Skip to main content

A Computational Approach to the Borwein-Ditor Theorem

  • Conference paper
  • First Online:
  • 688 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9709))

Abstract

Borwein and Ditor (Canadian Math. Bulletin 21 (4), 497–498, 1978) proved the following. Let \(\mathcal {A}\subset {\mathbb {R}}\) be a measurable set of positive measure and let \({\left\langle {r_m}\right\rangle }_{m\in \omega }\) be a null sequence of real numbers. For almost all \(z \in \mathcal {A}\), there is m such that \(z+r_m\in \mathcal {A}\).

In this note we mainly consider the case that \(\mathcal {A} \) is \(\varPi ^0_{1}\) and the null sequence \({\left\langle {r_m}\right\rangle }_{m\in \omega }\) is computable. We show that in this case every Oberwolfach random real \(z \in \mathcal {A}\) satisfies the conclusion of the theorem. We extend the result to finitely many null sequences. The conclusion is now that for almost every \(z \in \mathcal {A}\), the same m works for each null sequence.

We indicate how this result could separate Oberwolfach randomness from density randomness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bienvenu, L., Greenberg, N., Kučera, A., Nies, A., Turetsky, D.: Coherent randomness tests and computing the K-trivial sets. J. Eur. Math. Soc. 18, 773–812 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bienvenu, L., Hölzl, R., Miller, J., Nies, A.: Denjoy, Demuth, and Density. J. Math. Log. 14, 1–35 (2014). 1450004

    Article  MathSciNet  MATH  Google Scholar 

  3. Bingham, N., Ostaszewski, A.: Homotopy and the Kestelman-Borwein-Ditor Theorem. London School of Economics and Political Science, London (2007)

    MATH  Google Scholar 

  4. Borwein, D., Ditor, S.: Translates of sequences in sets of positive measure. Can. Math. Bull. 21(4), 497–498 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brattka, V., Miller, J., Nies, A.: Randomness and differentiability. Trans. AMS 368, 581–605 (2016). arXiv version at http://arxiv.org/abs/1104.4465

    Google Scholar 

  6. Day, A.R., Miller, J.S.: Density, forcing and the covering problem. Math. Res. Lett. 22(3), 719–727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity, pp. 1–855. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  8. Downey, R., Nies, A., Weber, R., Yu, L.: Lowness and \(\Pi ^0_2\) nullsets. J. Symb. Log. 71(3), 1044–1052 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton (2014)

    MATH  Google Scholar 

  10. Galicki, A., Turetsky, D.: Randomness and differentiability in higher dimensions. Notre Dame J. of Formal logic (2017, to appear). arXiv preprint arXiv:1410.8578

  11. Kestelman, H.: The convergent sequences belonging to a set. J. London Math. Soc. 1(2), 130–136 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lebesgue, H.: Sur les intégrales singulières. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3) 1, 25–117 (1909)

    MathSciNet  MATH  Google Scholar 

  13. Miyabe, K., Nies, A., Zhang, J.: Using almost-everywhere theorems from analysis to study randomness. Bull. Symb. Log. (2016, to appear)

    Google Scholar 

  14. Nies, A.: Computability and Randomness. Oxford Logic Guides, vol. 51. Oxford University Press, Oxford (2009). Paperback version 2011

    Book  MATH  Google Scholar 

  15. Pathak, N., Rojas, C., Simpson, S.G.: Schnorr randomness and the Lebesgue differentiation theorem. Proc. Am. Math. Soc. 142(1), 335–349 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

Research supported by the Marsden fund of New Zealand and the Lion foundation of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Nies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Galicki, A., Nies, A. (2016). A Computational Approach to the Borwein-Ditor Theorem. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds) Pursuit of the Universal. CiE 2016. Lecture Notes in Computer Science(), vol 9709. Springer, Cham. https://doi.org/10.1007/978-3-319-40189-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40189-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40188-1

  • Online ISBN: 978-3-319-40189-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics