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Generalized Effective Reducibility

Merlin Carl

Abstract

We introduce two notions of effective reducibility for set-theoretical
statements, based on computability with Ordinal Turing Machines (OTMs),
one of which resembles Turing reducibility while the other is modelled af-
ter Weihrauch reducibility. We give sample applications by showing that
certain (algebraic) constructions are not effective in the OTM-sense and
considerung the effective equivalence of various versions of the axiom of
choice.

1 Introduction

From a sufficiently remote point of view, construction problems in mathemat-
ics can be seen as multi-valued, class-sized ‘functions’ from the set-theoretical
universe V to itself. Example of construction problems would be the problem
assigning to fields their algebraic closures, to sets their well-orderings, to inte-
grable functions their stem functions, to linear orderings their completions etc.
Formally, this makes a construction problem a (class-sized) relation R ⊆ V ×V .

A ‘solution’ to or ‘canonification’ of a construction problem R is then a
(class-sized) witness ‘function’ F : V → V such that, for all x in the domain of
R, we have R(x, F (x)) and otherwise F (x) = ∅. Similarly, we can say that F
witnesses the truth of a set-theoretical statement φ of the form ∀x∃yψ if F is
a solution for {(x, y) : ψ(x, y)}, the most natural candidates to consider being
Π2-statements, since ψ can be assumed to be absolute between transitive sets
in that case.

Fixing an appropriate notion of effectiveness for set-theoretical construc-
tions, we can now ask for specific construction problems R whether there exists
an effective solution for R and similarly, whether some statement φ is ‘ef-
fectively true’. Moreover, we can ask whether a construction or a statement
‘effectively reduces’ to another.

In the following, ‘effectiveness’ will be interpreted to mean computability by
Ordinal Turing Machines (OTMs) without ordinal parameters. It was argued in
[Ca] that OTM-computations are appropriate as a formalization of the intuitive
notion of a ‘transfinite effective procedure’. One indication is the equivalence
of this with various other ‘maximal’ models of ordinal computability, such as
Ordinal Register Machines [ORM] or ordinal λ-calculus ([Sey], [Fi]).

The definition and basic results on OTMs can be found in [Ko1]. We merely
briefly recall the model here: An OTM-program is just a normal Turing ma-
chine program with the usual (finite) set of commands for reading and writing
symbols, moving the read/write-head and changing the inner state. We assume
that the inner states are indexed with natural numbers. The ‘hardware’ of an
OTM consists of a class-sized tape with cells indexed by ordinals. Each cell may
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contain a 0 or a 1. The working time of an OTM is again the whole class of ordi-
nals. At successor times, an OTM behaves like an ordinary Turing machine. At
limit times, the head position, the inner state and the content of the ι-th cell for
each ι ∈ On are determined as the inferior limit of the sequence of earlier head
positions, and inner states and contents of the ι-th cell. If the read/write-head
is asked to move to the left while currently occupying a cell with limit index, it
is reset to the 0th cell.

For convenience, we assume that our machines work with three tapes, a
‘miracle’ tape (to be explained below), a scratch tape and an output tape. The
single-tape model can easily be adapted to this setting.

2 Basic Methods and Notions

Our goal is to apply OTM-computability to general mathematical constructions.
To make this approach work, we need a way to represent arbitrary sets in a way
suitable as an input format for OTMs. OTMs work on a class-sized tape indexed
with ordinals; a set x will hence need to be represented as a set of ordinals. This
can be achieved in a rather straightforward manner:

Definition 1. Let x be a set, t = tc(x) the transitive closure of x, α ∈ On
and f : α → tc(x) a well-ordering of tc(x) in the order type α. We define
cf (x), the f -code for x, recursively as the following set or ordinals: cf (x) :=
{p(f−1(y), β) : y ∈ x ∧ β ∈ cf |y(y)}, where p denotes Cantor’s ordinal pairing
function. We say that A ⊆ On ‘is a code for’ or ‘codes’ the set x if and only
if there is some f for which A = cf (x). We write rep(τ, x) to indicate that τ
codes x.

Remark: By a certain abuse of notation, if x is a set, we will sometimes
write c(x) for an ‘arbitrary’ code for x.

We can now talk about OTM-computability of arbitrary functions from V

to V :

Definition 2. Let F : V → V be a functional class. We say that F is OTM-
computable if and only if there is an OTM-program P such that, for every set
x and every tape content τ , if rep(τ, x), then P (τ) converges to output σ such
that rep(σ, F (x)), i.e. P takes representations of x to representations of F (x).

By this definition, the representation of a set x will depend on the choice of
a well-ordering of tc(x). The output of a computation on input x may hence
depend on the choice of the representation of x. This is fine as long as only the
output, but not the object coded by the output, depends on the choice of the
input representation.

This allows us to make our notion of ‘effectivity’ precise:

Definition 3. Let R ⊆ V ×V be a construction problem. Then R is effectively
solvable if and only if there is an OTM-computable solution F for R. Moreover,
a set-theoretical Π2-statement ∀x∃yφ(x, y) (where φ is ∆0) is effective if and
only if the construction problem {(x, y) ∈ V ×V : φ(x, y)} is effectively solvable.
We write Rx for {y : (x, y) ∈ R}.

One may now inquire whether various well-known construction problems and
Π2-statements are effective. Such questions were studied by Hodges in [Ho2],
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though with a different notion of effectivity based on Jensen and Karps primitive
recursive set functions. We note here that the two methods Hodges uses also
work for our model, which allows us to carry over results.

The following lemma corresponds to Hodges’ ‘cardinality method’, i.e. Lemma
3.2 of [Ho2]:

Lemma 4. Let α ∈ On, and let R ⊆ V × V be such that, for some cardinal
κ > α, there is x ∈ V such that |x| = κ, Rx 6= ∅ and ∀y ∈ Rxcard(y) > κ. Then
no witness function for R is OTM -computable in the parameter α.
Consequently, if R is such that there are such κ and x for every α ∈ On, then
no witness function for R is parameter-OTM -computable.
In particular, if, for some x of infinite cardinality, Rx 6= ∅ and ∀y ∈ Rxcard(y) >
card(x) then no witness function for R is parameter-free OTM -computable.

Proof. Clearly, in less then κ+ many steps, the machine cannot write a code of
a structure of cardinality > κ.

It hence suffices to show that, when P is an OTM-program and P is given
a (code c of a) set x of size κ ≥ ω for input and the computation halts, then
the output of the computation will be of size ≤ κ. This follows if we can show
that the computation will take less than κ+ many steps, since P can write at
most α many symbols in α many steps. Suppose for a contradiction that P
takes λ > κ many steps, and let δ be the smallest cardinal > λ. Let H be
the Σ1-Skolem hull of κ ∪ {c} in Lδ[c] and let M denote the transitive collapse
of H . We may assume without loss of generality that c ⊆ κ, so that we have
c ∈ M ; as Lδ[c] contains the computation of P in the input c, so does H and
hence there is S ∈M such that M believes that S is the computation of P with
input c. By transitivity of M and absoluteness of computations, S is actually
the computation of P with input c. Since S is contained in a transitive set of
cardinality κ, |S| ≤ κ, so the length of the computation is < κ+, as desired.

There is also an analogue of the ‘forcing method’ (Lemma 3.7 of [Ho2]),
which is given in Lemma 7 below.

Convention: For many of the following results, we will need the existence
of generic filters for various partial orderings in L and some of its (symmetric)
extensions. To avoid technical complications, we use as a shortcut an extra
assumption that guarantees the existence of such filters. 0♯ is more than enough
for our purposes, and we assume from now on that it exists.1

These lemmata can be seen as expressing the intuition that neither the power
set operation on infinite set nor the use of the axiom of choice are ‘effective’,
not even in a very idealized sense. We note some sample applications.

Lemma 5. None of the following construction problems is effectively solvable:

1. Field to its algebraic closure

2. Linear ordering to its completions

3. Set to its (constructible) power set

1For some of the following results, this assumption is actually necessary: It is e.g. not hard
to check that all choice principles considered in section 4 are effective (and hence trivially
reducible to each other) if V = L.
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4. Set to its well-orderings

Proof. (1) can be proved by an easy adaption of the proof of Theorem 4.1 of
[Ho2]. There is only one point that requires a little care, namely the use of
countable transitive models in that proof: For it might happen that an OTM-
program P that halts in V does not halt in such a model M .2 However, a
check of Hodge’s proof reveals that the countability of the ground model serves
no purpose but to guarantee the existence of generic filters. We can hence
circumvent this problem by doing the construction over L, using 0♯ to guarantee
the existence of the required filters.

(2) and (3) are easy applications of Lemma 4.
(4) follows from Lemma 14 below.

It is, on the other hand, not hard to see that e.g. the construction problem
of taking a ring to its quotient field is effectively solvable as in [Ho2]. The
intuitions captured by Hodges’ approach are hence preserved in our framework.

