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Abstract. The electricity markets environment has changed completely with the 

introduction of renewable energy sources in the energy distribution systems. 

With such alterations, preventing the system from collapsing required the 

development of tools to avoid system failure. In this new market environment 

competitiveness increases, new and different power producers have emerged, 

each of them with different characteristics, although some are shared for all of 

them, such as the unpredictability. In order to battle the unpredictability, the 

power supplies of this nature are supported by techniques of artificial intelligence 

that enables them crucial information for participation in the energy markets. In 

electricity markets any player aims to get the best profit, but is necessary have 

knowledge of the future with a degree of confidence leading to possible build 

successful actions. With optimization techniques based on artificial intelligence 

it is possible to achieve results in considerable time so that producers are able to 

optimize their profits from the sale of Electricity. Nowadays, there are many 

optimization problems where there are no that cannot be solved with exact 

methods, or where deterministic methods are computationally too complex to 

implement. Heuristic optimization methods have, thus, become a promising 

solution. In this paper, a simulated annealing based approach is used to solve the 

portfolio optimization problem for multiple electricity markets participation. A 

case study based on real electricity markets data is presented, and the results using 

the proposed approach are compared to those achieved by a previous 

implementation using particle swarm optimization.  

 

Keywords: artificial intelligence, electricity markets, portfolio optimization, 

simulated annealing.    

1 Introduction 

The electric sector has undergone several changes, which caused an increase in 

competitiveness. These changes are due to the new imposed rules and to the physical 

limitations, which led to emergence of financial issues [1], [2].Electricity market 

participants, mainly sellers and buyers have the need for effective methods that support 

their actions; the system itself also requires methods to assure the functioning of 
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markets [3].One of the main causes for the changes in electricity markets is the massive 

integration of renewable energy sources, which has very particular characteristics: 

intermittence in the production and distributed nature. In this context we can highlight 

mainly wind power and solar energy. These hold a great influence on how the 

management of the electricity network is made and but also in how electricity is traded. 

One of the most accepted solutions to deal with the introduction of distributed 

renewable energy sources is the emergence of the concept of Smart Grid [4], which in 

recent times has evolved from a concept to a visible reality. Smart Grid are small sub-

systems capable of maintaining operating independently of each other and together 

form a working system. The implementation of Smart Grids has been increasing 

worldwide, as result from the large distributed generation incorporated in the network 

[5]. With all these changes market, participants are concerned with the forecasting of 

the behavior of markets, as this knowledge can anticipate and enable them achieving 

the best results from trading. 

Multi-agent simulators have emerged as suitable tools to support players’ decision 

in energy markets. Multi-agent simulation allows modeling different entities, such as 

independent agents, with specific objectives and characteristics. It also facilitates the 

expansion of the used models and the integration of new models. MASCEM (Multi-

Agent Simulator of Competitive Electricity Markets) [6] is an agent base simulator of 

electricity markets, which is integrated with AiD-EM (Adaptive Learning Strategic 

Bidding System), a decision support system that aims at providing market players with 

appropriate suggestions on what actions should be performed in every time and in 

different negotiating contexts [7]. 

Despite all the advances in the electricity markets field, the ability to learn to adapt 

to new situations and make the best possible outcomes for electricity market players 

are still far from being achieved. A less explored area is the option of multiple markets 

participation, which can be optimized to give players greater profitability in their 

market operations. This work proposes a portfolio optimization model for multiple 

markets participation. This model offers the possibility to buy and sell electricity in the 

same period in different markets. A Simulated Annealing approach is proposed to solve 

the optimization problem, and the achieved results are compared to those using a 

previous implementation with Particle Swarm Optimization [8].  

After this introductory section, section 2 presents the mathematical formulation of 

the portfolio optimization problem, and section 3 describes the proposed Simulated 

Annealing approach. Section 4 presents the achieved results using real electricity 

market data from the Iberian electricity market operator – MIBEL [9]. Finally, section 

5 presents the most relevant conclusions of this work. 

2 Portfolio optimization for multiple electricity markets 

participation 

2.1 Portfolio optimization 

The first recognized work in the portfolio optimization area has been published the 

first work by Markowitz [10]. The addressed problem was a multiobjective portfolio 



 

 

optimization that considered: maximizing the profit and minimizing the risk. The work 

of Markowtiz enables finding the balance between the fulfillment of two goals.   

The problem addressed by this paper considers a real-time approach, which differs 

from that presented by Markowitz. With this methodology we intend to support the 

decision of players on the negotiation of Electricity. For this different scenarios are 

presented to the player so that it can analyze and make its decisions. With this approach 

it is also possible to purchase and sale power in the same period in different markets, 

as introduced in [8], thus building on the Markowitz approach, which does not support 

such feature. With this, the negotiation methodology adapts itself to the so-called spot 

market as it no longer considers buyers and sellers as independent players, rather seeing 

them as players (able to perform both actions). 

With the support of these tools it is possible to enable players changing their 

negotiation profiles (possibility of participating in different types of markets and 

negotiating different amounts of electricity). The optimization considers real data 

obtained from different European markets. However, it also enables expanding the 

optimization to other horizons, making use of several available Electricity market prices 

forecast and estimation tools [11], [12] and [13]. 

The optimization process required forecasts of the expected Electricity prices for 

each period. The work presented in [12] proposes a market prices forecast 

methodology, which is provided through the use of a neural network, which was used 

for the same purpose in this work. The participation of the player in different markets 

is possible, where each market has different rules of trading. For example in bilateral 

contracts and the smart grids market the negotiated amount may interfere with the 

asking price, so the price of Electricity depends on the negotiated amount. 

One way to try to estimate the variable price of energy is to use a function that 

calculates the price of electricity in view of the possible amount of electricity traded. 

The work published in [11] presents an electricity price estimation methodology using 

fuzzy logic techniques. This paper proposed the application of clustering to split the 

price profile / quantity. Using these clusters, fuzzy logic is used to create a function for 

each created interval. 

2.2 Mathematical formulation  

The formulation presented in (1) is used to represent the optimization problem, as 

proposed in [8]. In (3) 𝑑 represents the weekday, 𝑁𝑑𝑎𝑦 represent the number of days, 

𝑝 represents the negotiation period, 𝑁𝑝𝑒𝑟 represent the number of negotiation periods, 

𝐴𝑠𝑒𝑙𝑙𝑀 and 𝐴𝑏𝑢𝑦𝑆 are boolean variables, indicating if this player can enter in 

negotiation in each market type, 𝑀 represents the referred market, 𝑁𝑢𝑚𝑀 represents 

the number of markets, 𝑆 represents a session of the balancing market, and 𝑁𝑢𝑚𝑆 

represents the number of sessions.  Variables 𝑝𝑠𝑀,𝑑,𝑝 and 𝑝𝑠𝑆,𝑑,𝑝 represent the expected 

(forecasted) prices of selling and buying electricity in each session of each market type, 

in each period of each day. The outputs are 𝑆𝑝𝑜𝑤𝑀 representing the amount of power 

to sell in market 𝑀 and 𝐵𝑝𝑜𝑤𝑆 representing the amount of power to buy in session 𝑆.   



 

 

𝑓(𝑆𝑝𝑜𝑤𝑀…𝑁𝑢𝑚𝑆 , 𝐵𝑝𝑜𝑤𝑆1…𝑁𝑢𝑚𝑆)

= 𝑀𝑎𝑥

[
 
 
 
 
 

∑ (𝑆𝑝𝑜𝑤𝑀,𝑑,𝑝 × 𝑝𝑠𝑀,𝑑,𝑝 × 𝐴𝑠𝑒𝑙𝑙𝑀)

𝑁𝑢𝑚𝑀

𝑀=𝑀1

−

∑ (𝐵𝑝𝑜𝑤𝑆 × 𝑝𝑠𝑆,𝑑,𝑝 × 𝐴𝑏𝑢𝑦𝑆

𝑁𝑢𝑚𝑆

𝑆=𝑆1 ]
 
 
 
 
 

 

∀𝑑 ∈ 𝑁𝑑𝑎𝑦, ∀𝑝 ∈ 𝑁𝑝𝑒𝑟, 𝐴𝑠𝑒𝑙𝑙𝑀 ∈ {0,1}, 𝐴𝑏𝑢𝑦 ∈ {0,1} 

𝑝𝑠𝑀,𝑑,𝑝 = 𝑉𝑎𝑙𝑢𝑒(𝑑, 𝑝, 𝑆𝑝𝑜𝑤𝑀 , 𝑀) 

