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Abstract. The aim of link prediction is to forecast connections that are
most likely to occur in the future, based on examples of previously ob-
served links. A key insight is that it is useful to explicitly model network
dynamics, how frequently links are created or destroyed when doing link
prediction. In this paper, we introduce a new supervised link prediction
framework, RPM (Rate Prediction Model). In addition to network simi-
larity measures, RPM uses the predicted rate of link modifications, mod-
eled using time series data; it is implemented in Spark-ML and trained
with the original link distribution, rather than a small balanced subset.
We compare the use of this network dynamics model to directly creating
time series of network similarity measures. Our experiments show that
RPM, which leverages predicted rates, outperforms the use of network
similarity measures, either individually or within a time series.

Keywords: link prediction; network dynamics; time series; supervised
classifier

1 Introduction

Many social networks are constantly in flux, with new edges and vertices being
added or deleted daily. Fully modeling the dynamics that drive the evolution of
a social network is a complex problem, due to the large number of individual
and dyadic factors associated with link formation. Here we focus on predicting
one crucial variable–the rate of network change. Not only do different networks
change at different rates, but individuals within a network can have disparate
tempos of social interaction. This paper describes how modeling this aspect of
network dynamics can ameliorate performance on link prediction tasks.

Link prediction approaches commonly rely on measuring topological simi-
larity between unconnected nodes [1–3]. It is a task well suited for supervised
binary classification since it is easy to create a labeled dataset of node pairs;
however, the datasets tend to be extremely unbalanced with a preponderance
of negative examples where links were not formed. Topological metrics are used
to score node pairs at time t in order to predict whether a link will occur at
a later time t′(t′ > t). However, even though these metrics are good indicators
of future network connections, they are less accurate at predicting when the
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changes will occur (the exact value of t′). To overcome this limitation, we explic-
itly learn link formation rates for all nodes in the network; first, a time series is
constructed for each node pair from historic data and then a forecasting model
is applied to predict future values. The output of the forecasting model is used
to augment topological similarity metrics within a supervised link prediction
framework. Prior work has demonstrated the general utility of modeling time
for link prediction (e.g., [4–6]); our results show that our specific method of rate
modeling outperforms the use of other types of time series.

RPM is implemented using Spark MLlib machine learning library. Using
Spark, a general purpose cluster computing system, enables us to train our su-
pervised classifiers with the full data distribution, rather than utilizing a small
balanced subset, while still scaling to larger datasets. Moreover, we evaluate the
classifiers with a full test dataset, so the results are representative of the per-
formance of the method ”in the wild”. Our experiments were conducted with a
variety of datasets, in contrast to prior work on link prediction that has focused
on citation or collaboration networks [7]. In addition to a standard co-authorship
network (hep-th arXiv [8]), we analyze the dynamics of an email network (En-
ron [9]) and two player networks from a massively multiplayer online game (Tra-
vian [10]). Networks formed from different types of social processes may vary in
their dynamics, but our experiments show that RPM outperforms other standard
approaches on all types of datasets.

2 Background

Approaches to the link prediction problem are commonly categorized as being
unsupervised [4, 7, 11–13] or supervised [8, 14–16]. In unsupervised approaches,
pairs of non connected nodes are initially ranked according to a chosen similarity
metric (for instance, the number of common neighbors) [17,18]. The top k ranked
pairs are then assigned as the predicted links. The strength of this paradigm is
that it is simple and generalizes easily to many types of data, but there are
some limitations: for instance, how to a priori select the cutoff threshold for link
assignment? Implicitly, these approaches assume that the links with the highest
scores are most likely to occur and form the earliest; however this is often not
the case in many dynamic networks [18]. If the rank correlation between the
selected metric and the sequence of formed links is poor, the accuracy of this
approach suffers.

Supervised approaches have the advantage of being able to 1) simultaneously
leverage multiple structural patterns and 2) accurately fit model parameters us-
ing training data. In this case, the link prediction task is treated as a classification
problem, in which pairs of nodes that are actually linked are assigned to class 1
(positive class), whereas the non-connected ones are assigned to class 0 (nega-
tive class). The standard model assumes that feature vectors encapsulating the
current network structure at time t are used to predict links formed at t + 1;
in some sense, this model is ”amnesiac”, ignoring the past connection history of
individual nodes. To address this issue, our proposed method, RPM represents
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the network with time series. A forecasting model is then used to predict the
next value of the series; this value is in turn used to augment the input to the
supervised learning process.

Fig. 1: Evolution of a network over time. Blue nodes have higher rates of link
formation. This behavior can only be captured by taking temporal information
into account; RPM identifies these nodes through the use of time series.

2.1 Time Series

To construct the time series, the network G observed at time t must be split into
several time-sliced snapshots, that is, states of the network at different times in
the past. Afterwards, a window of prediction is defined, representing how further
in the future we want to make the prediction. Then, consecutive snapshots are
grouped in small sets called frames. Frames contain as many snapshots as the
length of the window of prediction. These frames compose what is called Framed
Time-Sliced Network Structure (S) [8]. Let Gt be the graph representation of a
network at time t. Let [G1, G2, ..., GT ] be the frame formed by the union of the
graphs from time 1 to T . Let n be the number of periods (frames) in the series.
And let w be the window of prediction. Formally, S can be defined as:

S = {[G1, ..., Gw], [Gw+1, ..., G2w], ...[G(n−1)w+1, ..., Gnw]}

For instance, suppose that we observed a network from day 1 to day 9, and
our aim is to predict links that will appear at day 10. In this example, the
forecast horizon (window of prediction) is one day. Our aim here is to model
how the networks evolve every day in order to predict what will happen in the
forecast horizon. Figure 1 shows an example of the evolution of network over
time.

2.2 Network Similarity Metrics

In this paper, we use a standard set of topological metrics to assign scores to
potential links:
1. Common Neighbors (CN) [19] is defined as the number of nodes with direct

relationships with both members of the node pair: CN(x, y) = |Γ (x)∩Γ (y)|
where Γ (x) is the set of neighbors of node x.
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2. Preferential Attachment (PA) [7,20] assumes that the probability that a new
link is created is proportional to the node degree |Γ (y)|. Hence, nodes that
currently have a high number of relationships tend to create more links in
the future: PA(x, y) = |Γ (x)| × |Γ (y)|.

3. Jaccard’s Coefficient (JC) [21] assumes higher values for pairs of nodes that
share a higher proportion of common neighbors relative to total number of

neighbors they have: JC(x, y) = |Γ (x)∩Γ (y)|
|Γ (x)∪Γ (y)| .

4. Adamic-Adar (AA) [22], similar to JC, assigns a higher importance to the
common neighbors that have fewer total neighbors. Hence, it measures ex-
clusivity between a common neighbor and the evaluated pair of nodes:

AA(x, y) =
∑

z∈|Γ (x)∩Γ (y)|

1

log(|Γ (z)|)
.

These metrics serve as 1) unsupervised baseline methods for evaluating the per-
formance of RPM and 2) are also included as features used by the supervised
classifiers.

2.3 Datasets

For our analysis, we selected three datasets: player communication and economic
networks from the Travian massively multiplayer online game [10], the popular
Enron email dataset [9], and the co-authorship network from arXiv hep-th [8].
Table 1 gives the network statistics for each of the datasets:
1. Enron email dataset [9]: This email network shows the evolution of the

Enron company organizational structure over 24 months (January 2000 to
December 2001).

2. Travian MMOG [10]: We used the communication and trading networks
of users playing the Travian massively multiplayer online game. Travian is a
browser-based, real-time strategy game in which the players compete to cre-
ate the first civilization capable of constructing a Wonder of the World. The
experiments in this paper were conducted on a 30 day period in the middle
of the Travian game cycle (a three month period). Figure 2 indicates that
Travian is a highly dynamic dataset, with over 90% of the edges changing
between snapshots.

3. co-authorship network hep-th arXiv [8]: This co-authorship network
shows the evolution in co-authorship relationships extracted from the arXiv
High Energy Physics (Theory) publication repository between 1991 and
2010.

3 Method

RPM treats the link prediction problem as a supervised classification task, where
each data point corresponds to a pair of vertices in the social network graph.
This is a typical binary classification task that could be addressed with a variety
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Fig. 2: Dynamics of the Travian network (trades: left and messages: right). The
blue line shows the new edges added, and the red line shows edges that did not
exist in the previous snapshot.

Table 1: Dataset Summary

Data Enron
Travian

(Messages)
Travian
(Trades)

hep-th

No. of nodes 150 2,809 2,466 17,917
Link (Class 1) 5,015 44,956 87,418 59,013
No Link (Class 0) 17,485 7,845,525 5,993,738 320,959,876
No. of snapshots 24 30 30 20

of classifiers; we use the Spark support vector machine (SVM) implementation.
All experiments were conducted using the default parameters of the Spark MLlib
package: the SVM is defined with a polynomial kernel and a cost parameter of
1. Algorithms were implemented in Python and executed on a machine with
Intel(R) Core i7 CPU and 24GB of RAM. We have made our code and some
example datasets available at: http://ial.eecs.ucf.edu/travian.php.

In order to produce a labeled dataset for supervised learning, we require
timestamps for each node and edge to track the evolution of the social network
over time. We then consider the state of the network for two different time
periods t and t′ (with t < t′). The network information from time t is used to
predict new links which will be formed at time t′. One of the most important
challenges with the supervised link prediction approach is handling extreme class
skewness. The number of possible links is quadratic in the number of vertices in
a social network, however the number of actual edges is only a tiny fraction of
this number, resulting in large class skewness.

The most commonly used technique for coping with this problem is to balance
the training dataset by using a small subset of the negative examples. Rather
than sampling the network, we both train and test with the original data dis-
tribution and reweight the misclassification penalties. Let G(V,A) be the social
network of interest. Let G[t] be the subgraph of G containing the nodes and

http://ial.eecs.ucf.edu/travian.php
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edges recorded at time t. In turn, let G[t′] be the subgraph of G observed at
time t′. In order to generate training examples, we considered all pairs of nodes
in G[t]. Even though this training paradigm is more computationally demand-
ing it avoids the concern that the choice of sampling strategy is distorting the
classifier performance [16].

Selecting the best feature set is often the most critical part of any machine
learning implementation. In this paper, we supplement the standard set of fea-
tures extracted from the graph topology (described in the previous section),
with features predicted by a set of time series. Let Ft(t = 1, ..., T ) be a time
series with T observations with At defined as the observation at time t and Ft+1

the time series forecast at time t + 1. First, we analyze the performance of the
following time series forecasting models for generating features:
1. Simple Mean: The simple mean is the average of all available data:

Ft+1 =
At +At−1 + ...+At−T

T

2. Moving Average: This method makes a prediction by taking the mean of
the n most recent observed values. The moving average forecast at time t
can be defined as:

Ft+1 =
At +At−1 + ...+At−n

n

3. Weighted Moving Average: This method is similar to moving average
but allows one period to be emphasized over others. The sum of weights
must add to 100% or 1.00:

Ft+1 =
∑

CtAt

4. Exponential Smoothing: This model is one of the most frequently used
time series methods because of its ease of use and minimal data requirements.
It only needs three pieces of data to start: last period’s forecast (Ft), last
period’s actual value (At) and a value of smoothing coefficient,α, between
0 and 1.0. If no last period forecast is available, we can simply average the
last few periods:

Ft+1 = αAt + (1− α)Ft

We identify which time series prediction model produces the best rate esti-
mate, according to the AUROC performance of its RPM variant. Parameters of
weighted moving average and exponential smoothing were tuned to maximize
performance on the training dataset. Figure 3 shows that the best performing
model was Weighted Moving Average with n = 3 and parameters C1, C2 and C3

set to 0.2,0.3, and 0.5 respectively.

3.1 Results

Our evaluation measures receiver operating characteristic (ROC) curves for the
different approaches. These curves show achievable true positive rates (TP) with
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(a) (b) (c)

Fig. 3: Performance of RPM using different forecasting models on (a) Travian
Messages (b) hep-th (c) Enron. Weighted Moving Average is consistently the
best performer across all datasets and is used in RPM.

Table 2: AUROC Performance

Algorithms / Networks Travian(Messages) Travian(Trades) Enron hep-th

RPM 0.8970 0.7859 0.9399 0.7834

Supervised-MA 0.8002 0.6143 0.8920 0.7542

Supervised 0.7568 0.7603 0.8703 0.7051

Common Neighbors 0.4968 0.5002 0.7419 0.5943

Jaccard Coefficient 0.6482 0.4703 0.8369 0.5829

Preferential Attachment 0.5896 0.5441 0.8442 0.5165

Adamic/Adar 0.5233 0.4962 0.7430 0.6696

respect to all false positive rates (FP) by varying the decision threshold on
probability estimations or scores. For all of our experiments, we report area
under the ROC curve (AUROC), the scalar measure of the performance over all
thresholds. Since link prediction is highly imbalanced, straightforward accuracy
measures are well known to be misleading; for example, in a sparse network,
the trivial classifier that labels all samples as missing links can have a 99.99%
accuracy.

In all experiments, the algorithms were evaluated with stratified 10-fold cross-
validation. For more reliable results, the cross-validation procedure was executed
10 times for each algorithm and dataset. We benchmark our algorithm against
Supervised-MA [8]. Supervised-MA is a state of the art link prediction method
that is similar to our method, in that it is supervised and uses moving aver-
age time series forecasting. In contrast to RPM, Supervised-MA creates time
series for the unsupervised metrics rather than the link formation rate itself.
Supervised is a baseline supervised classifier that uses the same unsupervised
metrics as features without the time series prediction model. As a point of ref-
erence, we also show the unsupervised performance of the individual topological
metrics: 1) Common Neighbors, 2) Preferential Attachment, 3) Jaccard
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Coefficient, and 4) Adamic-Adar. Table 2 presents results for all methods on
Travian (communication and trade), Enron, and hep-th networks. Results for
our proposed method are shown using bold numbers in the table; in all cases,
RPM outperforms the other approaches. Two-tailed, paired t-tests across mul-
tiple network snapshots reveal that the RPM is significantly better (p < 0.01)
on all four datasets when compared to Supervised-MA.

