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Abstract. With the increasing usage of smartphones, there is a 

corresponding increase in the phone metadata generated by indi-

viduals using these devices. Managing the privacy of personal in-

formation on these devices can be a complex task. Recent research 

has suggested the use of social and behavioral data for automati-

cally recommending privacy settings. This paper is the first effort 

to connect users’ phone use metadata with their privacy attitudes. 

Based on a 10-week long field study involving phone metadata 

collection via an app, and a survey on privacy attitudes, we report 

that an analysis of cell phone metadata may reveal vital clues to a 

person’s privacy attitudes. Specifically, a predictive model based 

on phone usage metadata significantly outperforms a comparable 

personality features-based model in predicting individual privacy 

attitudes.  The results motivate a newer direction of automati-

cally inferring a user’s privacy attitudes by looking at their phone 

usage characteristics. 

Keywords: Privacy attitudes; Social Signals; Phone Metadata; 

Call Logs. 

1 Introduction 

Recent results have pointed to a significant awareness of the dangers of sharing 

information and pictures on social networking sites (SNSs), and young adults 
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today are careful about constructing identity and online information disclosure 

[6, 7]. However, the fact that a number of interactions happen over smartphones 

which constantly receive and send out data signals containing personal infor-

mation often slips under the radar [17], [21, 22]. Enormous amounts of personal 

data are being captured from user’s smartphones to personalize user require-

ments however, there is little work done to understand how this mobile 

metadata (particularly call logs,) can be used to build personalized privacy set-

tings for users. In this paper, we propose pivoting the use of phone metadata 

(particularly call logs) to allow users to utilize their own data to obtain person-

alized privacy recommendations. 

As a first step toward this goal, we test the ability of an individuals’ phone 

metadata to predict user’s privacy attitudes. Once established, such intercon-

nections could be used to automatically define user’s privacy settings without 

the need for manual surveys or weaving through complicated choices. 

 

This paper makes two important contributions.  

1. Motivates and grounds the use of phone metadata as a method of assessing 

user privacy needs.  

2. Lays the groundwork for building automated models that define user’s pri-

vacy attitudes, without the need for explicit surveys. 

2 Related work 

We focus the presentation of related work on research projects that discuss in-

formation sharing within and outside communities and their impact on privacy 

attitudes. As more and more aspects of human life get mediated by mobile 

phones, a quick and easy way to identify privacy attitudes for users may be 

useful to suggest default settings and configurations in a variety of applications 

and scenarios faced by the user. However, in order to effectively suggest such 

settings and configurations, it is important to gain an understanding of an indi-

vidual’s privacy attitudes.  

There have been several attempts to define privacy attitudes. In a systematic 

discussion of the different notions of privacy Introna and Poloudi (1999) devel-

oped a framework of principles that explored the interrelations of interests and 

values for various stakeholders where privacy concerns have risen. The central 

idea around an individual’s privacy attitude is the desire to keep personal infor-

mation out of the hands of others, along with the ability to connect with others 

without interference. In this context, concern for privacy is a subjective meas-

ure—one that varies from individual to individual based on that person’s own 

perceptions and values. In other words, different people have different levels of 

concern about their own privacy [18]. 



However, a concern for privacy does not translate into similar behavior. Pre-

vious research [1, 2], [27] has explored the dichotomy that exists between con-

cerns about privacy and actual behaviors exhibited by individuals. The focus of 

this study is to understand the attitude and concerns of individuals towards pri-

vacy and how these concerns influence (or are influenced by) their real-world 

social behavior. 

While there exist a number of studies to measure privacy attitudes and be-

haviors in online interactions, [1], [27], [30], we wanted to get a sense of pri-

vacy attitudes in both online and offline behaviors. Therefore we use the Wes-

tin’s [32, 33, 34, 35, 36, 37, 38] studies to gain a holistic understanding of pri-

vacy concerns exhibited by individuals’. While there have been multiple recent 

efforts toward building newer measures of privacy, [1, 2], [7] Westin’s work 

remains one of the most comprehensive approaches towards obtaining a well-

rounded understanding of privacy attitudes exhibited by an individual. This pa-

per uses the Privacy Segmentation Index [38] that categorizes individuals’ into 

one of three categories based on their levels of privacy concerns:  

• Fundamentalists: who feel very strongly about privacy and grant it an es-

pecially high value  

• Pragmatists: who also have strong feelings about privacy but can also see 

the benefits from surrendering privacy in situations where they believe care 

is taken to prevent the misuse of this information; and  

• Unconcerned: those who have no real concerns about privacy or about how 

other people and organizations are using information about them. 

 Previous research has explored various methods for improving the un-

derstanding of complex privacy settings [14], [23], [31] in SNSs. A recent study 

automatically generates privacy settings for any images uploaded by the user 

[25]; another study describes a privacy wizard for SNSs that describes a partic-

ular user’s privacy preferences based on a limited amount of user input [15]. 

While this research work can help in preserving privacy in online SNSs, there 

is a gap in the literature around using cell phone metadata to generate automated 

privacy settings for individuals. Our research focuses on using this cellphone 

metadata as a predictor of an individual’s privacy attitudes. 

3 Study Undertaken 

We adopt the Privacy Segmentation Index (PSI) to gain an understanding of 

privacy attitudes displayed by individuals. This survey consisted of statements 

designed to measure levels of concern about personal information disclosed by 

individuals to companies or businesses and their concerns about whether their 

information was being protected or not. Each of these questions required re-

sponses on a 4-point scale ranging from strongly disagree to strongly agree and 



 

individuals were classified as Fundamentalists, Pragmatists or Unconcerned 

based on their responses. 

Participants for this study were recruited from Rutgers University, New 

Brunswick. During the study, participants were invited to the study site to read 

and sign the consent form and fill out an online survey. The survey consisted 

of the Privacy Segmentation Index [38], and demographic questions (e.g. gen-

der, age). While the participants completed the survey, they were asked to in-

stall the study client on their phones. The study client collected call logs, sms 

logs, and location logs, over a 10 week study period. Cellphone metadata col-

lected by the study client and the participant answers to the privacy attitude and 

behavior surveys were analyzed to test multiple hypotheses. A total of 53 par-

ticipants completed the study i.e. installed the study client app and completed 

the privacy survey. Of these 31 (59%) were men and 18 (34%) were women 

(demographic data was unavailable for three participants). The majority of par-

ticipants were undergraduates between the ages of 18-21 years.  

Based on the information collected from this app we defined a set of 

features that will allow us to explore relationships between mobile phone inter-

actions and privacy attitudes. Below are the variables and their definitions: 

Table 1. Variables used in the study 

Variable Name Definition 

Privacy Concern (Out-

put Variable) 

Score as determined by responses to Westin’s Pri-

vacy Segmentation Index. Scores for each ques-

tion on a Likert Scale of 1-4 were added together 

to get a combined Privacy Concern Score.  

 

Call Count n(Calls) 

Total number of calls received or made by partic-

ipants in the duration of the study 

Call Duration ∑(time spent on calls) 

Sum of time spent on all calls received or made in 

the duration of this study 

Missed Call Rate (Number of missed calls / Call Count) * 

100 

This is percentage of calls missed (not answered) 

by the participant.  

Call Response Rate  (Number of responded missed calls/  

Number of missed calls) * 100 

Where “responded missed calls” are those which 

were returned within 1 hour of the missed call. 



Number of New Con-

tacts in Outgoing calls 

This variable is defined as the number of calls 

made to new contacts; i.e. contacts that were not 

seen in the initial four weeks of the study but calls 

were initiated after the first four weeks. 

Privacy of user data was of utmost priority throughout this project. All 

data were secured and protected at standards applied to medical metadata. All 

metadata captured by the study clients was required to be no more detailed than 

those employed by typically installed apps like the Gmail and Instagram. The 

participants had the option to opt out of the studies at any time. The eventual 

goal is to design privacy apps that ‘learn’ user preferences over a short period 

of time (e.g. weeks) and can recommend privacy settings even after they stop 

receiving the data.  Also, though outside the scope of the current work, the 

eventual privacy app coming out of this research project will be extended to run 

under the OpenPDS framework [17], [21]. OpenPDS (an open source personal 

data source) keeps personal data in the cloud under the purview of an individual 

user rather than the third parties like Google or Facebook. 

Given that this is the first study to connect mobile phone metadata with 

privacy attitudes, we have adopted a multi-stage approach. We first tested mul-

tiple hypotheses based on existing literature connecting social behavior and pri-

vacy attitudes. We found multiple hypotheses to hold and significant associa-

tions between phone signals and privacy attitudes. This motivated the second 

stage of analysis where multiple features were combined into unified prediction 

models. The validation at each stage, yielded better confidence and interpreta-

bility for the next phase. 

4 Hypotheses Testing 

Existing studies [2], [13], [26] show maintaining privacy is a strong factor in 

determining how users present themselves and hence exerts an influence on 

their social interactions. For our study, we used the number of calls made by 

individuals over the period of study to determine their level of interaction. Past 

research has analyzed privacy and interaction on SNSs and has explored the 

relationship between privacy concerns and actual behavior on SNSs. For exam-

ple, Acquisti and Gross (2006) found that one’s privacy concerns were a weak 

predictor of the use of social network sites [1]. Based on these studies, we at-

tempt to understand the relationships between greater phone interactions and 

privacy attitudes. We expect our study to show a negative relationship between 

number of calls and privacy attitudes. 

H1: Higher call count is associated with a lower concern for privacy 

H2: Longer time spent on calls is associated with a lower concern for 

privacy  



 

 

Previous research [4], [8], [10] has shown the importance of maintaining so-

cial ties in today’s world. Online SNSs support both the maintenance of existing 

social ties and the formation of new connections. While online social network 

sites offer an attractive means for interaction and communication, they also 

raise privacy and security concerns. Researchers [2], [12], [29] agree that main-

taining these social networks require disclosure of personal information and 

encourage the sharing of information. Along with online social networks, phone 

calls are also a popular way to stay in touch. As the number of mobile phone 

users’ increase, more and more information will be shared over phone calls. 

Individuals receive a number of phone calls outside of their network or known 

“friends and families” in a given day. These calls could be from marketing 

agencies, credit card sellers or even phishing, where criminals try to gain sen-

sitive personal information using fraudulent means. In such a scenario, we be-

lieve that people who are highly concerned about their privacy would only re-

spond to calls from within their network. Therefore, we hypothesize that a 

higher call response rate indicates a lower concern for privacy.  

H3: Higher call response rate is associated with a lower concern for pri-

vacy. 

H4: Higher missed call rate is associated with a higher concern for pri-

vacy. 

 

The creation and maintenance of relationships is one of the chief motivations 

for an individuals’ use of SNSs [1], [6]. Studies of the first popular social net-

working site, Friendster, [5], [11] describe how members create their profile 

with the intention of communicating news about themselves to others. The 

structure of these online social networks allows for the same information to be 

shared between close friends, strangers or acquaintances [1]. As newer contacts 

are included within an existing social network, there is more personal infor-

mation shared within the network. Therefore, we hypothesize that people who 

have high privacy concerns will not readily initiate newer contacts. That is, a 

higher number of new contacts in a network indicates a lower concern for pri-

vacy. 

H5: Higher number of new contacts initiated is associated with a lower 

concern for privacy. 

 

 Based on the data captured in this study, we tested the above-mentioned 

hypotheses, operationalized each based on the features defined in Table 1 and 

undertook Pearson’s correlation analysis. As shown in Table 2, we found hy-

pothesis H3, H4 and H5 to be statistically significant in the expected direction 

and H1, and H2 to be non-significant.  

 

 



 

 

 

 

Table 2. Results of hypotheses testing based on data in Rutgers Wellbeing 

study for n=53 

 
Hypothesis 

Testing 

Expected 

Direction 
p-value 

Pearson’s 

Correlation 

Coefficient 

H1 Not Significant -- 0.532 -0.088 

H2 Not Significant -- 0.490 -0.097 

H3 Significant Yes 0.043 -0.279* 

H4 Significant Yes 0.017 0.425** 

H5 Significant Yes 0.025 -0.313* 

 

Demographic analysis of the data also provided some interesting insights. 

Descriptive analyses of data from this study shows that while both males and 

females are concerned with data sharing, females tended to have a slightly 

higher concern for privacy with 60% females receiving a “very concerned” pri-

vacy score on Westin’s Index while only 54% males received the same score. 

We had a diverse sample in terms of race and income groups with representa-

tions from Asian Americans, African Americans, Latino, and White popula-

tions. There were no significant variations in privacy attitudes across race and 

income groups.  

Based on existing studies [1], [7], [13] analyzing information sharing and 

disclosure, we hypothesized that a higher call count and longer time spent on 

calls would be indicative of a low concern for privacy. However, our results 

showed that this was not the case. We found a significant correlation between 

the frequency of answering and not accepting calls and privacy attitudes. This 

implies that the calls individuals choose to answer on their smartphones may 

be determined by their attitude towards privacy and information sharing. Simi-

larly, calls individuals choose to ignore or “miss” can be a reflection of their 

privacy concerns. Previous studies have analyzed information sharing and dis-

closure in online social networks, [12], [16] however, our results show that in-

formation sharing over smartphones maybe a significant predictor of privacy 

attitudes.   There is a significant relationship between the number of new con-

tacts included in an individual’s network and their privacy attitudes. This im-

plies that as an individual’s network grows the amount of information disclosed 

increases. While similar results were found for online social networks, our 



 

study shows that networks formed over phone calls, can also be an important 

variable in determining an individual’s information sharing patterns.  

These preliminary results indicate that the interconnections between privacy 

needs and phone metadata are not yet fully understood but could yield interest-

ing findings when analyzed systematically. This also implies that concern over 

privacy may not be apparent by an examination of the simplest features, but an 

analysis of more nuanced features, like how individuals react to phone calls in 

terms of the number of calls they actually respond to, may reveal a more inter-

esting pattern. 

A little over half (57%) the surveyed participants exhibited moderate (27%) 

to high (31%) concerns for privacy, and 43% participants had a low score or 

were “unconcerned” with sharing their data. This is very different from the re-

sults of the original survey conducted in 2003. Westin reported only 10% of the 

population was classified as “Unconcerned,” with the majority of individuals 

displaying moderate (64%) to high concerns (26%) regarding the (ab)use of 

their personal information [38]. While our sample includes mostly single un-

dergraduate students and is not representative of a larger population, such a vast 

difference in results, begs a question about the differences in information shar-

ing attitudes of individuals in the early or mid 2000’s to the present day. 

5 Towards a Predictive Model of Personal Privacy Attitudes 

Multiple significant hypotheses suggest predictive potential of nuanced phone 

usage metadata towards privacy attitudes. Hence we used the three features 

found to be significant in the analysis above to build a combined predictive 

model for privacy attitudes. We consider two different classifications for the 

privacy attitudes. First, is the conventional three category classification as sug-

gested by Westin and second is a two-class categorization based on the median 

value split.  

In the first scenario the classes were defined based on the criteria recom-

mended by Westin as already described in Section 2. This resulted in a split as 

follows: Privacy Fundamentalists: 5, Privacy Pragmatists: 31, Privacy Uncon-

cerned: 17, Total: 53. Given the multiple (>2) classes present we decided to use 

the MultiClass Classifier as implemented in Weka 3.6, with J48 decision tree 

as its underlying method. Further considering the relatively modest sample size, 

we decided to use Leave-One-Out cross-validation to tradeoff between the 

learning ability and the generalizability of the results. We also compare the pro-

posed phone-features based approach with two other approaches. One is a base-

line ‘Zero-R’ approach, which simply classifies all data into the largest cate-

gory. The second approach is based on using Big-Five [20] personality varia-

bles, which have been shown by multiple efforts to be related with privacy at-

titudes [19], [26]. The same classification method was applied to the different 



approaches. Lastly, given the unequal size of the classes, we also report the 

ROC (Receiver Operating Characteristic – Area Under the Curve) statistic 

along with the accuracy scores. Multiple prior efforts have suggested ROC as a 

more interpretable metric for classification when dealing with unequal classes 

[9].  

As shown in Table 3, the Phone-features based model performed better than 

both the compared approaches. Focusing on the ROC metric, the model yielded 

36% better prediction than the baseline model. Contrary to the expectations, the 

results also suggest that personality based metrics may not capture the right 

kind of signals to have predictive ability on privacy attitudes.    

Table 3.  Classification results using different approaches for (a) three-way 

classification as per Westin’s taxonomy and (b) two-way classification (High 

vs. Low Privacy Concern). 

 
Three-Way Classifica-

tion 

Two-Way Classifica-

tion 

 Accuracy ROC Accuracy Accuracy 

Baseline (Zero-R) 0.58 0.50 0.56 0.50 

Personality Features 0.53 0.40 0.43 0.39 

Phone-Usage Fea-

tures 
0.66 0.68 0.74 0.69 

  

To ameliorate some of the complexities associated with multi-class (>2) clas-

sification, we also consider a two-way classification problem, where the classes 

were based on a median split. Multiple participants fell at the median score (8 

out of 12) and this resulted in two roughly equal classes of sizes of 30 (below 

or equal to median) and 23 respectively. We ran the classification in Weka 3.6 

using J48 decision tree algorithm with Leave-One-Out cross validation. As 

shown in Table 3, this resulted in accuracy of 74% at a two class classification 

task and an ROC metric of 0.69, which indicates a 38% improvement over the 

baseline. Again, the relatively poor performance of personality based features 

suggests that traditional personality type measures may not be suited to predict 

privacy attitudes. Further investigation with larger samples is needed to confirm 

this initial evidence.  

6 Discussion 

Limitations of this study include that our sample is from only one university 

and not from a nationally representative sample. The sample population was 

also not very diverse in terms of age as they were mostly undergraduate students 

between 21-23 years. Also, we used a self-report survey on privacy rather than 



 

observing and recording the participants’ behavioral patterns in terms with re-

spect to data sharing. 

This study was carried out as an exploratory field study to understand how cell 

phone metadata can be used to build an individuals’ personal privacy signature. 

While, we respect completely individuals’ rights to their data, we posit that the 

current privacy debate is heavily biased towards the sharing and protection of 

socio-mobile data from third parties. Comparatively, little attention has been 

paid towards re-pivoting the same data to suggest privacy settings to users 

themselves for different applications. While similar studies have been con-

ducted using online social network data, this study is the first to motivate and 

ground the use of phone metadata towards identifying the privacy attitudes and 

needs of individuals.   

While the current work has focused on relatively simple set of features and 

tested a small number of hypotheses, the significant jump obtained in prediction 

ability points to the value in exploring this direction further. In particular the 

direction of using more nuanced behavioral features, over a correspondingly 

larger sample size and degrees of freedom is part of our future work. With ap-

propriate refinements and advancements, the proposed methodology could al-

low for automatic privacy attitude understanding for billions of mobile phone 

users.  
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