Skip to main content

A General Framework for Graph Matching and Its Application in Ontology Matching

  • Conference paper
  • First Online:
  • 1605 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9658))

Abstract

Graph matching (GM) is a fundamental problem in computer science. Two issues severely limit the application of GM algorithms. (1) Due to the NP-hard nature, providing a good approximation solution for GM problem is challenging. (2) With large scale data, existing GM algorithms can only process graphs with several hundreds of nodes.

We propose a matching framework, which contains nine different objective functions for describing, constraining, and optimizing GM problems. By holistically utilizing these objective functions, we provide GM approximated solutions. Moreover, a fragmenting method for large GM problem is introduced to our framework which could increase the scalability of the GM algorithm.

The experimental results show that the proposed framework improves the accuracy when compared to other methods. The experiment for the fragmenting method unveils an innovative application of GM algorithms to ontology matching. It achieves the best performance in matching two large real-world ontologies compared to existing approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://opt.math.tu-graz.ac.at/qaplib/.

  2. 2.

    https://uts.nlm.nih.gov/home.html#apidocumentation.

References

  1. Livi, L., Rizzi, A.: The graph matching problem. Pattern Anal. Appl. 16(3), 253–283 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Conte, D., Foggia, P., Sansone, C., et al.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 18(03), 265–298 (2004)

    Article  Google Scholar 

  3. Liu, Z.Y., Qiao, H., Yang, X., et al.: Graph matching by simplified convex-concave relaxation procedure. Int. J. Comput. Vis. 109(3), 169–186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zaslavskiy, M., Bach, F., Vert, J.P.: A path following algorithm for the graph matching problem. Pattern Anal. Mach. Intell. 31(12), 2227–2242 (2009)

    Article  Google Scholar 

  5. Liu, Z.Y., Qiao, H., Xu, L.: An extended path following algorithm for graph-matching problem. Pattern Anal. Mach. Intell. 34(7), 1451–1456 (2012)

    Article  Google Scholar 

  6. Zhou, F., De la Torre, F.: Factorized graph matching. In: CVPR 2012, pp. 127–134 (2012)

    Google Scholar 

  7. Zhou, F., De la Torre, F.: Deformable graph matching. In: CVPR 2013, pp. 2922–2929 (2013)

    Google Scholar 

  8. Liu, Z.Y., Qiao, H.: GNCCP—graduated nonconvexity and concavity procedure. Pattern Anal. Mach. Intell. 36(6), 1258–1267 (2014)

    Article  Google Scholar 

  9. Lawler, E.L.: The quadratic assignment problem. Manag. Sci. 9(4), 586–599 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lacoste-Julien, S., Palla, K., Davies, A., et al.: Sigma: simple greedy matching for aligning large knowledge bases. In: KDD 2013, pp. 572–580 (2013)

    Google Scholar 

  11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  13. Suchanek, F.M., Abiteboul, S., Senellart, P.: Paris: Probabilistic alignment of relations, instances, and schema. Proc. VLDB Endowment 5(3), 157–168 (2011)

    Article  Google Scholar 

  14. Jaggi, M.: Revisiting Frank-Wolfe: projection-free sparse convex optimization. In: ICML 2013, pp. 427–435 (2013)

    Google Scholar 

  15. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001)

    Article  Google Scholar 

  16. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)

    Article  Google Scholar 

  17. Bodenreider, O., Hayamizu, T.F., Ringwald, M., et al.: Of mice and men: aligning mouse and human anatomies. In: AMIA 2005 Annual Symposium Proceedings, p. 61 (2005)

    Google Scholar 

  18. Mika, P., et al. (eds.): The Semantic Web–ISWC 2014. Information Systems and Applications, incl. Internet/Web, and HCI, vol. 8796. Springer, Switzerland (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Basic Research Program of China (973 Program) under Grant No. 2014CB340505, National Natural Science Foundation of China under Grant Nos. 61532010 and 61272088, and Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuda Zang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zang, Y., Wang, J., Zhu, X. (2016). A General Framework for Graph Matching and Its Application in Ontology Matching. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds) Web-Age Information Management. WAIM 2016. Lecture Notes in Computer Science(), vol 9658. Springer, Cham. https://doi.org/10.1007/978-3-319-39937-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39937-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39936-2

  • Online ISBN: 978-3-319-39937-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics