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In this contribution we are concerned with efficient model reduction for
multiscale problems arising in lithium-ion battery modeling with spatially
resolved porous electrodes. We present new results on the application of the
reduced basis method to the resulting instationary 3D battery model that
involves strong non-linearities due to Buttler-Volmer kinetics. Empirical op-
erator interpolation is used to efficiently deal with this issue. Furthermore,
we present the localized reduced basis multiscale method for parabolic prob-
lems applied to a thermal model of batteries with resolved porous electrodes.
Numerical experiments are given that demonstrate the reduction capabilities
of the presented approaches for these real world applications.

1 Introduction

Continuum modeling of batteries results in a reaction-diffusion-transport system of cou-
pled nonlinear partial differential equations in complex multiscale and multi-phase pore
structures. In recent contributions [20, 28, 21] three dimensional numerical models have
been proposed that resolve the porous electrodes and thus serve as a basis for multi-
scale modeling as well as for more complex modeling of degradation processes such as
Lithium plating. Concerning multiscale modeling in the context of battery simulation,
we refer e.g. to [7, 10, 30]. These models result in huge time dependent discrete systems
which require enormous computing resources, already for single simulation runs. Pa-
rameter studies, design optimization or optimal control, however, require many forward
simulation runs with varying material or state parameters and are thus virtually impos-
sible. Hence, model reduction approaches for the resulting parameterized systems are
indispensable for such simulation tasks. In this contribution we apply the reduced basis
method, that has seen significant advance in recent years. For an overview, we refer to
the recent monographs [15, 29] and the tutorial [12].
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Concerning model reduction for lithium-ion battery models, we refer to the early
work [5] where Galerkin projection into a subspace generated by proper orthogonal
decomposition (POD) is used on the basis of the mathematical model proposed in [8].
In [19], the POD approach is used in the context of parameter identification for battery
models. Preliminary results concerning model reduction with reduced basis methods can
be found in [16, 31] and [27].

In this contribution we focus on two advances in reduced order modeling for batteries.
First, in Section 2, we present new results concerning nonlinear model reduction for the
microscale battery model presented in [20]. The model reduction approach is based on
Galerkin projection onto POD spaces, extended to nonlinear problems using empirical
operator interpolation [2, 13, 9].

Second, in Section 3 we demonstrate the applicability of the localized reduced basis
multiscale method (LRBMS) for a thermal model of batteries with resolved porous elec-
trodes. The LRBMS has first been introduced in [18, 1] and further developed in [25, 26].
The later contributions in particular propose a rigorous a posteriori error estimate for
the reduced solution with respect to the exact solution for elliptic problems that is lo-
calizable and can thus be used to steer an adaptive online enrichment procedure. For an
application of the method for more complex problems in the context of two phase flow
in porous media we refer to [17]

2 Reduced basis methods applied to pore-scale battery models

In this section we present first numerical results for the full model order reduction of
large 3D pore-scale Li-ion battery models. These results extend our preliminary findings
in [27], where we tested the quality of the reduced basis approximation for a small test
geometry, towards realistically sized geometries used in real-world simulations, showing
the feasibility of our model reduction approach. Before discussing our new results, we
will briefly review the battery model under consideration and the basics of the reduced
basis methodology.

2.1 A pore-scale Lithium-Ion battery model

Following [27], we consider a pore-scale battery model based on [20]. The computa-
tional domain is divided into five parts: electrolyte, positive/negative electrode, posi-
tive/negative current collector (Fig. 1). On each of these subdomains, partial differential
equations are given for the Li-ion concentration c and the electrical potential φ.

For the electrolyte we have

∂c

∂t
−∇ · (De∇c) = 0, (1)

−∇ ·
(
κ

1− t+
F

RT
1

c
∇c− κ∇φ

)
= 0, (2)

where De = 1.622·10−6 cm2

s , κ = 0.02 s
cm , t+ = 0.39989 denote the collective interdiffusion

coefficient in the electrolyte, the ion conductivity, and the transference number. R =

2
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Figure 1: Schematic overview of the considered battery geometry (note that electrodes
have porous structure, pore space is filled with electrolyte).

