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Abstract. Variable selection for predictive modeling has traditionally relied on
theory in the psychological domain. Given the recent advancements in com-
puting technology and availability, researchers are able to utilize more sophis-
ticated mathematical modeling techniques with greater ease. The challenge
becomes evaluating whether theory or mathematics should be relied upon for
model development. The presented analyses compared the use of hierarchical and
stepwise variable selection methods during a predictive modeling task using
linear regression. The results show that the stepwise variable selection method is
able to obtain a more efficient model than the hierarchical variable selection
method. Implications and recommendations for researchers are further discussed.
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1 Introduction

Psychological researchers have utilized predictive statistical model building techniques
to predict, classify, and further understand the true nature of a variety of behavioral
phenomenon. While building predictive statistical models, researchers are faced with
an assortment of options to consider in order to construct the most appropriate model
from their data, such as (1) whether the model is being used for prediction or under-
standing the relationship between the independent and dependent variable(s), (2) the
algorithm being used to build the model, (3) the specific parameters of the algorithm
being used, (4) possible data transformations, (5) sampling techniques to build the
model, as well as (6) evaluation of the generated models.

One essential consideration to model development is determining how variables are
selected [1]. Traditionally in psychological research, variable selection has “relied on
informal or intuitive reasoning or historical precedent” [2]. This method of variable
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selection relies strictly on theory, and is efficient and practical when small amounts of
well-studied variables are being evaluated as predictors within a model. With
improvements in computing power and advancements in measurement techniques,
researchers are now able to collect, store, and analyze a much larger amount of data that
often times contains an exhaustive amount of potential predictor variables. For example,
researchers utilizing physiological measures, most notably the electroencephalogram
(EEG), have access to brain activity data from a large amount of sensor sites (sometimes
up to 256) over a large amount of frequency bins (1–100+). Physiological variables have
been shown to be strongly task dependent [3] and psychophysiological metrics seldom
intercorrelate [4], therefore, it may be difficult to assume a predictor for one task type
will be applicable to another. Furthermore, more advanced modeling software packages
have become available to researchers that allow complex, state-of-the-art statistical
methods to be utilized with relative ease. A variety of open source and proprietary
software packages are used by researchers for modeling data including SPSS, SAS, R,
Python, and WEKA, to name a few. Lastly, the myriad of experimental environments
available, including computer-based questionnaires and simulation-based approaches,
allow researchers to explore a new range of variables over a large population with fewer
cost and resources. As a result, with the influx of large data sets, new variables being
collected, and access to more sophisticated modeling tools, researchers are applying
objective, mathematical variable selection methods that can be used to reduce the
dimensionality of their datasets, facilitate data understanding, discover new patterns or
trends in the data, and ultimately improve model prediction [1].

The data and tasks for these present analyses were derived from previous work [5].
The goal for the present analyses is to evaluate a commonly used algorithm by psy-
chological researchers, linear regression, while using a theoretical approach (i.e.
hierarchical regression) and mathematical approach (i.e. stepwise regression) for
variable selection to develop and compare performance prediction models using sub-
jective and objective measures of workload.

1.1 Workload Metrics

Research has suggested that mental workload plays an essential role in task perfor-
mance and is an indicator of performance across multiple domains [6, 7]. Although a
universally accepted, formal definition of workload does not exist, workload can be
regarded as the “perceived evaluation and accompanying physiological response to the
experience imposed by task demands” [5]. A significant body of research has inves-
tigated the use of subjective and objective methods to quantify an operator’s level of
mental workload. The subjective and objective metrics described below will be used in
the present analyses as each one has been found to contribute to the explanation of
performance.

In regards to subjective measures, the Instantaneous Self-Assessment (ISA) [8] and
NASA-Task Load Index (TLX) [9] have been extensively used by researchers to
capture an operator’s subjective level of perceived workload. The ISA is a unidi-
mensional measure that provides an immediate subjective rating of workload during a
given task [8]. The ISA has the benefit of being minimally intrusive, is able to be
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administered in real-time, and has been shown to be a good indicator of workload [10].
Traditionally, the TLX has been used as a “gold-standard” of workload assessment.
The TLX is a multidimensional measure that assesses perceived workload during a
given task and usually administered post-task [9]. Operators rate their perceived level
of workload on six dimensions: three related to the demands on the operator and three
related to the interaction with the task [9]. The original measure additionally required
pair-wise comparisons to weight the ratings, but research found the weighting is
time-consuming and unnecessary [11]. Additionally, the TLX sensitivity is robust to
time delays [11]. Although subjective assessment provides valuable insight regarding
the operator’s perceived impact of task demands, access to unbiased and objective data
could provide critical information that might account for more variance associated with
task performance.

Psychophysiological measures, such as the electroencephalogram (EEG), electro-
cardiogram (ECG), functional near infrared spectroscopy (fNIR), transcranial Doppler
(TCD) ultrasonography, and eye tracking, have been extensively used by researchers to
objectively assess workload. Several psychophysiological metrics have been identified
in the literature to be sensitive to workload variation during task performance [4]. EEG
monitors electrical activity in the cerebral cortex. Research found decreased parietal
alpha activity [12] and increased frontal lobe theta activity when mental workload
increased during a variety of task types [13]. These findings are further supported by
functional neuroimaging (fMRI) studies that found psychophysiological responses to
workload were associated with both increased thalamic metabolism and a reduction in
alpha activity [14], as well as both increased cingulate cortex activation and increased
frontal theta activity [15]. Research utilizing ECG to capture cardiac activity found
heart rate variability and interbeat-intervals were negatively correlated with workload
[16]. The level of regional oxygen saturation (rSO2) in the pre-frontal cortex gathered
from fNIR has been associated with effort [17] and positively correlated with workload
[18]. Additionally, research using the TCD to capture cerebral blood flow velocity in
the middle cerebral artery found a positive correlation with workload [19]. Finally, eye
tracking studies found increased pupil dilation [20], increased randomness in scan
patterns as assessed by nearest-neighbor index (NNI) [21], increased fixation durations
[22], increased number of fixations [23], and the Index of Cognitive Activity (ICA) [24]
were all associated with workload changes. The results of these studies suggest psy-
chophysiological metrics might account for unique variance in task performance
unaccounted for by subjective metrics, therefore, investigation of such variables should
be included in regression model analyses.

1.2 Theoretical Approach: Hierarchical Regression

Hierarchical regression is a method of variable selection in which variables are
user-selected and entered into the model in incremental steps based upon their
importance for outcome prediction [25]. The variables chosen and the order in which
they are entered into the model are based on the specific research hypotheses, under-
lying theory, and past research [26]. Within the social sciences, correlated variables are
commonly utilized to explain variance on a criterion variable while controlling for
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other variables, hence justifying the application of a hierarchical regression approach
[27]. The adjusted R2 helps control the amount of variance accounted for in the
dependent variable by adjusting the directional impact of correlated and non-correlated
independent variables. Consequently, variables that are considered theoretically
important contributors to performance or found to be associated with performance in
past research are incorporated into the model first, followed by the addition of new
exploratory variables [28]. The limitation of this approach relies on the researcher’s
theoretical knowledge of the relationships among variables and therefore an unbiased
algorithmic approach might be more suitable in some cases.

1.3 Mathematical Approach: Stepwise Regression

Stepwise regression is a method of variable selection that accounts for the inclusion and
deletion of variables during each step of the model building process [29]. The appeal of
this approach becomes apparent when a model aims to explain the variance associated
with the dependent variable using the least amount of predictor variables [25], which
reduces the likelihood of overfitting the model with variables that can result in mis-
leading predictive power [30]. The method begins by first evaluating all possible
one-variable models using the following regression Equation (1):

E yð Þ ¼ b0 þ b1xi ð1Þ

where β0 is a constant, β1 is the coefficient for the ith variable, and xi is the ith
independent variable. For each ith independent variable, a t-test evaluating the β1
parameter is conducted (computed by taking the value of the coefficient divided by
standard error of the coefficient), and the variable with the largest absolute t-value is
retained [31]. The following regression equation evaluates the remaining independent
variables (2):

E yð Þ ¼ b0 þ b1x1 þ b2xi ð2Þ

where β0 is a constant, β1 is the coefficient for the first variable, x1 is the first selected
independent variable, β2 is the coefficient for the ith variable, and xi is the ith inde-
pendent variable. For each remaining ith independent variable, a t-test evaluating the β2
parameter is conducted, and the variable with the largest absolute t-value is retained.
Once the second variable is selected, the t-value of the β1 parameter is rechecked to
determine if it is still significant within the model. If the β1 parameter is no longer
significant, the β1 variable is removed and replaced with another variable that results in
the most significant t-test with the β2 variable [31]. This procedure continues until no
other independent variables are found to be significant within the model. The limitation
of this approach falls on to the type of algorithm used by the statistical software [25],
therefore to ensure validity of the outcome, researchers must know the mathematical
procedure used to achieve any models.
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2 Methods

2.1 Participants

Data were collected from 150 university undergraduates and graduates (age:M = 19.57,
SD = 3.45) with 85males (age:M = 19.62, SD = 3.72) and 65 females (age:M = 19.50,
SD = 3.09). All participants were required to be right-handed, have normal or corrected
to normal vision, and have no experience with the experimental testbed. Additionally,
participants were required not to consume alcohol or sedative medications at least 24 h
prior to the study, and caffeine and/or nicotine at least two hours prior to the study.

2.2 Experimental Task

Participants completed the experimental task using the Mixed Initiative eXperimental
(MIX) testbed [32]. The MIX testbed simulated an operator control unit (OCU) for an
unmanned ground vehicle (UGV) that traveled through a Middle Eastern town. During
the task, participants monitored an aerial map located on the bottom of the OCU. The
icons on the aerial map exhibited three types of changes: appear (icons added), dis-
appear (icons removed), or move (icons relocated). Participants were required to
identify and indicate the type of change by left-clicking on the appropriate corre-
sponding change detection button located above the aerial map as quickly as possible
before another change event occurred. The icons were derived from a common war-
fighter symbol database [33], but had no associated meaning. During the experimental
scenario, participants received three 5-min conditions comprised of 6, 12, or 24
changes per minute. Each event change consisted of two separate icons changing, but
only one type of changed occurred at a time. Event rates and saliency of event rates
were derived from previous research [6]. Performance during the experimental task was
calculated by taking the total number of change events correctly detected and dividing
by the total number of change events presented collapsed across all three change types
to give one total performance score.

2.3 Subjective Measures

Participants were administered the ISA and TLX after each event rate condition.
The ISA is based on a 5-point rating scale and consists of a single question to assess
how an operator felt during the task. The TLX requires participants to rate their
perceived level of workload on six dimensions using a 100-point sliding scale. A global
workload score was calculated by averaging each of the six subscales. Ratings from all
three event rate conditions were averaged to determine an overall score for each
subscale of each questionnaire across the entire scenario.
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2.4 Objective Measures

Participants were attached to EEG, ECG, fNIR, TCD, and eye tracking sensors that
monitored their physiological responses during the task. Similar to the subjective
metrics, all three event rate conditions were averaged to determine an overall score for
each metric across the entire scenario. Advanced Brain Monitoring’s B-Alert X10 EEG
nine channel system was used to record participant’s brain and cardiac activity.
The EEG was sampled at 256 Hz from F3, F4, Fz, C3, C4, Cz, P3, P4, and POz sensors
sites using the international 10–20 system with references at each mastoid. Power
spectral density analysis was used to extrapolate alpha (8–13 Hz), beta (14–26 Hz), and
theta (4–7 Hz) wavelengths from each individual sensor site. Individual sensor sites
were further combined to generate values for lobes (frontal, temporal, parietal) and
hemispheres (left and right). Participant’s heart rate and heart rate variability were
calculated using the So and Chan method [34]. Somantics’ Invos Cerebral/Somatic
Oximeter was used to record participant’s regional cerebral oxygen saturation (rSO2).
The fNIR sensors were placed on the participant’s left and right hemisphere prefrontal
cortex and measured changes in the levels of oxygenated hemoglobin and deoxygenated
hemoglobin. Spencer Technologies’ ST3 Digital Transcranial Doppler was used to
record participant’s cerebral blood flow velocity in the middle cerebral artery. TCD
probes were carefully positioned on the participant’s temples using the Marc 600 head
frame set. Seeing Machine’s FaceLAB 5 system was used to record participants’ eye
tracking data. Two desk-mounted cameras and an infrared light source were positioned
in front of the participant, and were individually calibrated for each participant.

3 Results

In the present analyses, each metric previously described will be considered for building
the model. In total, a mix of 43 objective and subjective variables are under consider-
ation as contributors to the prediction of task performance. RStudio software was used to
conduct hierarchical and stepwise regression analyses. Due to listwise deletions, 107
participants were included in the hierarchical regression analysis, and 94 participants
were included in the stepwise regression analysis. Models were evaluated utilizing
5-fold cross-validation to accurately determine their performance with new data.

3.1 Hierarchical Regression

Subjective measures were entered at Step 1 and physiological measures were entered at
Step 2 based on the theoretical assumption that subjective measures are more stan-
dardized and have been strongly correlated with task performance, specifically the
TLX, and should therefore be entered into the model first. The subjective and objective
variables entered in each step of the model can be found in Table 1.

In Step 1 of the analysis, the subjective variables resulted in a significant model for
each fold that was evaluated with an average adjusted R2 of .052. The Performance
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subscale from the TLX resulted in a significant coefficient for each of the five folds, and
the ISA measure resulted in a significant coefficient for one of the folds. No other
subjective variables resulted in significant coefficients.

In Step 2 of the analysis, the inclusion of the objective measures resulted in a
significant model for each fold that was evaluated with an average adjusted R2 of .207.
The number of fixations and average fixation duration variables resulted in significant
coefficients for each of the five folds. The ICA metric was a significant coefficient for
four of the folds. Lastly, the right mean rSO2 variable resulted in a significant coefficient
for one of the folds. No other objective variables resulted in significant coefficients.

3.2 Stepwise Regression

The subjective and objective variables entered into the stepwise analysis can be found
in Table 2.

The BIC information criteria was used to determine the addition and removal of
variables into the model during the stepwise procedure [35]. According to the results,
each fold resulted in a significant model with an average adjusted R2 of .323. A sum-
mary of the variables entered into the model can found in Table 3. Given the nature of
the stepwise procedure, each variable entered into the model resulted in a significant
standardized coefficient.

Table 1. Subjective and objective variables entered into each step of the hierarchical regression.

Variables Step entered

ISA 1
TLX_mental demand 1
TLX_physical demand 1
TLX_temporal demand 1
TLX_frustration 1
TLX_performance 1
EEG_frontal lobe theta 2
EEG_parietal lobe alpha 2
ECG_interbeat interval 2
ECG_heart rate variability 2
fNIR_left mean rSO2 2
fNIR_right mean rSO2 2
TCD_left mean velocity 2
TCD_right mean velocity 2
Eyetracker_ICA 2
Eyetracker_number of fixations 2
Eyetracker_average fixation duration 2
Eyetracker_square NNI 2
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4 Discussion

The goal for the present analyses was to evaluate two linear regression approaches,
theoretical (hierarchical regression) and mathematical (stepwise regression), for vari-
able selection to develop and compare performance prediction models using subjective
and objective measures of workload. The analyses showed that the stepwise method
resulted in better model performance than the hierarchical method in terms of adjusted
R2 when investigating the addition of psychophysiological metrics, as well as differing
in the number of variables selected within the model. These differences suggest that the
mathematical approach was more efficient compared to the theoretical approach for
variable selection.

According to the results, the theoretical approach resulted in an average adjusted R2

of .207 and the mathematical approach resulted in an average adjusted R2 of .323. Both

Table 2. The subjective and objective variables entered into the stepwise regression analysis

Source Variables

ISA ISA
TLX Mental Demand, Physical Demand, Temporal Demand, Frustration,

Performance, Global Workload
EEG Frontal Lobe Alpha, Frontal Lobe Theta, Frontal Lobe Beta

Parietal Lobe Alpha, Parietal Lobe Beta, Parietal Lobe Theta
Occipital Lobe Alpha, Occipital Lobe Beta, Occipital Lobe Theta
Midsagittal Alpha, Midsagittal Beta, Midsagittal Theta
Left Hemisphere Alpha, Left Hemisphere Beta, Left Hemisphere Theta
Right Hemisphere Alpha, Right Hemisphere Beta, Right Hemisphere Theta

ECG Inter-beat Interval, Heart Rate Variability, Heart Rate
fNIR Left Mean rSO2, Left Median rSO2, Right Mean rSO2, Right Median rSO2

TCD Left Mean Peak Velocity, Left Mean Dias Velocity, Left Mean Velocity
Right Mean Peak Velocity, Right Mean Dias Velocity, Right Mean Velocity

Eye
tracker

ICA, Number of Fixations, Average Fixation Duration, Number of Saccades,
Square NNI, Convex-hull NNI

Table 3. A summary of the variables entered into the model based on the stepwise regression
analysis.

Variable Number of times selected

Number of fixations 4
Average fixation durations 4
ICA 3
fNIR_right mean rSO2 1
fNIR_right median rSO2 1
Number of saccades 1
Square NNI 1
TLX_frustration 1
TLX_performance 1
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of these results are deemed to be very weak effects for social science data and
potentially due to the ratio of sample size to independent variables [36], however the
performance difference between the two models are substantial. The theoretical
approach included 18 variables while the mathematical approach included 4 to 7
variables into the final model. With such a high variable set included in the theoretical
approach, multicollinearity becomes a concern [26]. Although 18 variables were
entered into the final model using the theoretical approach, only three of those variables
consistently resulted in significant coefficients including the ICA, number of fixations,
and average fixation durations. The mathematical approach resulted in similar findings
in which the ICA, number of fixations, and average fixation durations also consistently
resulted in significant coefficients, however with substantially less variables entered
into the final model. For both approaches, the majority of the variables selected into the
final model were eye tracking metrics which is consistent with past research on the
effectiveness of using the eye tracker for discriminating between levels of workload
during a change detection task [10]. These results suggest that the mathematical
approach is consistent with the theoretical approach, however the mathematical
approach was more stringent as it was able to objectively identify and ignore
non-contributing extraneous variables while selecting only the most relevant variables
into the final model.

Variables entered into the model through the theoretical approach were the
workload variables that have been backed by a significant body of research relating
those variables with task performance. Several of these variables, most notably from
the TLX, are considered standard metrics in the workload literature and have been
consistently used by researchers to assess performance during a variety of tasks across
a variety of domains [6, 9, 11, 37]. Although these variables were entered into the
model using the theoretical approach and had the opportunity for being entered into the
model through the mathematical approach, none of these variables resulted in signif-
icant coefficients for either of the final models. Variables that were selected included
those that were associated with task performance, but do not have as much theoretical
support compared to the TLX and EEG variables. These results suggest that utilizing a
strict theoretical approach for variable selection can introduce bias early into the model
building process in which variables are ignored and not properly utilized despite
potential for significant prediction. Furthermore, these results suggest using a mathe-
matical approach might help improve and contribute to theory by providing objective
outcomes with limited bias to assist in evaluating the potential contribution of new
exploratory variables.
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