We discover that explicitly including the rate feature (estimated by a time
series) is decisively better than the usage of time series to forecast topological
metrics. The rate forecast is useful for predicting the source node of future links,
hence RPM can focus its search on a smaller set of node pairs. We believe a
combination of topological metrics is useful for predicting the destination node,
but that relying exclusively on the topological metrics, or their forecasts, is less
discriminative.

4 Related Work

The performance of RPM relies on three innovations: 1) explicit modeling of link
formation rates at a node level, 2) the usage of multiple time series to leverage
information from earlier snapshots, 3) training and testing with the full data
distribution courtesy of the Spark fast cluster computing system. Rate is an
important concept in many generative network models, but its usage has been
largely ignored within discriminative classification frameworks. For instance, the
stochastic actor-oriented model of network dynamics contains a network rate
component that is governed by both the time period and the actors [23]. RPM
does not attempt to create a general model of how the rate is affected by the
properties of the actor (node), but instead predicts the link formation rate of
each node with a time series.

Time series are useful because they enable us to track the predict future net-
work dynamics, based on the past changes. Soares and Prudêncio [8] investigated
the use of time series within both supervised and unsupervised link prediction
frameworks. The core concept of their approach is that it is possible to predict
the future values of topological metrics with time series; these values can ei-
ther be used in an unsupervised fashion or combined in a supervised way with
a classifier. In this paper, we compare RPM to the best performing version of
their methods, Supervised-MA (Supervised learner with Moving Average pre-
dictor), that we reimplemented in Spark and evaluated using our full test/train
distribution paradigm, rather than their original sampling method. Predicting
the rate directly was more discriminative that predicting the topological metrics.
We predict the rate of the source node’s link formation using a time series, in
contrast to Huang et al. [4] who used a univariate time series model to predict
link probabilities between node pairs. In our work, we use a supervised model
to assign links, rather than relying on the time series alone.

Feature selection is especially critical to the performance of a supervised clas-
sifier. For co-authorship networks, Hasan et al. [14] identified three important
categories of classification features: 1) proximity (for comparing nodes) 2) aggre-
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gated (for summing features across nodes), and 3) topological (network-based).
In our work, we only use network-based features, since those are the easiest to
generalize across different types of networks; both proximity and aggregated fea-
tures require more feature engineering to transfer to different datasets. Wang and
Sukthankar [11] promoted the importance of social features in both supervised
and unsupervised link prediction; social features aim to express the community
membership of nodes and can be used to construct alternate distance metrics.
However we believe that rate generalizes better across different types of dynamic
networks; moreover it can be easily combined with dataset-specific feature sets.

5 Conclusion and Future Work

In this paper, we introduce a new supervised link prediction method, RPM (Rate
Prediction Model), that uses time series to predict the rate of link formation. By
accurately identifying the most active individuals in the social network, RPM
achieves statistically significant improvements over related link prediction meth-
ods. Unlike the preferential attachment metric which identifies active individuals
based on the degree measure of a single snapshot, RPM measures time-sliced
network structure and finds individuals whose influence is rapidly rising. Our
experiments were performed on networks created by a variety of social pro-
cesses, such as communication, collaboration, and trading; they show that the
rate of link generation varies with the type of network. In future work, we plan
to extend this method to do simultaneously link prediction on different layers
of multiplex networks, such as Travian, by modeling the relative rate difference
between network layers.

6 Acknowledgments

Research at University of Central Florida was supported with an internal Reach
for the Stars award. Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

References

1. Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In: Social
Network Data Analytics. Springer (2011) 243–275

2. Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDD Explorations
Newsletter 7(2) (2005) 3–12

3. Wang, C., Satuluri, V., Parthasarathy, S.: Local probabilistic models for link
prediction. In: IEEE International Conference on Data Mining. (2007) 322–331

4. Huang, Z., Lin, D.K.: The time-series link prediction problem with applications
in communication surveillance. INFORMS Journal on Computing 21(2) (2009)
286–303



10 Hajibagheri et al.

5. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining graph evolution
rules. In: Machine Learning and Knowledge Discovery in Databases. Springer
(2009) 115–130

6. Potgieter, A., April, K.A., Cooke, R.J., Osunmakinde, I.O.: Temporality in link
prediction: Understanding social complexity. Emergence: Complexity & Organiza-
tion (E: CO) 11(1) (2009) 69–83

7. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks.
In: Proceedings of the International Conference on Information and Knowledge
Management. (2003) 556–559
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