8.314 J
molK , F = 96487 As

mol are the universal gas constant and the Faraday constant. We
fix the global temperature T to 298K.

In the electrodes, c and φ satisfy

∂c

∂t
−∇ · (Ds∇c) = 0, (3)

−∇ · (σ∇φ) = 0, (4)

where Ds = 10−10 cm2

s is the ion diffusion coefficient in the electrodes, and σ = 10 s
cm

(σ = 0.38 s
cm) in the negative (positive) electrode denotes the electronic conductivity.

Finally, no Li-ions can enter the current collectors, so c = 0 on the whole current
collector subdomains. Moreover, φ again satisfies

−∇ · (σ∇φ) = 0, (5)

with σ = 10 s
cm (σ = 0.38 s

cm) for the negative (positive) current collector.
Note that for this in comparison to [20] slightly simplified model (assuming constant

t+), the equations (1), (3) are linear and decoupled from the potential equations. How-
ever, the coupling between the two variables is established by the interface conditions
at the electrode-electrolyte interfaces, where the so-called Butler-Volmer kinetics are as-
sumed: the electric current (ion flux) j (N) from the electrodes into the electrolyte is
given by

j = 2k
√
cecs(cmax − cs) sinh

(
φs − φe − U0( cs

cmax
)

2RT
· F
)
, N =

j

F
. (6)

Here, ce/s (φe/s) denotes the Li-ion concentration (electrical potential) at the elec-

trolyte/electrode side of the interface. cmax = 24681 · 10−6 mol
cm3 (cmax = 23671 · 10−6 mol

cm3 )
denotes the maximum Li-ion concentration in the negative (positive) electrode, and the

rate constant k is given by k = 0.002Acm
2.5

mol1.5
at the negative and by k = 0.2Acm

2.5

mol1.5
at

the positive electrode interface. Finally, the open circuit potential is given by U0(s) =

3
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(−0.132 + 1.41 · e−3.52s)V for the negative, and by

U0(s) =
[

0.0677504 · tanh(−21.8502 · s+ 12.8268)

− 0.105734 ·
(
(1.00167− s)−0.379571 − 1.576

)
− 0.045 · e−71.69·s8 + 0.01 · e−200·(s−0.19) + 4.06279

]
· V

(7)

for the positive electrode.
Given the porous electrode structures, these interface conditions apply to a large

surface area, giving this model highly nonlinear dynamics.
Finally, the system is closed by the following boundary conditions: homogeneous Neu-

mann conditions for c at all further inner and external domain boundaries, continuity
conditions for φ at the current collector-electrode interfaces, homogenous Neumann con-
ditions for φ at the current collector-electrolyte interfaces, φ ≡ U0(c(0)/cmax) at the
negative current collector boundary, and −n · σ∇φ ≡ µ at the positive current collector
boundary.

We consider the fixed charge rate µ as a parameter we want to vary in our numerical
experiments.

2.2 Reduced basis method and empirical interpolation

After cell-centered finite volume discretization of the model on a voxel grid, replacing
the numerical fluxes by the Butler-Volmer relations at the electrode-electrolyte inter-
faces, and backward Euler time discretization, we arrive at nonlinear, discrete equations
systems of the form[

1
∆t(c

(t+1)
µ − c(t)

µ )
0

]
+Aµ

([
c

(t+1)
µ

φ
(t+1)
µ

])
= 0, (c(t)

µ , φ
(t)
µ ) ∈ Vh ⊕ Vh, (8)

where Aµ denotes the parametric finite volume space differential operator acting on
the finite volume space Vh (see [28] for a detailed derivation). Solving these systems
using Newton’s method requires many hours for realistic geometries, even when using
advanced algebraic multigrid solvers for computing the Newton updates.

Projection-based parametric model reduction methods are based on the idea of finding
problem adapted approximation spaces Ṽ ⊆ Vh ⊕ Vh in which a reduced order solution
is obtained by projection of the original equation system:

PṼ

{[
1

∆t(c̃
(t+1)
µ − c̃(t)

µ )
0

]
+Aµ

([
c̃

(t+1)
µ

φ̃
(t+1)
µ

])}
= 0, (c̃(t)

µ , φ̃
(t)
µ ) ∈ Ṽ . (9)

Here, PṼ denotes the orthogonal projection onto Ṽ . Since the manifold of system states

{(c(t)
µ , φ

(t)
µ ) | µ ∈ [µmin, µmax], t ∈ {0, . . . , T}} has a low-dimensional parametrization (by

(µ, t) ∈ R2), and assuming that this parametrization is sufficiently smooth, there is hope
to find low-dimensional approximation spaces Ṽ such that the model reduction error

4
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between the reduced solutions (9) and the corresponding high-dimensional solutions (8)
is very small.

A vast amount of methods for constructing reduced spaces Ṽ has been considered in
literature. For time-dependent problems, the POD-Greedy method [14, 11] has shown
to produce approximation spaces with quasi-optimal l∞-in-µ, l2-in-time reduction error.
In our experiments below, we apply a more basic approach by computing a basis for Ṽ
via PODs of a pre-selected set of solution trajectories of (8). More precisely, we compute
separate reduced concentration (Ṽc) and potential (Ṽφ) spaces and let Ṽ := Ṽc⊕ Ṽφ. Due
to the basic properties of POD, Ṽc, Ṽφ are l2-in-µ, l2-in-time best-approximation spaces
for the considered training set of solutions.

Even though the equation systems (9) are posed on the low-dimensional space Ṽ ,
solving (9) requires the evaluation of the projected operator PṼ ◦Aµ (and its Jacobian),
which in turn makes the computationally expensive evaluation of Aµ on the full finite
volume space Vh ⊕ Vh necessary. The method of choice to overcome this limitation
for nonlinear operators Aµ is empirical operator interpolation: Aµ is replaced by an
interpolant IM ◦ ÃM,µ ◦ RM ′ , where ÃM,µ : RM ′ → RM is the restriction of Aµ to M
appropriately selected degrees of freedom (DOFs), RM ′ : Vh⊕Vh → RM ′ is the restriction
of the finite volume vectors to the M ′ DOFs required for the evaluation of ÃM,µ and
IM : RM → Vh ⊕ Vh is the linear combination with an appropriate interpolation basis
(collateral basis). Due to the locality of finite volume operators, M ′ can be chosen such
that M ′ ≤ C ·M , where C only depends on the maximum number of neighboring cells in
the given mesh. The interpolation DOFs and the associated collateral basis are obtained
from solution snapshot data using the EI-Greedy algorithm [13, 9].

A direct application of this approach to Aµ would not be successful, however: since
the collateral basis is contained in the linear span of operator evaluations on solution
trajectories, the φ-parts of the collateral basis vectors would, according to (8), completely
vanish. Therefore, we first decompose Aµ as Aµ = A(const) +µ ·A(bnd) +A(lin) +A(1/c) +

A(bv), where A(1/c), A(bv) are the nonlinear operators corresponding to −∇·κ1−t+
F RT 1

c∇c
and the Butler-Volmer interfaces, A(const) (A(bnd)) is the constant (parametric) part of
Aµ corresponding to the boundary conditions, and A(lin) is the remaining linear part
of Aµ. We then apply empirical operator interpolation separately to A(1/c) and A(bv).

With T [c̃
(t)
µ ](c̃, φ̃) := (1/∆t · (c̃− c̃(t)

µ ), 0), we arrive at the fully reduced systems{
T [c̃(t)

µ ] + PṼ ◦A
(const) + µ · PṼ ◦A

(bnd) + PṼ ◦A
(lin)

+ {PṼ ◦ I
(1/c)

M(1/c)} ◦ Ã
(1/c)

M(1/c),µ
◦R(1/c)

M ′(1/c)

+ {PṼ ◦ I
(bv)

M(bv)} ◦ Ã
(bv)

M(bv),µ
◦R(bv)

M ′(bv)

}([ c̃(t+1)
µ

φ̃
(t+1)
µ

])
= 0.

(10)

After pre-computation of the linear maps PṼ ◦A
(bnd), PṼ ◦A

(lin), PṼ ◦ I
(1/c)

M(1/c) , R
(1/c)

M ′(1/c)
,

PṼ ◦ I
(bv)

M(bv) , R
(bv)

M ′(bv)
and of the constant map PṼ ◦A

(const) w.r.t. to a basis of Ṽ , (10) can
be solved quickly and independent of the dimension of Vh.

5
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Figure 2: Top left: small porous battery geometry used in numerical experiments. Size:
104µm× 40µm× 40µm, 4.600 DOFs, coloring indicates Li+ concentration at
end of simulation, electrolyte not depicted. Top right: average solution time in
seconds vs. dimension of reduced space Ṽ and number of interpolation points
(M := M (1/c) +M (bv)). Bottom: relative model reduction errors (11) for con-
centration (left) and potential (right) variable vs. dimension of reduced space
and number of interpolation points. A training set of 20 equidistant parame-
ters was used for the generation of Ṽ and the interpolation data, #Stest = 20.

2.3 Numerical experiments

We consider two different test cases: a small test geometry (Fig. 2) which still exhibits
the most important properties of a real battery geometry, and a large, fully resolved
geometry (Fig. 3) useable for real-world simulations. In both cases, the initial Li+

concentration c0 was set to c0 ≡ 2639 · 10−6 mol
cm3 (c0 ≡ 20574 · 10−6 mol

cm3 ) for the positive

(negative) electrode and to c0 ≡ 1200 · 10−6 mol
cm3 in the electrolyte. The model was

simulated on a T = 2000s (T = 1600s) time interval for the small (large) geometry, with
a time step size of ∆t = 20s. The charge rate µ was for each simulation chosen as a
constant from the interval

[
0.00012 A

cm2 , 0.0012 A
cm2

]
for the small and from the interval[

0.000318 A
cm2 , 0.00318 A

cm2

]
for the large geometry.

To generate the reduced space Ṽ , we computed solution snapshots on training sets
Strain of equidistant parameters. For the small geometry we chose #Strain = 20, whereas

6
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Figure 3: Porous battery geometry used in the numerical experiments. Size: 246µm×
60µm×60µm, 1.749.600 DOFs, coloring indicates Li+ concentration at end of
simulation, electrolyte not depicted.

for the large geometry we only selected the lower and upper boundary of the considered
parameter domain, i.e. #Strain = 2. For the generation of the empirical interpolation

data using the EI-Greedy algorithm, we additionally included the evaluations of A
(1/c)
µ

and A
(bv)
µ on all intermediate Newton stages of the selected solution trajectories.

As a measure for the model reduction error we consider the relative l∞-in-µ, l∞-in-time
error given by

max
µ∈Stest

max
t∈{0,1,...T/∆t}

‖u(t)
µ − ũ(t)

µ ‖
maxt∈{0,1,...T/∆t} ‖u

(t)
µ ‖

, (11)

where u (ũ) is the concentration or potential part of the (reduced) solution and Stest
denotes a random set of test parameters.

All simulations of the high-dimensional model have been performed with the battery
simulation software BEST [21], which has been integrated with our model order reduction
library pyMOR [27, 22]. The experiments were conducted as single-threaded processes on
a dual socket compute server equipped with two Intel Xeon E5-2698 v3 CPUs with 16
cores running at 2.30 GHz each and 256GB of memory available.

For the small test geometry, we observe a rapid decay of the model reduction error
for both the concentration and the potential variable (Fig. 2). As usual for empirical
operator interpolation, we see that the number of interpolation points has to be increased
for larger reduced space dimensions in order to ensure stability of the reduced model.
Doing so, we obtain relative reduction errors as small as 10−4 with simulation times of
less than 15s.

Since we only selected 2 solution trajectories for the generation of the reduced model
for the large geometry, we cannot expect such small model reduction errors over the whole
parameter domain. In fact, the error stagnates already for relatively small reduced space

7
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Table 1: Relative model reduction errors (11) and reduced simulation times for the large
battery geometry (Fig. 3). 188 interpolation points, average time for solution
of the high-dimensional model: 22979s, #Stest = 10.

dim Ṽ 11 21 30 40

rel. error c 9.26 · 10−3 3.96 · 10−3 3.05 · 10−3 2.93 · 10−3

rel. error φ 2.07 · 10−3 1.50 · 10−3 1.46 · 10−3 1.26 · 10−3

time (s) 82 81 79 81
speedup 279 285 290 283

dimensions (Table 1). Nevertheless, we easily achieve errors of less than one percent for
a simulation time of 80s. With an average solution time for the high-dimensional model
of over 6 hours, we achieve at this error a speedup factor of 285.

Note that the solution time of the reduced model is still significantly larger than for
the small geometry. This can be attributed to the fact that the localized evaluation of

A
(1/c)
µ , A

(bv)
µ has been only partially implemented in BEST and still requires operations

on high-dimensional data structures. After the implementation of localized operator
evaluation in BEST has been finalized, we expect even shorter simulation times.

3 Localized reduced basis multiscale approximation of heat
conduction

The microscale battery model in Section 2 is considered under the assumption of constant
global temperature T . In general, it is desirable to couple this model with a spatially
resolved model for the temperature distributions within the battery. For the model
reduction of such heat conduction in porous electrodes we present a first application of
the localized reduced basis multiscale Method (LRBMS) for parabolic PDEs.

In this first step we consider the simulation and model reduction of heat conduction
separately from what is presented in Section 2 as a basis for a coupled simulation and
model reduction in future work.

For an introduction of the LRBMS for elliptic parameterized multiscale problems and
recent results concerning localized a posteriori error estimation and online enrichment,
we refer to [26].

3.1 A battery - heat conduction model with resolved electrode geometry

We consider here the same spatially resolved 3D pore-scale battery geometry (cf. Fig.
3) as in Section 2, where the computational domain is composed of five materials which
are of interest for thermal modeling, that is: electrolyte, positive/negative electrode and
positive/negative current collectors, each with possibly different thermal conductivities.

As a simplified model for heat conductivity within a battery with spatially resolved

8
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electrodes, we consider a parabolic PDE for the temperature T of the form

∂T

∂t
−∇ ·

(
D∇T

)
= Q, (12)

together with suitable initial and boundary conditions. Here D denotes the space-
dependent conductivity tensor, which is material specific and thus takes different values
in the current collectors, the porous electrodes, the separator, and the electrolyte. Hence,
D inherits the highly heterogeneous structure of the porous electrodes and thus has an
intrinsic multiscale character. In general, Q collects all heat generating sources, such as
heat generation due to electrochemical reaction, reversible heat and ohmic heat, each
of which may in turn depend on the Li-ion concentration and the electric potential and
thus vary in space and time. These sources arise in particular due to the electrochem-
ical reaction at the interface between the electrodes and the electrolyte and it is thus
desirable to consider the full 3D pore-scale battery model in order to get an insight into
possible variations of the temperature within the battery. We refer, e.g. to [6, 5] for
a more detailed derivation of an energy balance equation for Lithium-Ion batteries and
corresponding simulation schemes.

Depending on the study in question, any of the sources, the thermal conductivity or
the initial or boundary values may depend on a low-dimensional parameter vector µ.

3.2 Localization of reduced basis methods - LRBMS

As a first step towards a realistic model we allow for parametric thermal conductivities
and presume stationary sources and boundary values. Thus, a (spatial) discretization
of (12) by a suitable discretization scheme (such as finite volumes or continuous or
discontinuous Galerkin (DG) finite elements) and a backward Euler time-discretization
yield a set of linear equations of the form,

1
∆tMh

(
T (t+1) − T (t)

)
+Bh,µ T

(t+1) = Qh, T (t+1) ∈ Vh, (13)

to be solved in each time step, where Mh and Bh,µ denote the discrete L2-inner product
and parametric space differential operators induced by the spatial discretization, respec-
tively, which act on the corresponding high-dimensional discrete space Vh. In addition,
Qh denotes the discrete representation of the source and boundary values.

To obtain a reduced order model for the discrete heat conduction model (13), we
proceed in an analog way, as described in Section 2 above, by a Galerkin projection onto
a problem adapted reduced approximation space Ṽ ⊂ Vh. Once Ṽ is given, we obtain
the set of reduced equations for each time step:

1
∆tM̃

(
T̃ (t+1) − T̃ (t)

)
+ B̃µ T̃

(t+1) = Q̃, T̃ (t+1) ∈ Ṽ , (14)

where M̃ , B̃µ and Q̃ denote the reduced operators and functionals, respectively, acting on
the low-dimensional reduced space Ṽ . Since all operators and functionals arising in (14)
are affinely decomposable with respect to the low-dimensional parameter vector µ (given
for instance the thermal conductivity as in Section 3.3) and linear with respect to Ṽ ,

9
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we can precompute their respective evaluations in a computationally expensive offline
step, e.g., by M̃ = PṼ

⊥Mh PṼ , where Mh and PṼ , respectively, denote the matrix

representations of Mh and of the orthogonal projection PṼ : Vh → Ṽ with respect to
the basis of Vh. Online, for each new input parameter µ, we can then quickly solve the
reduced low-dimensional problem (14) to obtain a low-dimensional representation of the
temperature T̃ , which can be post-processed to obtain the original temperature T , if
required, or a derived quantity of interest.

As mentioned above, the problem adapted reduced space Ṽ can be adaptively gener-
ated by an iterative POD-Greedy procedure [14]: in each step of the greedy algorithm,
given an error estimate on the model reduction error, a full high-dimensional solution
trajectory for the hitherto worst-approximated parameter is computed and the most
dominant POD modes of the projection error of this trajectory are added to the re-
duced basis spanning Ṽ .

This procedure has been shown to produce quasi-optimal low-dimensional reduced
order models which successfully capture the dynamics of the original high-dimensional
model [11]. However, in the context of multiscale phenomena or highly resolved ge-
ometries, such as the porous structures within a Li-ion battery, the computational cost
required to generate the reduced model can become unbearably large, even given modern
computing hardware.

As a remedy, the localized reduced basis multiscale method has been introduced for
stationary elliptic multiscale problems [18, 1] to lower the computational burden of tradi-
tional RB methods by generating several local reduced bases associated with a partition-
ing of the computational domain. The local quantities associated with these individual
subdomains can be projected independently in parallel. In [25, 26], the LRBMS was ex-
tended to additionally account for the discretization error and to allow for an adaptive
enrichment of the local reduced approximation spaces, which may even eliminate the
need for global solution snapshots at all.

In this contribution, we demonstrate a first application of the LRBMS to parabolic
multiscale problems, such as spatially resolved heat conduction in a Lithium-Ion battery.
We therefore discretize (12) locally by a standard finite element or discontinuous Galerkin
scheme independently in each subdomain of a given partitioning of the computational
domain and couple the arising local operators, products and functionals along these
subdomains by symmetric weighted interior penalty discontinuous Galerkin fluxes (cf.
[26] and the references therein). We use the resulting discretization to compute global
solution snapshots during the greedy algorithm, as detailed above. However, instead of
a single reduced basis with global support, we iteratively generate local reduced bases on
each subdomain by localizing the solution trajectories with respect to each subdomain
and by carrying out local PODs for further localized compression in a post-processing
step.

The resulting reduced space is then given as the direct sum of the local reduced
approximation spaces spanned by these local reduced bases. Accordingly, we obtain the
reduced problem (14) by local Galerkin projections of the local operators and functionals
and coupling operators associated with each subdomain and its neighbor, yielding sparse

10
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0 5 10 15 20
10−11

10−9

10−7

10−5

10−3

#solutions required (respectively #greedy extension steps)

Error evolution during the POD-Greedy basis generation

LRBMS (8× 2× 2)

RB

Figure 4: Error evolution during the POD-Greedy basis generation to reach a target absolute error
of 10−10 for the numerical experiment from Section 3.3. Depicted is the L∞-in-µ, L∞-in-t,
and H1-in-space error over the set of five equidistant training samples in [0.1; 10].

reduced quantities.

3.3 Numerical experiments

To demonstrate the applicability of the LRBMS we conduct an experiment on the same
geometry used in the larger experiment in Section 2.3 (compare Figure 3). For the ther-
mal conductivities we choose constant values within each material (the positive/negative
electrode and the positive/negative current collectors), as reported in [6, 4th column of
Table 4]. Within the electrolyte we allow to vary the constant thermal conductivity
within the range µ ∈ [0.1; 10]. We pose homogeneous Dirichlet boundary values at the
current collectors and homogeneous Neumann boundary values elsewhere and start the
simulations with an initial temperature of 0K, using ten time steps to reach the final time
10−3. For the heat source we set Q = 103 within the electrodes and Q = 0 within the
current collectors and the electrolyte. While this is not necessarily a physically meaning-
ful setup, it inherits the computational challenges of a realistic model, namely a highly
resolved geometry, discontinuous thermal conductivities depending on the materials and
heat sources which align with the geometry of the different materials.

We triangulate the computational domain with 5, 313, 600 simplexes and compare the
LRBMS using 8 × 2 × 2 subdomains to a standard RB method (which corresponds to
choosing one subdomain). Within each subdomain, we use the same SWIPDG dis-
cretization as for the coupling, thus yielding comparable discretizations with 21, 254, 400
degrees of freedom in both approaches. As an estimate on the model reduction error we
use the true L∞-in-time, H1-in-space error.

11
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Table 2: Comparison of runtimes of the experiments from Section 3.3. Setup time in-
cludes grid generation, subdomain partitioning and assembly of operators, prod-
ucts and functionals. POD-Greedy time includes error estimation, generation
of the reduced basis and the reduced basis projection. The average time to solve
the detailed problem is 2h28m5s.

setup POD-Greedy reduced basis size solution
time

RB 26m47s 14h41m52s 21 35s
LRBMS 36m7s 14h34m39s 32× 20 35s

The discretization is implemented within the DUNE numerics environment [4, 3], cen-
tered around dune-gdt [23]: the dune-stuff [24] module provides classes for vectors,
matrices and linear solvers (for instance the bicgstab.amg.ilu0 solver used in these ex-
periments), dune-gdt provides the discretization building blocks (such as discrete func-
tion spaces, operators, products and functionals), and dune-hdd1 provides parametric
discretizations compatible with pyMOR [22]. Finally, dune-pymor2 is used, as it provides
the Python-bindings and wrappers to integrate the DUNE-code with our model reduc-
tion framework pyMOR. The experiments were conducted on the same compute server as
described in Section 2.3.

As we observe from Fig. 4, both the LRBMS and the standard RB method show
comparable exponential error decay. In general, the quality of the reduced spaces gen-
erated by the LRBMS is slightly better, while requiring less detailed solution snapshots
to reach the same target error.

As can be seen from Table 2, the POD-Greedy basis generation using 32 subdomains
is slightly faster than the basis generation using a single subdomain. However, since the
experiments were conducted as single-threaded processes and since the LRBMS allows
for parallel local PODs and parallel local reduced basis projections, the basis generation
time of the LRBMS can be further accelerated significantly.

4 Conclusion

In this contribution we have demonstrated the efficient applicability of recent model
reduction approaches, such as the POD-Greedy reduced basis method, the empirical
operator interpolation, and the localized reduced basis multiscale method (LRBMS) for
efficient simulation of real world problems, such as 3D spatially resolved heterogeneous
Lithium-Ion battery models. The demonstrated model reduction approaches are realized
within our model order reduction library pyMOR [27, 22] with bindings, both to the
battery simulation software BEST [21], and the general purpose Distributed and Unified
Numerics Environment DUNE [4, 3], employing the dune-gdt, dune-stuff, and dune-hdd

1https://github.com/pymor/dune-hdd
2https://github.com/pymor/dune-pymor
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discretization and solver backends. Speedup factors of about 285 were obtained for
the full strongly non-linear battery model in Section 2 using the reduced basis method
with empirical operator interpolation [9], and around 253 for the linear parabolic heat
conduction model in Section 3 using a parabolic extension of the localized reduced basis
multiscale method [26].
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