𝑝𝑠𝑆,𝑑,𝑝 = 𝑉𝑎𝑙𝑢𝑒(𝑑, 𝑝, 𝐵𝑝𝑜𝑤𝑆 , 𝑆) 

(1) 

The formulation considers the expected production of a market player for each 

period of each day. As explained in section 2.1, the price value of electricity in some 

markets depends on the power amount to trade. With the application of a clustering 

mechanism it is possible to apply a fuzzy approach to estimate the expected prices 

depending on the negotiated amount. Equation (2) defines this condition. 

𝑉𝑎𝑙𝑢𝑒(𝑑𝑎𝑦, 𝑝𝑒𝑟, 𝑃𝑜𝑤,𝑀𝑎𝑟𝑘𝑒𝑡)
= 𝐷𝑎𝑡𝑎(𝑓𝑢𝑧𝑧𝑦(𝑝𝑜𝑤), 𝑑𝑎𝑦, 𝑝𝑒𝑟,𝑀𝑎𝑟𝑘𝑒𝑡) 

(2) 

Equation (3) represents the main constraint to be applied in this type of problems, 

and imposes that the total power that can be sold in the set of all markets is never higher 

than the total expect production (TEP) of the player, plus the total of purchased power 

[8]. Further constrains depend on the nature of the problem itself, e.g. type of each 

market, negotiation amount, type of supported player (renewable based generation, 

cogeneration, etc.).  

∑ 𝑆𝑝𝑜𝑤𝑀

𝑁𝑢𝑚𝑀

𝑀=𝑀1

≤ 𝑇𝐸𝑃 + ∑ 𝐵𝑝𝑜𝑤𝑆

𝑁𝑢𝑚𝑆

𝑆=𝑆1

 (3) 

3 Proposed simulated annealing approach 

This paper proposes a simulated annealing algorithm to solve the electricity market 

participation portfolio optimization problem defined in section 2. More specifically, the 

objective is to allocate in an optimal way the resources that provide the best profits for 

the player in selling its available power in the market. This type of meat-heuristic 

methods have the particularity of being not accurate, which means that the exact best 

global solution is hardly achieved.  

3.1 SA methodology  

Simulated annealing is an optimization method that imitates the annealing process 

used in metallurgic. The final properties of this substance depend strongly on the 



 

 

cooling schedule applied, i.e. if it cools down quickly the resulting substance will be 

easily broken due to an imperfect structure, if it cools down slowly the resulting 

structure will be well organized and strong. When solving an optimization problem 

using simulated annealing the structure of the substance represents a codified solution 

of the problem, and the temperature is used to determine how and when new solutions 

are perturbed and accepted. The algorithm is basically a three steps process: perturb the 

solution, evaluate the quality of the solution, and accept the solution if it is better than 

the new one [14]. Fig. 1 shows the flowchart of the simulated annealing meta-heuristic. 

 
Fig. 1 – SA flowchart 

The temperature minimum, the acceptance maximum value and the maximum 

number of iterations are parameters defined by user. As shown in the diagram of Fig. 1 

the algorithm requires an initial solution to start. This is defined through a set of random 

numbers. When the searching process begins, the search does not stop until the stopping 

criteria are met. The considered stopping criteria are: the current temperature and the 

maximum number of iterations. As can be seen by Fig. 1, if the current temperature is 

minor than the minimum temperature the algorithm stops its search, similarly to what 

happens if the number of iterations exceeds the maximum number. Simulated annealing 

is known for two particular factors of this algorithm, namely the decrease of the 

temperature and the probability of acceptance. As shown by the diagram of by Fig. 1, 



 

 

the temperature only decreases when the number of acceptances is greater than a 

stipulated maximum. This acceptance number is only incremented when the probability 

of acceptance is higher than a random number, which allows some solutions to be 

accepted even if their quality is lower than the previous. When the condition of 

acceptance is not satisfied, the solution is compared to the previous one, and if it is 

better, the best solution is updated. 

Each iteration is necessary to seek a new solution, this solution is calculated 

according to the equation (4). 

𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝑆 × 𝑁(0,1) (4) 

solution in equation (1) refers to the previous solution, because this may not be the 

best found so far. 𝑁(0,1) is a random number with a normal distribution, the variable 

S is obtained through equation (5). 

𝑆 = 0.01 × (𝑢𝑝𝑏𝑜𝑢𝑛𝑑 − 𝑙𝑤𝑏𝑜𝑢𝑛𝑑) (5) 

The 𝑢𝑝𝑏𝑜𝑢𝑛𝑑 and 𝑙𝑤𝑏𝑜𝑢𝑛𝑑 are the limits of each variable, which prevent from 

getting out of the limits of the search problem. 

3.2 SA parameters  

The decisive parameters in SA's research are: the decrease of temperature and the 

likelihood of acceptance. Considering this, 4 different variants of the simulated 

annealing algorithm have been implemented in this work, combining different 

approaches for calculating these two components. It is expected that this will bring 

different results for different groups, as these components introduce a strong 

randomness in SA, which makes them reflect in the final results. 

Table 1 – Different temperature decreasing and probability of acceptance calculation methods   

Group 
Temperature 

decreasing 
Probability of acceptance Ref. 

1 𝑇𝑖 = 𝑇𝑖−1 × 𝛼 𝑃 = (2𝜋𝑇)−
𝐷
2𝑒(

−∆𝑥
𝐾×𝑇

)
 [15] 

2 𝑇𝑖 =
𝑇0

𝑖
 𝑃 =

𝑇0

(∆𝑥2 + 𝑇2)
(𝐷+1)

2

 [15] 

3 𝑇𝑖 = 𝑇0𝑒
−𝑐𝑖

1
𝐷

 
𝑃 = ∏

1

2(|𝑦𝑑| + 𝑇𝑖) ln (1 +
1
𝑇𝑖

)

𝐷

𝑑=1

 [15] 

4 𝑇𝑖 = 𝑇0 × 𝛼𝑖 𝑇𝑖 =
1

1 + 𝑒
∆𝑥

𝑇𝑚𝑎𝑥

 [16] 

Where: 

• 𝛼 = 0.95; 

• 𝑖 is the current iteration; 

• ∆𝑥 = 𝑦(𝑥𝑚𝑎𝑥 − 𝑥𝑖) is the difference between best solution and current 

solution;   



 

 

• 𝐾 = 1 is the Boltzmann constant ; 

• 𝑇0 = 1 is the initial temperature; 

• 𝐷 is the number of variables; 

• 𝑐 = 0.1; 

• |𝑦𝑑| is the abs of solution current; 

• 𝑇𝑚𝑖𝑛 = 1 × 10−10; 

• 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑚𝑎𝑥 = 15. 

 

Besides from these two main parameters, there are issues that may affect the 

searching process of this algorithm, taking into account that the process of disturbing 

the solution can determine the search. When the temperature value is high, the search 

can easily scroll through the search space and leaving important points without being 

explored. For example, if the initial temperature is too high the search will fall to a point 

near the ideal very rapidly. However, it is also very likely that the search process could 

skip this point to points where the solution is worse than the previous. Then the 

application of too much disturbance is useless and should be avoided [14]. 

Another important factor is the decrease of temperature. At high temperatures, the 

simulated annealing method searches for the global optimum in a wide region; on the 

contrary, when the temperature decreases the method reduces the search area. This is 

done to try to refine the solution found in high temperatures. This is a good quality that 

makes the simulated annealing a good approach for problems with multiple local 

optima. Simulated annealing, thereby, does not easily converge to solutions near the 

global optimum; instead this algorithm seeks a wide area always trying to optimize the 

solution. Thus, it is important to note that the temperature should come down slowly 

allowing the search method to pass through a large part of the search space [14]. 

4 Case study  

This section presents a case study that illustrates the application of the proposed 

methodology. The market price forecasts are performed using an artificial neural 

network (ANN) [12], which is trained using the historic log of electricity market prices 

from the Iberian Market – MIBEL; further details about this market can be consulted 

in [9]. With the use of MIBEL data, simulations become realistic because data are taken 

from a real environment, which makes results reliable. Four different markets based on 

MIBEL are considered: day-ahead spot market, bilateral contracts, a Smart Grid (SG) 

market, and the balancing market, with two negotiation sessions, which in the total 

makes it possible to carry out negotiations in five market sessions. In the spot and 

balancing markets, the expected prices are forecasted using the ANN, while the 

expected price in bilateral contracts and SG market are adjusted using the fuzzy logic 

estimative presented in [11]. 

