaces.

The rest of this paper is organized as follows: Sect. 2 gives an overview of secu-
rity attacks that have been considered in this analysis and describes SDN-based
security mitigation currently available to address them. In Sect. 3 we analyze the
dependencies of these security solutions in terms of OpenFlow message usage
through a dedicated mapping. We then evaluate in Sect. 4 the performance of
different OpenFlow implementations and the induced impact on security appli-
cations. Section 5 details related work in the area of software-defined security.
Section 6 concludes the paper and points out several research perspectives.

2 Network Attacks and SDN-Based Defences

Considering the traditional taxonomy of security attacks published in [12], our
analysis has focused on SDN mitigation mechanisms for tackling two major
categories of security attacks, namely overloading attacks and information gath-
ering attacks. We remind in this section each of these categories and detail
defence strategies designed in traditional and software-defined environments.
These strategies will then serve as a basis for analyzing and quantifying the
dependencies of security mechanisms to OpenFlow messages.

2.1 Mitigation of Overloading Attacks

These last years have seen an increase of overloading attacks, with in particular
distributed denial-of-service (DDoS) [2] whose growth has been evaluated to 90 %
in the last 12 months by a recent report from Akamai [1]. The main methods used
in networking and software-defined networking are based on flooding techniques,
where the attacker generates a very high amount of packets to overload the
target environment. A typical example is given by smurf attacks which generate

86 S. Seeber et al.

ICMP echo/reply packets, where the source IP address is spoofed, with broadcast
networks to multiply traffic. Following this approach, a couple of low-bandwidth
sources can easily kill high-bandwidth connections. The overloading attacks may
also rely on amplification techniques. In that case, the approach consists in
turning a small amount of bandwidth coming from a few machines into huge
attacks targeted on a specific device. For instance, in the case of NTP (Network
Time Protocol) amplification attacks, this is made possible by the fact that no
authentication is required in order to obtain a response. Therefore, the attacker
is capable of forging their address so that the generated request looks like it
originated from the intended victims machine. The attacker sends forged requests
to a large distributed number of servers across the network. Since the response
is up to 200 times bigger than the request, a large attack can be initiated by
simply a single machine, once amplified through a number of distributed NTP
servers. Such type of response is possible due to the monlist command, which
is available in NTP servers. This command can return the addresses of up to the
last 600 machines that the NTP server has interacted with. The amplification
factor of domain name service (DNS) is much lower and ranges of around 40 to
100 depending on the effort that the attacker puts into the preparation of its
attack. An overview of typical bandwidth amplification factors is presented in [3].
There exist many similar overloading attacks that are initiated via network,
such as Teardrop, Bonk, Boink and Ping of Death. The impact is always to
severely impair or disable an host or at least its IP stack, but through packet
fragmentation techniques or vulnerability reassembling. However, these attacks
require of course an host IP stack in order to receive packets from the attacker.

Mitigation strategies against overloading attacks within traditional networks
are experiencing difficulties regarding their deployment, because most of them
induce high network complexity and prohibitive operational cost [25]. In the
meantime, SDN-based networks prove to be much more flexible due to their
programmable nature. In an SDN-based network, the centralized view of the
network state by the controller(s), as well as the capacity of the network to
be dynamically reprogrammed, significantly ease the deployment of mitigation
strategies, such as DDoS mitigation, initially designed for traditional networks.
In particular, Moving Target Defense (MTD) is an intrusion prevention mech-
anism used to periodically change a deterministic attribute (typically the IP
address) of a chosen host, in order to confuse attackers and thus protect the host.
Usually, deploying MTD mechanisms within traditional networks is difficult and
costly, because it involves the usage of dedicated hardware facilities for hosting
the MTD intelligence [14]. In an SDN-based network, the MTD intelligence is
hosted at the controller level, which is able of dynamically reconfiguring the
network according to its dedicated algorithm [15]. Traffic analysis for intrusion
and anomaly detection within a given network is another example of mitigation
strategies simplified by the SDN paradigm [17]. In such a context, the controller
can simply query the switches of the network in order to gather statistical infor-
mation about the network traffic, and then detect potential intrusion or anom-
aly according to its detection algorithm(s). Once an attack has been detected,

Analysis and Evaluation of OpenFlow Message Usage 87

blocking the source of the attack or redirecting the associated malicious flows to
security middleboxes - i.e. providing an intrusion response - can be done at the
controller level by reprogramming the whole network [19]. Such reprogramming
steps are important for implementing efficient intrusion tolerance mechanisms.

2.2 Mitigation of Information Gathering Attacks

Another important category of attacks corresponds to information gathering.
The one refers to the process of determining the characteristics of one or more
remote hosts (and/or networks). Information gathering can be used to construct
a model of the target host, and to facilitate future penetration attempts. There
exist several and complementary methods to perform a remote information gath-
ering in the literature at various levels:

– Host detection: this method tries to identify if a host is available. In most
of the cases this is done by a ping or fping which elicits e.g. an ICMP
ECHO REPLY from a victim.

– Service detection: service detection is typically performed based on port
scanning. The objective is to detect the availability of UDP, RPC or TCP
services, e.g. HTTP, DNS, through the execution of SYN or FIN scanning or
slight variations like fragmentation scanning.

– Network topology detection: to get more information about a network,
methods like TTL modulation, e.g. with traceroute or record route, e.g. ping
-R can be performed. Another non-invasive method to learn more about a
network is by network sniffing.

– Operating system detection: since the implementations of TCP/IP stacks
of operating systems are different, the behavior of such an implementation
can give information about the concrete operating system. This could be an
interesting information to get access to the victim system, because the attacker
can determine which vulnerabilities are present and exploitable. An additional
name for this method is TCP/IP stack fingerprinting.

In the past, information gathering was performed with a one to one or one
to many model; i.e. an attacker performs techniques linear against either one
target host or a logical group of targets (e.g. a subnet). These methods were
often optimized for speed and executed in parallel (e.g. nmap). Newer types of
information gathering methods use distributed methods following the many to
one or many to many model. Therefore, an attacker tries to use multiple hosts
to execute some information gathering methods in random and non-linear ways.
The aim of the distribution is to avoid detection either by human analysis or
network intrusion detection systems.

Mitigation strategies for information gathering attacks within SDN-based
networks prove to be quite similar to the ones mentioned for traditional net-
works. The main difference resides in the holistic view of the controller(s), which
may ease both the statistic aggregation and the correlation steps, as well as
blocking (after detection) by reprogramming the network. For instance, in the

88 S. Seeber et al.

case of Moving Target Defence (MTD) solutions mentioned above, the mech-
anisms make the attacker task harder, since the information obtained from a
scanning attack at a period p may not be correct anymore at the period p+1.
Some other advanced MTD mechanisms have been designed in SDN-based net-
works to add network noise, such as dynamic fake servers and fake open ports
[13], as well as to prevent OS fingerprinting and service version/banner grab-
bing. However, this last feature may induce overhead at the controller and/or
the switch layer, since it requires to look and modify information in upper layers
(e.g. httpd version in HTTP header), which might seem contrary to the SDN
paradigm principles.

3 Analysis of OpenFlow Messages Used for Network
Security Applications

Mitigation strategies take benefits from facilities offered by software-defined net-
working, even when they rely on similar models and methods well-known in tra-
ditional networks. These solutions often built on top of the software-defined layer
introduce however dependencies of security mechanisms to these facilities, in par-
ticular to the OpenFlow protocol, that we analyze in the section. We typically
consider three main deployment categories in software-defined infrastructures:
reactive, proactive and hybrid deployments. In all of them, a flow-table lookup is
performed when a network flow reaches a switch. Depending on the implemen-
tation, e.g. software vSwitch or hardware switch (ASIC (Application-Specific
Integrated Circuit)) flow tables are accessed. In case no matching flow is found
a request to the controller is sent for further instructions.

In a reactive approach, the controller acts upon these requests through the
creation and installation of a rule in the switch’s flow-table for the correspond-
ing packet. In a proactive approach, the controller populates flow-table entries
for all possible traffic matches possible for this switch in advance. This mode is
comparable with typical traditional routing entries today, where all static entries
are installed ahead in time. Following this proactive implementation, no request
needs to be sent to the controller, since all incoming flows should find a matching
entry. The major advantage of proactive deployments is due to the fact that all
packets are forwarded in line rate (considering flow-table entries are stored in
TCAM (Ternary Content-Addressable Memory)) and no delay is added. In addi-
tion, hybrid environments exist where the flexibility of a reactive environment
for a set of traffic is used, while the low-latency forwarding (proactive) is used
for the rest of the traffic.

Our analysis with respect to OpenFlow message usage for network security
considers a reactive environment. Indeed, software-defined networking and in
particular the OpenFlow protocol is typically leveraged for a dynamic reconfig-
uration and setup of the network. In addition, proactive deployments are quite
inflexible. Therefore, proactive scenarios are often based on hybrid environments
with a reactive part that is not necessarily activated. Our approach is applica-
ble to all OpenFlow-enabled SDN environments that include a reactive part.

Analysis and Evaluation of OpenFlow Message Usage 89

Table 1. Mapping of OpenFlow messages to security functionality addressing over-
loading attacks

OpenFlow message Security functionality

PACKET IN Monitoring of e.g. number of new flows (detection)

OFPFlowMod Traffic redirection and queuing (mitigation)

OFPMeterMod Rate-limiting (detection)

OFP*StatsRequest Detection based on statistics collection

This behavior allows us to gather and measure useful OpenFlow-related infor-
mation, such as PACKET IN messages, which are necessary for several types of
security related applications. Based on this consideration, and within a security
context, we specified for each attack category, a mapping of the OpenFlow mes-
sage types that are used for serving security functionalities, such as detection,
mitigation and reconfiguration purposes. These security mechanisms therefore
rely on the reliability of these messages and the information they carry (e.g.
counters). We considered the following OpenFlow message types in this security-
oriented analysis and mapping:

– PACKET IN messages: these are sent from the OpenFlow-enabled switch
to the controller in case a new flow arrives at the switch and no matching
flow-table entry is found. This behavior is useful for detection and mitigation
approaches, like e.g. blacklisting or firewalling. In this case the number of new
flows (e.g. IP addresses) can be counted (gathering stats on-the-fly) and if too
many new IP addresses arrive, whether they are allowed or not this could be an
indication for e.g. a DDoS attack or anomalous behavior in the monitored net-
work. To gather these kinds of statistical data there, exist dedicated OpenFlow
messages (e.g. MULTIPART REQUEST). Compared to those messages, gath-
ering PACKET IN-based statistics is done on-the-fly for reactive environments
inducing no additional OpenFlow communication between the controller and
the switch(es). In proactive environments MULTIPART REQUEST messages
can assume this task.

– OFPFlowMod, OFPFlowStatsRequest/OFPFlowAggregateStats
Request messages: these are suitable for redirection and traffic mirror-
ing. These messages can be useful to mirror traffic to different types of
intrusion detection middleboxes or security appliances. In addition, there
exist specific flags within these messages to reset packet and byte counters
(OFPFF RESET COUNT) in the switch or modify the configuration of a
switch in a sense that it sends a message once a flow rule has expired. As a
last use-case these messages can be used to mitigate an attack by dropping
malicious packets.

– OFPMeterMod/OFPMeterStatsRequest messages: these allow a rate-
limiting configuration, which was originally designed for quality of service
purposes. Nevertheless, this functionality can be used in the area of detection
for sampling packets.

90 S. Seeber et al.

– OFPQueueStatsRequest messages: these can be used to gather statistics
from existing queues. In the area of security applications an option is to set up
two queues: one queue for legitimate traffic with high bandwidth and one queue
for suspicious and malicious traffic with a limited throughput. The process of
setting up such a queue states part of prevention or mitigating an attack. The
statistics collection part is relevant for detection purposes. Using the set-queue
attribute an application can set up a defined action (e.g. OUTPUT, DROP)
for a specific queue.

– Multipart messages: these provide plenty of options useful for detection
purposes. Using the OFP*Stats[Request—Reply] messages, statistics about
flows and rules can be gathered from the switches. These methods are useful
for applications to detect, e.g. possible anomalies in the traffic flows. In addi-
tion, considering pre-installed rule sets for security applications the statistics
collection methods are necessary to derive possible security events. To reduce
false-positives in such a detection approach correlation methods need to be
developed.

– PacketOut messages: these enable forging packets and send them to security
devices/middleboxes in order to reconfigure the network according to already
detected incidents or to change configuration options to improve detection
capabilities.

– OFPFlowRemoved messages: these are suitable for security diagnosis and
testing purposes. With associated counters involved they could also be useful
to improve detection capabilities.

Table 2. Mapping of OpenFlow messages to security functionality addressing infor-
mation gathering attacks

OpenFlow message Security functionality

PACKET IN Collection of new flows/packets (detection)

FlowMod Traffic redirection and queuing (mitigation)

PacketOut Confuse scanning by sending forged packets to the attacker

The different results of this security-oriented analysis of OpenFlow mes-
sage usage are summarized in Table 1 corresponding to overloading mitigation
strategies, and in Table 2 focusing on information gathering mitigation strate-
gies. Keeping in mind these dependencies between security application goals
(e.g. detection, mitigation, reconfiguration) and OpenFlow messages, there is a
need to evaluate the implementation of OpenFlow messages in existing software-
defined devices (software and hardware), in order to quantify the potential
impact on these mitigation mechanisms.

Analysis and Evaluation of OpenFlow Message Usage 91

4 Performance Evaluation

Based on this analysis, we have performed a series of experiments in order to
evaluate the accuracy and reliability of OpenFlow messages. The objective of
this quantification is then to infer the potential impact of this performances on
security applications developed on software-defined networking infrastructures.
In that context, we have built dedicated testbeds based on hardware and software
SDN solutions and have focused on two different types of messages, namely
PACKET IN and OFPQueueStatsRequest messages. However, this approach is
generic and can be easily applied to the other messages identified in the previous
section. The main reason of this focus was to gather statistics comparable to
NetFlow/sFlow data from an OpenFlow-enabled switch.

HP 2920

WS2
(Attacker Machine)

WS3
(Target Machine)

OpenFlow
Connection

WS1
SDN Controller

(Ryu)

(a) Experimental Setup with
an HP 2920 switch

Open
vSwitch

WS2
 hine)

WS3

WS1
SDN

(Ryu)

(b) Experimental Setup with an
Open vSwitch [4] on WS1

Fig. 1. Experimentation with SDN-enabled software and hardware switches

We have considered the following experimental setup for performing our eval-
uation, with two different testbeds. Our first testbed consists of three worksta-
tions (4xCore i3 2.93 GHz and 4 GB RAM) with the Debian 7 (kernel 3.2.0)
operating system. All workstations have a gigabit network card installed that
is connected directly to an HP2920-24G OpenFlow-enabled switch running the
WB.15.16.005 firmware and OpenFlow version 1.3 enabled. On the switch, two
workstations (W2 and W3) are connected within the same VLAN which is man-
aged via the OpenFlow protocol. The other workstation (W1) directly connected
to a switch port which is dedicated for OpenFlow controller messages (Open-
Flow Management VLAN). For this purpose, the machine W1 is running an
SDN controller. The Ryu framework in version 3.18 [5] is chosen, because it
supports OpenFlow version 1.3 and is well maintained. The motivation of hav-
ing two workstations (W2 and W3) connected to each other is to replay pcap

92 S. Seeber et al.

files containing attacks on one machine (W2) and receive attacks from the pcap
on the other machine (W3). Thus, the machine W2 can be seen as an attacker
and the machine W3 as the target. Figure 1a corresponds to the first testbed.
A modification of the experimental setup was done to verify the behavior of a
software switch. For this second testbed, we installed Open vSwitch [4] on the
machine W1 where the SDN controller with the Ryu framework is located and is
connected to the Open vSwitch [4] locally. Moreover, we installed an additional
2 port gigabit network card and bridged the ports via the Open vSwitch [4] to
connect the attacker (represented by the machine W2) and the target machine
W3 (see Fig. 1b corresponding to the second testbed). During our experiments,
we replayed network traces derived from the DEFCON 22 hacking conference [7].
We used tcpprep in order to change IP addresses and simulate the traffic flow
from the attacker workstation (W2) to the target workstation (W3). Further-
more, we deduced the statistics from the traces to assess the results with respect
to OFPQueueStatsRequest messages. We modified the existing Ryu [5] controller
code so that no new flow rule is pushed to the switch and make sure that all
PACKET IN messages are counted in time when they arrive at the controller.
In addition, a flow-mod message is introduced during the initialization phase of
the controller in order to insert a flow-rule that matches any packet (relevant for
the OFPQueueStatsRequest messages evaluation).

In order to quantify the capacity of sending PACKET IN messages from the
switch to the controller, we replayed traces at different speeds from the attacker
workstation W2. We considered respectively the following bandwidth speeds:
0.1 Mbps, 0.25 Mbps, 0.5 Mbps, 1.0 Mbps, 2.0 Mbps, 5.0 Mbps, and 10.0 Mbps.
In order to verify the speed and number of packets on the attacker and target
workstations, we used common Linux tools, namely ip -s link, iftop or nload.
In parallel, we counted on our modified Ryu [5] controller the number of Open-
Flow PACKET IN messages. In order to test our modified Ryu [5] controller
script, we also counted the number of packets via the interface statistics on the
workstation W1 on which the SDN controller is running. Based on these experi-
ments, we evaluated the difference between the replayed packets and the effective
received PACKET IN messages. We then calculated the percentage of received
PACKET IN messages with respect to the replayed packets. This value permits
to quantify how much traffic in respect of bandwidth we can utilize from the
switch without losing PACKET IN messages, and therefore distorting statistic
values collected from the SDN switch, this distorsion having a direct impact on
the security application performance.

The results are given in Fig. 2a and b where we plotted the ratio of lost
PACKET IN messages while varying the bandwidth used when replaying traces
for respectively the HP 2920 hardware SDN switch and the Open vSwitch soft-
ware SDN switch. The results clearly show that the distorsion can be quite
important in both cases, even with the bandwidth dedicated to the generated
traffic is low. When we compare the two figures, it appears that the phenomenon
is even more important with the first testbed, corresponding to the hardware
SDN switch in our case. In a second serie of experiments, we quantified the

Analysis and Evaluation of OpenFlow Message Usage 93

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

R
at

io
 in

 %

Bandwidth in Mbps

PACKET_IN Message Ratio
HP 2920

(a) PACKET IN Message
Ratio on HP 2920

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

R
at

io
 in

 %

Bandwidth in Mbps

PACKET_IN Message Ratio
Open vSwitch

(b) PACKET IN Message
Ratio on Open vSwitch [4]

Fig. 2. PACKET IN message ratio on SDN-enabled switches

performance with respect to the OFPQueueStatsRequest messages. We assessed
the counters for the installed flow rules. Figure 3a and b illustrate the relationship
between the bandwidth and the ratio of correct packet counters for the earlier
mentioned HP switch and the Open vSwitch. We can observe on the figures a
similar trend as the one obtained with the experiments with the PACKET IN
messages. These results are particularly interesting, when we know that counters
from matching flow-rules are preferably used to implement detection solutions,
such as Defense4All [8], a module for the commonly used SDN Controller Open-
Daylight [18].

These results raise important concerns about the implementation of Open-
Flow in hardware as well as software solutions, and the implication that may
directly have these differences in the context of security applications. It high-
lights severe differences in sending OpenFlow messages from the SDN switch

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

R
at

io
 in

 %

Bandwidth in Mbps

STATS Counter Ratio
HP 2920

(a) Correct Packet Counter
Ratio on HP 2920

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

R
at

io
 in

 %

Bandwidth in Mbps

STATS Counter Ratio
Open vSwitch

(b) Correct Packet Counter
Ratio on Open vSwitch [4]

Fig. 3. Correct packet counter ratio on SDN-enabled switches

94 S. Seeber et al.

to the controller, which may significantly degrade the performance of security
mitigation mechanisms implemented based on software-defined networks.

5 Related Work

Security aspects related to software-defined networking and its deployments have
already been discussed by Schehlmann et al. in [20]. Several approaches facing
security using SDN concepts have also been proposed recently. Kreutz et al. [16]
argue for building dependable and secure SDN applications. Therefore, they
identify and describe current threat vectors in SDN environments that could
be exploited. They then propose a general design to overcome the identified
threats. Complementarily, Scott et al. [21] investigate possible new security issues
introduced through SDN and identify the affected layers. Focusing on network
security approaches using SDN capabilities, François et al. [10] reviews recent
research efforts and provides a qualitative comparison, complementary to our
analytical and empirical evaluation.

Furthermore, existing work has been focusing on more specific attacks and
their mitigation. Shishira et al. summarizes several types of distributed denial-
of-service (DDoS) attacks and recently developed mitigation approaches in [22].
Vizváry et al. have analyzed the detection and mitigation of DDoS attacks using
an OpenFlow enabled SDN environment in [23]. Using self-organizing maps, the
authors of [6] propose a method to detect DDoS attacks based on flow analysis.
Feamster et al. [9] investigated possibilities to detect botnet traffic by using dis-
tributed monitoring approaches. Jafarian et al. presented an approach to hide
the real IP addresses by introducing a virtual IP address to hide real hosts
from unauthorized scanners. A similar approach was introduced by Kampanakis
et al. [15] to obfuscate the attack surface. Combining traditional network fea-
tures (sFlow) and OpenFlow, Giotis et al. [11] proposed a mechanism to detect
anomalies and mitigate attacks by modifying flow tables. A different architecture
for monitoring and SDN control was proposed by Zaalouk et al. [24] to enhance
the development of security applications by separating control and monitoring
functions. In addition, the architecture supports a controller-agnostic application
development by decoupling application development from the SDN controller.
Our work rather aims at highlighting the limits of current software-defined solu-
tions for implementing and supporting these security solutions.

6 Conclusion

The increasing interest for software-defined networking has contributed to the
development of dedicated security solutions. However, these solutions typically
built on top of these infrastructures may suffer from the performance of support-
ing protocols, such as the OpenFlow protocol, and their different implementa-
tions. In that context, we have proposed in the paper an analysis and evaluation
of OpenFlow message usage by network security applications, in order to quan-
tify these dependencies and their impact.

Analysis and Evaluation of OpenFlow Message Usage 95

We have first describe two categories of security attacks, namely overload-
ing attacks and information gathering attacks, that are quite common in these
environments, and have detailed regular and SDN-based mitigation mechanisms
that have been designed for tackling them. We have then analyzed for each cate-
gory the dependencies of these mechanisms to the OpenFlow protocol commonly
supporting the communications between SDN controllers and switches. These
dependencies have been identified through the mapping of OpenFlow messages
to security functionalities in that context. Based on this analyzis, we performed
series of experiments for comparing and evaluating the accuracy and reliability
that can be expected with respect to these messages based on two different test-
beds. We first considered OpenFlow PACKET IN messages that are typically
generated when a new flow arrives to an SDN switch and no matching rule is
found in the existing rule-set. We observed that the number of PACKET IN
messages sent to the controller strongly depends on the line speed of flows
sent to the switch. For a higher line speed, the switch was not able to send
PACKET IN messages at the same speed when new packets arrived. This is
particularly impacting, because this directly influences the statistics gathered
from the switch, which are used by security solutions as a starting point for
several detection approaches. We then performed experiments with respect to
OFPQueueStatsRequest messages that are used to provide statistics on existing
queues, and observed a similar degradation of performance. When the line speed
is high, the precision of counters per flow-rule can significantly decrease.

As future work, we are interested in performing complementary experiments,
in order to extend our methodology to additional OpenFlow message types.
This analysis will permit to further investigate the dependencies of security
applications and their limits regarding SDN implementations. This could directly
influence the design of these security mechanisms, and allow us to infer and
specify guidelines and patterns with that respect, in order to maximize security
performance.

Acknowledgment. The authors wish to thank the member of the Chair for Commu-
nication Systems and Internet Services at the Universität der Bundeswehr München,
headed by Prof. Dr. Gabi Dreo Rodosek, for helpful discussions and valuable com-
ments for this paper. This work was partly funded by FLAMINGO, a Network of
Excellence project (ICT-318488) supported by the European Commission under its
Seventh Framework Programme.

References

1. Akamai - Q4 2014 State of the Internet - Security Report. http://www.
stateoftheinternet.com/resources-web-security-2014-q4-internet-security-report.
html. Accessed on 04 Feb 2016

2. Arbor Networks - Worldwide Infrastructure Security Report 2014. http://pages.
arbornetworks.com/rs/arbor/images/WISR2014.pdf

3. US-CERT Alert (TA14-017A) UDP-Based Amplification Attacks. https://www.
us-cert.gov/ncas/alerts/TA14-017A. Accessed on 04 Feb 2016

http://www.stateoftheinternet.com/resources-web-security-2014-q4-internet-security-report.html
http://www.stateoftheinternet.com/resources-web-security-2014-q4-internet-security-report.html
http://www.stateoftheinternet.com/resources-web-security-2014-q4-internet-security-report.html
http://pages.arbornetworks.com/rs/arbor/images/WISR2014.pdf
http://pages.arbornetworks.com/rs/arbor/images/WISR2014.pdf
https://www.us-cert.gov/ncas/alerts/TA14-017A
https://www.us-cert.gov/ncas/alerts/TA14-017A

96 S. Seeber et al.

4. Open vSwitch Community: Open vswitch. http://openvswitch.org/. Accessed on
04 Feb 2016

5. Ryu SDN Framework Community: Ryu sdn controller. http://osrg.github.io/ryu/.
Accessed on 04 Feb 2016

6. Braga, R., Mota, E., Passito, A.: Lightweight ddos flooding attack detection
using nox/openflow. In: 2010 IEEE 35th Conference on Local Computer Networks
(LCN), pp. 408–415. IEEE (2010)

7. DEF CON Communications, Inc.: Defcon pcap traces. https://www.defcon.org/
html/links/dc-torrent.html. Accessed on 04 Feb 2016

8. Defense4All: Defense4all module. https://wiki.opendaylight.org/view/Project
Proposals:Defense4All. Accessed on 04 Feb 2016

9. Feamster, N.: Outsourcing home network security. In: Proceedings of the 2010
ACM SIGCOMM Workshop on Home Networks, pp. 37–42. ACM (2010)

10. François, J., Dolberg, L., Festor, O., Engel, T.: Network security through soft-
ware defined networking: a survey. In: IIT Real-Time Communications (RTC)
Conference-Principles, Systems and Applications of IP Telecommunications (IPT-
Comm). ACM (2014)

11. Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D., Maglaris, V.: Com-
bining openflow and sflow for an effective and scalable anomaly detection and
mitigation mechanism on sdn environments. Comput. Netw. 62, 122–136 (2014)

12. Hansman, S., Hunt, R.: A taxonomy of network and computer attacks. Comput.
Secur. 24(1), 31–43 (2005)

13. Jafarian, J.H., Al-Shaer, E., Duan, Q.: Openflow random host mutation: trans-
parent moving target defense using software defined networking. In: Proceedings
of the First Workshop on Hot Topics in Software Defined Networks, pp. 127–132.
ACM (2012)

14. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats, vol. 54. Springer
Science & Business Media, New York (2011)

15. Kampanakis, P., Perros, H., Beyene, T.: Sdn-based solutions for moving target
defense network protection. In: 2014 IEEE 15th International Symposium on A
World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–6, June
2014

16. Kreutz, D., Ramos, F., Verissimo, P.: Towards secure and dependable software-
defined networks. In: Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, pp. 55–60. ACM (2013)

17. Lara, A., Kolasani, A., Ramamurthy, B.: Network innovation using openflow: A
survey. IEEE Commun. Surv. Tutorials 16(1), 493–512 (2014)

18. OpenDaylight: Sdn controller opendaylight. https://www.opendaylight.org/.
Accessed on 04 Feb 2016

19. Sahay, R., Blanc, G., Zhang, Z., Debar, H.: Towards autonomic ddos mitigationus-
ing software-defined networking. In: 2015 Network and Distributed SystemSecurity
Symposium (NDSS 2015), pp. 1–6, February 2015

20. Schehlmann, L., Abt, S., Baier, H.: Blessing or curse? revisiting security aspects of
software-defined networking. In: 2014 10th International Conference on Network
and Service Management (CNSM), pp. 382–387. IEEE (2014)

21. Scott-Hayward, S., O’Callaghan, G., Sezer, S.: Sdn security: A survey. In: 2013
IEEE SDN for Future Networks and Services (SDN4FNS), pp. 1–7. IEEE (2013)

22. Shishira, S., Pai, V., Manamohan, K.: Current trends in detection and mitigation
of denial of service attacks-a survey. Int. J. Comput. Appl. (2014)

http://openvswitch.org/
http://osrg.github.io/ryu/
https://www.defcon.org/html/links/dc-torrent.html
https://www.defcon.org/html/links/dc-torrent.html
https://wiki.opendaylight.org/view/Project_Proposals:Defense4All
https://wiki.opendaylight.org/view/Project_Proposals:Defense4All
https://www.opendaylight.org/

Analysis and Evaluation of OpenFlow Message Usage 97

23. Vizváry, M., Vykopal, J.: Future of DDoS attacks mitigation in software defined
networks. In: Sperotto, A., Doyen, G., Latré, S., Charalambides, M., Stiller, B.
(eds.) AIMS 2014. LNCS, vol. 8508, pp. 123–127. Springer, Heidelberg (2014)

24. Zaalouk, A., Khondoker, R., Marx, R., Bayarou, K.: Orchsec: An orchestrator-
based architecture for enhancing network-security using network monitoring and
sdn control functions. In: 2014 IEEE Network Operations and Management Sym-
posium (NOMS), pp. 1–9. IEEE (2014)

25. Zargar, S., Joshi, J., Tipper, D.: A survey of defense mechanisms against distrib-
uted denial of service (ddos) flooding attacks. IEEE Commun. Surv. Tutorials
15(4), 2046–2069 (2013)

	Analysis and Evaluation of OpenFlow Message Usage for Security Applications
	1 Introduction
	2 Network Attacks and SDN-Based Defences
	2.1 Mitigation of Overloading Attacks
	2.2 Mitigation of Information Gathering Attacks

	3 Analysis of OpenFlow Messages Used for Network Security Applications
	4 Performance Evaluation
	5 Related Work
	6 Conclusion
	References

