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Abstract. Extending the application of intelligent tutoring beyond the desktop
and into the physical world is a sought after capability. If implemented correctly,
Artificial Intelligence (Al) tools and methods can be applied to support person-
alized and adaptive on-the-job training experiences as well as assist in the devel-
opment of knowledge, skills and abilities (KSAs) across athletics and psycho-
motor domain spaces. While intelligent tutoring in a physical world is not a tradi-
tional application of such technologies, it still operates in much the same fashion
as all Intelligent Tutoring Systems (ITS) in existence. It takes raw system inter-
action data and applies modeling techniques to infer performance and competency
while a learner executes tasks within a scenario or defined problem set. While a
traditional ITS observes learner interaction and performance to infer cognitive
understanding of a concept and procedure, a physical ITS will observe interaction
and performance to infer additional components of behavioral understanding and
technique. A question the authors address in this paper is how physical interac-
tions can be captured in an ITS friendly format and what technologies currently
exist to monitor learner physiological signals and free-form behaviors?
Answering the question involves a breakdown of the current state-of-the-art
across technologies spanning wearable sensors, computer vision, and motion
tracking that can be applied to model physical world components. The breakdown
will include the pros and cons of each technology, an example of a domain model
the data provided can inform, and the implications the derived models have on
pedagogical decisions for coaching and reflection.

Keywords: Intelligent tutoring systems - Physical modeling - Psychomotor -
Wearable sensors

1 Introduction

The concept of Augmented Cognition (AugCog) is based on the application of tech-
nology to impart information on a user that is not inherently perceivable in the natural
task environment. This information is intended to assist a user in executing a task by
enhancing an individual’s cognitive function in support of meeting a specified objective.
From a training and education perspective, AugCog practices are associated with adap-
tive instructional techniques that augment the path an individual takes in learning a topic
or skill and the type of coaching they receive along the way. These management
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decisions are based on models configured to inform interactions across domain, learner,
and pedagogical representations of a training space. These applications are traditionally
referred to in the literature as Intelligent Tutoring Systems (ITS).

To date, majority of ITSs are built around strictly cognitive problem domains, with
notable successes seen across an array of academic and military applications [1]. What
is a sought after capability, and more achievable now than ever with advances in wear-
able technologies, is extending these practices to the physical world in pursuit of training
psychomotor skills. This involves tasks that associate cognition with physical interaction
to meet an established goal, and incorporates a combination of hand-eye coordination,
muscle memory, and behavioral techniques that dictate performance and assessed
acquisition of skill.

While this can be considered a novel extension of traditional ITS methods, its imple-
mentation doesn’t vary significantly from systems of the past. It utilizes models built on
domain and learner information to inform a pedagogical decision. In this instance, the
domain isn’tinformed solely by performance and procedural information communicated
by a training application; it now requires methods to collect task relevant behavioral
measures that can be used to capture a physical technique and assess performance against
a set of specified standards. The important component here is that the information
collected must be done in a task’s natural environment, where the physical actions can
be performed with zero hindrances.

An area of interest to the research community is identifying data types required to
model psychomotor interactions at a hand-eye coordination level, and how best to utilize
available sensor technologies to instrument the learner and the training environment
with data streams that can accurately track behavior. In this paper we discuss the facets
associated with the development of a psychomotor adaptive training capability. This
includes reviewing theory surrounding psychomotor learning and skill acquisition, how
to enable assessment and coaching from a physical problem space, and what commercial
off-the-shelf sensors can provide valuable data to infer skill.

2 Learning a New SKkill and the Role of Coaching and Feedback

There are common tenets expressed in the literature associated with learning a new skill
(see Fig. 1 for a mind map of variables associated with psychomotor skill development
[2]). The first and foremost is that experience and practice trumps all. However, simply
practicing a skill over and over does not necessarily lead to expert performance. How
individuals progress in skill development is based on a number of factors. Anders Eric-
son’s theory of deliberate practice highlights the following attributes of an effective
practice event: (1) the event is designed to improve performance; (2) the individual has
the ability to repeat the application over multiple trials; (3) the task requires high mental
engagement; and (4) feedback is continuously made available that is designed to serve
in a coaching capacity [3]. The fourth factor is critical when determining the implications
of using ITSs to replace human counterparts to train psychomotor skills.
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Fig. 1. The psychomotor domain as mind mapped by Faizel Mohidin [2]

Acquiring a new skill follows three primary phases of development, each building
on top of the other: (1) beginner/novice phase where an individual tries to understand
the cognitive and physical requirements of the activity to generate actions while avoiding
errors; (2) the intermediate/journeyman phase where focused attention on task perform-
ance is no longer required and noticeable errors become increasingly rare; and (3) the
expert phase where the execution of a skill becomes automated with minimal effort and
exertion [4, 5]. How individuals progress through these three phases of skill acquisition
and the rate at which they do so is dependent on the factors listed above.

From the coaching perspective, especially within the beginner/novice phase, how
can an individual modify behavior if there is no way to effectively link actions to
observed outcomes? During this phase of learning, behavioral tendencies are established
and schemas are built in memory, making feedback to instill proper habits critical. In
the traditional sense, a coach/instructor with knowledge in the domain will observe a
learner, identify errors in their behavior as determined by a performance outcome, and
provide feedback to correct errors and reinforce proper technique.

Utilizing technology to facilitate this inference procedure is challenging. It requires
a machine to have the ability to consume perceptual information that associates with
behaviors an expert human would assess, and models to determine how the captured
data relates to a representation of desired behavior. This identified capability requires a
representation of knowledge an expert works with to dictate coaching practices and
warrants the utility of a deconstructed task analysis, breaking a domain down into its
piece parts in a hierarchical structure of varying skills and applications.
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2.1 Deconstructing a Psychomotor Domain

In terms of relating what’s already been discussed to a real-world example, take the
domain of basketball. When someone is attempting to learn basketball for the first time,
the initial approach to instruction is focused on a set of fundamentals. These fundamen-
tals set a foundation of required skills to successfully perform as an elite basketball
player. In this instance you can decompose basketball into three physical fundamental
skills: (1) dribbling, (2) passing, and (3) shooting. Each of these breakdown further into
a set of sub-skills that ascend in complexity as you progress through practice opportu-
nities (e.g., dribbling with your dominant hand, to dribbling with your non-dominant
hand, to dribbling between hands, to dribbling between your legs, to dribbling behind
your back, etc.). The desired end state is the development of muscle memory to auto-
matically perform a task without dedicating cognitive function to make it happen. When
you establish automated execution of fundamental behaviors, then an individual can
progress to more complex scenarios requiring advanced application of a skill (e.g., drib-
bling while being defended). This is followed by practice opportunities to combine the
application of skills to perform a higher level task.

This analogy can associate with almost all psychomotor domains of instruction,
regardless if its association with job-related activities or athletics. Each domain can be
deconstructed into a set of fundamental components that are performed when a situation
warrants their execution. The goal of an automated ITS is to establish models of funda-
mental behaviors to make the assessment space manageable. While the assessment space
of a domain is defined around a set of concepts and objectives, it is inherently dictated
by the data one can collect.

3 Modeling the Physical World

Modeling a physical task requires an understanding of the physical environment that
task is being performed within. The environment will determine the granularity level of
data a model can be built from, and can range from a highly customized room built with
sensing technologies to detect specific data feeds, to an open warehouse or gymnasium,
to an open field in the wild. The ideal situation involves a task environment instrumented
to inform both performance and behavior metrics that can assess causal relationships.
But the ideal environment to support this methodology is rare. That is why establishing
tools for collecting relevant information in a less controlled space is critical to the success
of ITSs being used in the wild. In the following subsections, we will describe three
modeling scenarios: (1) modeling a psychomotor task in a highly sensorized environ-
ment that is tightly-coupled, (2) modeling a psychomotor task in a confined space with
no custom sensors that is loosely-coupled, and (3) modeling a psychomotor task in an
unrestricted space out in the open.

In each scenario, sensor inputs will be identified. While the first scenario is based on
an actual research project being conducted at the U.S. Army Research Laboratory, the
latter two are presented as hypothetical applications. In this instance, we aim to identify
notional applications of sensor technologies to monitor physical interaction and behav-
iors that can personalize training in physical spaces.
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3.1 Modeling a Physical Task in a Highly Sensorized Environment

Highly sensorized training environments used to develop physical skills provide excel-
lent opportunities to produce initial psychomotor ITS applications. In these scenarios,
an environment is built with components to track predefined behaviors. These behaviors
are tracked to allow instructors to better inform their decisions on what aspects of a skill
to instruct, or in this instance use sensors to model task behaviors to automatically assess
skill and trigger coaching feedback.

An example of this ideal scenario can be seen in work we’re performing on the
development of an adaptive marksmanship training capability [6]. For this project, we
are working with the U.S. Army’s Engagement Skills Trainer (EST; see Fig. 2). The
EST is a simulated firing range that recreates the tasks executed on a live range in a safe/
cost-effective setting. In our effort, we’re focused on building an ITS to support the
development of Basic Rifle Marksmanship (BRM) skills and fundamentals.

Fig. 2. The U.S. army engagement skills trainer

The EST offers an excellent testbed for this use case based on the features it provides.
The system was developed to log data linked to both performance and behavioral
metrics. In terms of BRM, the EST tracks performance across a set of grouping exercises
that gauge metrics on group size and group accuracy. In addition to the performance
metrics, the EST weapons are outfitted with sensor technologies that associate with
behavioral properties. These include sensors to track: (1) the aim trace of the weapon
barrel, (2) the distance the trigger travels in relation to time, (3) the cant angle of the
rifle, and (4) the amount of pressure applied to the buttstock of the rifle.

With all of this contextual data, we were able to build models of expert behavior
across a set of performers within the Army Marksmanship Unit’s Service Rifle Team.
The models were based on the four fundamentals of BRM outlined in the training field
manual: (1) breathing, (2) trigger control, (3) body position, and (4) sight alignment.
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The models are used as benchmarks to assess a trainee’s behavior against to determine
if they are properly performing the fundamentals of BRM procedures as deemed by a
field of experts. To build out this prototype, we utilized the Generalized Intelligent
Framework for Tutoring (GIFT).

Generalized Intelligent Framework for Tutoring (GIFT). GIFT is a domain-
independent framework established to author, deliver, and evaluate ITS technolo-
gies [7]. It provides a set of standards to follow in creating models across a domain,
learner, and pedagogical schema. In special instances, GIFT supports the consump-
tion of sensor information to inform states not linked directly to system interaction
data and can extend modeling techniques to monitor affective and physical attrib-
utes of a learner. For the adaptive marksmanship ITS, GIFT is configured to take in
the EST data streams through the sensor module, where the data is filtered and
processed in real-time to assess against the represented expert behaviors. This assess-
ment is used to select a performance state for each of the BRM fundamentals, where
those skills assessed as below expectation are used to guide the selection of coaching
feedback to deliver. While we are making good progress on developing an ITS for
teaching BRM, and the EST provides an ideal set of behavioral information, how to
extend these methods into more advanced skills of marksmanship execution (i.e.,
hitting moving targets) need to be further conceptualized.

3.2 Modeling a Physical Task in a Confined Space with no Custom Sensors

In this scenario, psychomotor activity is believed to be performed in a controlled space
designed to support task execution, but lacks the inclusion of customized sensors built
to collect task relevant information. In this instance, we are interested in identifying
technologies that can extend the assessment space of these environments to inform
contextually relevant variables. This includes identifying what variables matter in
consistently gauging performance and behavior across a wide range of tasks.

While each domain has unique assessment requirements, many can share similar
data to infer completely different skill applications. This would depend on how the data
is represented in a model and how that model is linked to a component and/or funda-
mental of a skill. The hope is to avoid building a set of custom sensors and to utilize
commercial off-the-shelf sensing technologies. In a controlled space, the following
technologies are believed to provide valuable information for modeling the physical
world: (1) motion tracking and (2) wearable sensors.

In most instances, this scenario may be the most complex of the three. With the task
being performed in a confined space, the characteristics of the task actions most likely
associate with fine motor control over a set of environmental objects. For this reason, it
is important to understand the current state of the art of what information can be made
available for modeling purposes, and how that impacts the type of domains an ITS can
currently support under these environmental conditions. An overarching assumption
with all selected technologies is that they can communicate data in real-time to an archi-
tecture that can process and model its outputs, such as GIFT.
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Motion Tracking. In many psychomotor tasks, monitoring the physical motions of an
individual’s movement and skeletal structure can go a long way into assessing their
behavior. This is especially true in fitness training, athletics, and task-oriented domains
that require precise movements to meet standard performance. Depending on the domain
being trained, the body is constrained to certain movements and actions that can be
executed in support of meeting a task objective. It is assumed under these conditions
that behavioral characteristics can be modeled for determining proper execution. In this
instance, logging data over a window of time as you observe a set of experts perform a
task can be used to determine if there are trends in behavior that influence outcomes and
proper techniques. If trends can be identified through statistical inference procedures,
then models can be established to compare trainee data against in real-time to diagnose
performance on a set of behaviors.

The challenge is using motion based information, which can be noisy in nature and
not of appropriate validity in measuring precise movements, to build assessment models
that operate in an ITS. Outfitting the environment with motion tracking technology can
be used to quantifiably monitor user actions, which is a start. For the context of this
paper, we associate motion tracking technology as a free standing system of cameras
and sensors that can be placed throughout a confined space. The issue is that a technology
of this nature limits the amount of space a task can be conducted within. That’s why it’s
important to understand the characteristics of a domain to determine if this type of
modeling technique is viable.

For implementation purposes, systems can be as complex as cameras placed
throughout a training space that are designed to locate and track a set of reflective
markers that can be placed on a number of items (e.g., placed on a bodysuit worn by a
user or on interaction environment elements in an environment, like a baseball bat seen
in the left image of Fig. 3). Motion tracking can also be supported by commercial prod-
ucts like the Microsoft Kinect 2, where no markers are required to capture and track an
individual’s skeletal structure, producing an image like the one seen on the right of
Fig. 3. Regardless of the approach selected, motion tracking can be a nice option when
the task environment is confined. There is still much work to.

Fig. 3. Motion tracking technologies: on left is motion tracking resulting from wearable bodysuit
with mounted reflectors; on right is motion tracking resulting from Microsoft Kinect.
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Wearable Sensors. Recent advancements in wearable technologies have made them a
viable data source when considering inputs for informing models to train psychomotor
skills. In the context of this paper, wearable sensors are any technology that can be
unobtrusively attached to a user that logs physiological and behavioral measures.
Common metrics collected by these devices include electrocardiogram/heartrate infor-
mation, accelerometer data, gyroscope information, galvanic skin response, breathing
patterns in some instances, and location data if GPS compliant.

The current application of these sensors within the commercial world is primarily
for health tracking purposes. The combination of data channels can output metrics
related to activity levels, stress, and sleep patterns. The market is very competitive, with
a near endless selection of options ranging from the data they provide and the style of
which they are worn.

From a training perspective, the research goal is to identify how best to use these
technologies to collect information that can be used to guide skill acquisition of a phys-
ical task. Majority of the current products involve sensors that wear either around the
wrist or ankle. These typically record a comprehensive set of physiological markers,
behavioral movement data, and environmental factors such as temperature and UV
exposure. While many of these provide valuable information to monitor activity and
affective variables such as stress, they lack granular data sources linked to precision of
movements from a motor-control angle.

However, that’s not true for all wearable sensors. Products like the MOOV Now and
Zepp Sports sensors provide real-time 3D motion tracking of a joint/limb on the human
body (see Fig. 4). This information is logged and visualized for replay purposes. Current
applications like Zepp allow you to replay your data feed side-by-side with data collected

Fig. 4. Wearable sensing technologies: upper left is the Microsoft Band 2 [http://www.
microsoft.com/microsoft-band]; lower left is the MOOV now activity bracelet that supports 3D
motion tracking [http://welcome.moov.cc/] and the Zepp Baseball sensor output [http://www.
zepp.com]; right is Zephyr Technologies’ BioHarness 3 wearable sensor [http://www.
zephyranywhere.com/].
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from an expert for a comparative evaluation, but there is no coaching beyond that.
Exploring modeling techniques that take these three dimensional tracking feeds and
associate behavioral parameters in association with a task fundamental or objective is
essential for ITSs supporting this interaction environment.

3.3 Modeling a Physical Task Out in the Open

In considering a physical domain performed in a boundless open environment, sensing
technologies play a different role than seen in the confined space. In this instance, tasks
are performed that require coordination of movements and activities over possible large
distances, with factors of location, speed, acceleration, and terrain playing a role in how
the task is performed. For an excellent review of this conceptual environment with a use
case centered on land navigation, see Sottilare & LaViola, 2015 [8]. In their review, the
authors present a set of ‘smart glasses’ and a feasibility analysis of their application in
a live land navigation training scenario.

As the majority of smart glasses sync to a cellular device for processing purposes,
the smart glasses themselves primarily serve as tools to present information to a user,
with many options including simple text message overlays, objects placed to augment
the visual environment, or videos containing instructional material. From a behavioral
sensing standpoint, these smart glasses can utilize forward facing cameras to assess an
individual’s orientation within an environment, with the ability to make inferences on
what someone should see based on a calculation of their visual field of view from a
specified Global Positioning System (GPS) coordinate.

Beyond the smart glass inputs and outputs, the real sensing taking place in this
training environment is provided through the phone, with this example providing GPS
location data as tracked over a cellular network. With this information, assessment rules
can be built in GIFT based on the data factors listed above. Zones of interest can also
be established that can trigger situational awareness oriented tutorial interventions,
forcing an individual to reflect on the situation and respond to a prompt that can be used
to assess competency and trigger coaching interactions.

In these open environment training events, there can be a combination of open and
confined task characteristics, where a sensing technology can be applied to track both
location, as well as fine motor-movements. In this instance, computation on wearable
sensors providing 3-D motion tracking, like the MOOV Now sensor described above, must
be done on a mobile device. This requires GIFT modules to run locally, as the range on
wearable sensors doesn’t support long range distances. Computations must be performed
on the cellular device, with behavioral state information communicated through the
network in support of GIFT’s learning effect chain. This approach to physical modeling is
also critical for team-oriented training tasks. From this perspective, multiple entities can
be tracked in a single environment. Formations can be monitored, and team oriented
behaviors can be modeled to establish boundaries of acceptable performance.
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Conclusion

In this paper, we present high-level hypothetical considerations that can be used to guide
requirement discussions in the development of a psychomotor-based ITS. Modeling the
physical world to support automated coaching of psychomotor skills is not by any means
a simple task. As evident by the described modeling use cases, capturing data granular
enough to inform accurate assessments is limited, even when customized environments
are established. In addition, there are multiple architectural considerations that must be
addressed to consume, process, and act upon behavioral information linked to a skill
fundamental.
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