Simulations are undertaken concerning 1 day with 24 hourly negotiation periods. 

The TEP value is 10 MW. Additionally, the supported player can buy up to 10 MW in 

each market where purchase is allowed to a seller. In the balancing market sessions 

each player is only able to do one action (buy or sell) in each period. The optimization 

using the proposed simulated annealing (SA) approach is executed 1000 times, which 



 

 

can ultimately result in 1000 different optimization results, depending on the random 

variables. Table 2 and Table 3 present the optimization outputs (respectively purchases 

and sales of electricity) for the first period of the considered simulation day. These 

results concern the simulation that has registered the highest objective function value 

using each of the groups presented in Table 1. 

Table 2 - Sales scheduling in the different markets 

SA Variation 
Sales (MW) 

Spot Bilateral Balancing 1 Balancing 2 Smart Grid 

SA Group 1 20,08 11,5168 0 0 8,5464822 

SA Group 2 19,24 11,7707 0 0 8,0711197 

SA Group 3 19,03 11,6413 0 0 9,0258825 

SA Group 4 20,29 11,5001 0 0 8,6843312 

    

As shown by Table 2, which shows the sales made in the different markets, the four 

implemented variants present very similar results. In this case the balancing sessions 

assume values of zero because as shown in Table 3, these markets are used to purchase 

electricity. Table 3 shows the electricity purchase in the various markets. 

Table 3 - Sales scheduling in the different markets 

SA Variation 
Purchases (MW) 

Spot Bilateral Balancing 1 Balancing 2 Smart Grid 

SA Group 1 0 4,8456 10 10 5,298138 

SA Group 2 0 4,59959 10 10 4,4853613 

SA Group 3 0 4,78831 10 10 4,9050412 

SA Group 4 0 4,99057 10 10 5,4875652 

 

From Table 3 one can see the results recorded for electricity purchases. As can be 

observed, since the spot market has been used to sell electricity, it cannot be used to 

purchase as well, according to the restriction defined in the model. All four SA groups 

also show very similar results regarding the electricity purchases. Table 4 presents the 

comparison between the objective function results of the group variants implemented 

in SA and the results of a previous implementation based on a particle swarm 

optimization (PSO) approach [8]. The minimum, maximum and mean results are 

shown, as well as the standard deviation (STD) registered in the 1000 simulations. 

Additionally, the average execution time of each method variation is also displayed.  

Table 4 shows that SA Groups 1, 2 and 3 present very similar objective function 

results and execution time as well. SA Group 4, on the other hand, presents worse 

objective function results, but in a much faster execution time (3 times faster than the 

other SA approaches, and 6 times faster than PSO). SA Groups 1, 2 and 3 also present 

a higher mean value of objective function, which is around 5% higher than PSO. This 

is also reflected on the much higher minimum achieved value that SA Groups 1, 2 and 

3 are able to achieve when compared to PSO (almost doubling the value of PSO), and 

also on the STD, which is three times lower. PSO is, however, the algorithm that 



 

 

records the highest objective function value, with a value about 3 % higher than that 

achieved by SA Groups 1, 2 and 3. This very small difference is largely compensated 

by the great gain in execution time and reliability. Fig. 2 expands the explanation on 

this question. 

Table 4 – Objective function results of the proposed SA approach, compared to the PSO 

Algorithm 
Objective value (€) Time 

(seconds) Minimum Mean Maximum STD 

PSO 935,0451386 1802,21 2000,6456 160,423489 1,024635318 

SA Group 1 1781,480543 1884,04 1927,2421 55,5014797 0,51910964 

SA Group 2 1782,445013 1882,49 1933,5664 56,4381753 0,507367551 

SA Group 3 1782,519507 1883,28 1930,1467 56,0204514 0,508814344 

SA Group 4 980,9189744 1616,23 1925,3661 203,592965 0,174417698 

 

Fig. 2 shows a Box Plot for the implemented algorithms. With this representation it 

is intended to give the information on which of the algorithms is positioned in the best 

cost benefit ratio. These plots are built at the expense of five parameters of which three 

(median, 1st and 3rd quartile) are calculated on the results of the simulations and the 

other two (maximum and minimum) derive from a simple observation data. With this 

graph we get insightful information on how the data are distributed to as: greater or 

lesser concentration, symmetry and the existence of outliers. In the Box Plot, the 

analysis is done taking into account the length of the line joining the minimum point to 

the maximum and the size of the box. The median value gives skew indications of the 

data. 

 

 

Fig. 2 - Box plots for the different methods 

As presented in Fig. 2, the range from the minimum value to the value of the 1st 

quartile represents 25% of the data. Similarly, from the value of the 3rd quartile to the 

maximum value are also represented another 25% of the data. Amidst the values of the 

1st quartile and 3rd quartile are represented 50% of the data. As can be seen from the 



 

 

data, the results from SA groups 1, 2 and 3 are much more concentrated than the other 

algorithms, which means that they are more reliable. Although the figures provided by 

PSO are not as concentrated as the result of SA, this approach cannot be ruled out 

because this is the algorithm that presents the highest value of objective function, which 

represents the possibility of achieving the highest profit. 

Fig. 3 shows the 95% confidence interval for the results of SA groups 1, 2 and 3. 

 
Fig. 3 - Confidence interval of SA Groups 1, 2 and 3 

As can be seen by Fig. 3, the confidence intervals of the three SA groups have similar 

amplitudes. In this case, by performing the analysis of the figure and applying the 

theory of confidence intervals, there is a 95% chance of a simulation result being 

between the minimum and maximum with a certain error, in this case SA Group 1 

shows a 3.4382 error, SA Group 2 shows 3.4963, and SA Group 3 presents a 3.4704 

error; this error can also be called tolerance. Although the presented results regard the 

first period of the simulation day, the 1000 samples in the other periods for each 

algorithm keeps a very similar performance. 

Fig. 4 shows the convergence performance of the four SA groups. 

 
Fig. 4 – Convergence performance of the SA algorithms 
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Each line in Fig. 4 represents the convergence of each simulation in each of the1000 

simulations. The evolution of the objective function (€) (yy axis) is represented along 

the iterations (xx axis). In Fig. 4 it is visible that, as seen before, SA Group 4 is the 

approach that shows the worst results. One important fact is that in SA Groups 1, 2 and 

3, in the final part of the convergence process, results are concentrated in two lines, as 

it is possible to see from the respective graphs of the figure. This strongly indicates the 

possibility of the existence of a local optimum, in this case a local maximum. The 

proposed SA approaches, as it is possible to note, have proven to be able to work around 

this situation and present the best solution. 
  

 

5 Conclusions  

This paper presented a SA approach to solve the portfolio optimization problem, for 

multiple electricity markets participation. The proposed approach is composed by four 

different groups regarding the calculation of the most important variables required by 

SA algorithms. The proposed SA approach has been compared to a previous 

implementation of a PSO based approach. 

Similarly the PSO, SA also has been able to solve the problem of portfolios 

optimization in the electricity markets, as it was possible to observe the results. By 

comparing the results of the proposed SA approach with the previous PSO 

implementation, it is demonstrated that the SA results presented more homogenous 

results than the PSO, although the highest objective function result was found by PSO. 

SA has also shown much lower execution times, which, together with the much larger 

credibility of the SA, as shown by the analysis of the staggering of sales and purchases, 

supports the conclusion that the SA methods are more reliable, and safer to being used 

in real cases. The proposed methodology is intended to be used to generate scenarios 

so that market users can use them in order to maximize their results from negotiating 

in the market. It should be noted that the results presented are only a period, but the 

methodology is prepared to be extended to other periods as well as other markets. 

As future work other algorithms will also be used to solve this problem, so that 

results can be compared, such as genetic algorithms and other variants of PSO. A 

methodology that can measure the risk trough the prediction error of electricity prices 

will also be formulated and integrated in the current approach. As here shows the results 

for a period of one hour, you can choose other periods where the scenario is completely 

different, because in electricity markets, and especially in the spot market, there is a lot 

of volatility in electricity prices. This means that totally different scenarios can be 

found, which should be studied in order to show the adaptability of algorithms. 
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