There are certainly various interesting questions to be asked about the effec-
tivity, or otherwise, of various construction problems or Π2-statements. How-
ever, we want to take the analogy with Turing computability a bit further:
Instead of merely asking what problems are solvable, we want to consider what
problems/statements are effectively reducible to which others in the sense that,
given access to a solution to one as an ‘oracle’, one can effectively solve the
other. A quite straightforward way to make this idea precise is the following:

Definition 6. Assume that the OTM is equipped with an extra ‘miracle tape’.
Let F be a class function taking sets or ordinals to sets of ordinals. An miracle-
OTM-program is defined like an OTM-program, but with an extra ‘miracle’
command. When this command is carried out, the set X of ordinals on the
miracle tape is replaced by F (X). We write PF to indicate that P is run and
whenever the miracle command is applied to X , it is replaced by F (X).3

Definition 7. Let C1 and C2 be construction problems. Then C1 is reducible to
C2, written C1 ≤ C2 if and only if there is some miracle-OTM-program P such
that the following holds: Whenever F is a canonification of C2 and whenever
G : V → V is a class function taking each code for a set x to some code for
F (y) and x is a set and c a code for x, we have PG(c) ↓= d, where d is a code
for F (x).

Remark: Note that we do not demand in the conditions on G that G(c)
depends only on x when c is a code for x. By demanding that the same reduction
works for every G, we rule out the possibility of coding extra information into
the input representations.

Concerning this notion of reducibility, we observe that certainly a cardinality-
raising construction is not reducible to one that is not:

2For example, suppose there is some minimal countable α such that Lα |= ZFC. Then the
OTM-program that writes L on the tape until an L-level satisfying ZFC will halt in V , but
not inside Lα.

3We thus make the implicit assumption that the miracle tape behaves deterministically,
i.e. that, whenever the miracle command is applied to some X, the outcome will be the same.
However, this property is not used anywhere in the arguments below. One may thus drop it,
at the price of some extra formal complications.
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Lemma 8. Let C1, C2 be construction problems. Assume that there are some
canonification F of C2 and some infinite set x such that, for all sets y, (1) if
C1(x, y), then |y| > |x| and (2) if y is infinite, then |F (y)| ≤ |y|. Then C1 � C2.

Proof. As in the proof of Lemma 4 above, OTM-computable functions cannot
raise cardinalities. By assumption, the miracle operation will also not raise the
cardinality. Hence the output of a program P with a C2-miracle will (for infinite
input) always have at most the cardinality of the input and thus cannot in any
case witness C1.

Remark: In particular, the construction problem of taking a valued field
to its linear compactifications (see [Ho2], Theorem 4.10) is not reducible to any
of the following construction problems: Field to algebraic closure, formally real
field to its real closure, field of characteristic p to its separable algebraic closure.

The above captures the idea that one construction ‘helps’ carrying out an-
other. There is also a much more restrictive intuitive notion of reducibility
between problems, namely that instances of one (construction) problem can be
effectively ‘translated’ to particular instances of another: Given an instance of
a problem C1, we can first effectively turn it into an instance of a problem C2

and then effectively turn the solution to C2 into a solution to C1. Another way
to view this is that C2 may only be used once in solving C1. Thus, we define:

Definition 9. Let C1, C2 be construction problems. Then C1 is generalized
Weihrauch reducible to C2, written C1 ≤gW C2, if and only if there are OTM-
programs P and Q such that the following holds for all sets x in the domain of
C1, every code c for x and every canonification F of C2:

1. Q(c) converges to output c′, where c′ is a code for a set y

2. For every code c′′ of F (y), P (c′′) converges to output c′′′, where c′′′ is a
code for a set z

3. We have C1(x, z)

If these clauses hold, we say that (P,Q) witnesses the gW-reducibility of C1 to
C2. Also, when F is a canonification, P and Q are OTM-programs and x is a
set, we write [P, F,Q](x) for the z obtained by the procedure just described.

If C1 ≤gW C2 and C2 ≤gW C1, we write C1 ≡gW C2.

Remark: The name of the notion is due to its obvious resemblance with
Weihrauch reducibility, which is an analogous notion for classical computability.
For some results on classical Weihrauch reducibility, see e.g. [BGM].

We note that reducibility notions satisfy the general order-theoretic proper-
ties of reducibility relations:

Lemma 10. Both ≤ and ≤gW are transitive and reflexive. Consequently, ≡gW

and ≡ are reflexive, transitive and symmetric, i.e. equivalence relations.

Proof. Reflexivity is trivial, as is transitivity for ≤. To see that ≤gW is transi-
tive, let C1, C2 and C3 be construction problems such that C1 ≤gW C2 ≤gW C3,
and let (Pi, Qi) witness the gW-reducibility of Ci to Ci+1, for i ∈ {1, 2}. Let
P1 ◦ P2 denote the OTM-program that first carries out P1 and then runs P2

on the output, and define Q2 ◦ Q1 likewise. We claim that (P2 ◦ P1, Q1 ◦ Q2)
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witnesses the gW-reducibility of C1 to C3. Let F be a canonification of C3. By
definition of Q1 and P2, [Q1, F, P2] is a canonification of C2. By definition of
Q2 and P1 then, [Q2, [Q1, F, P2], P1] is a canonification of C1. But it is easy to
see that [Q2, [Q1, F, P2], P1] = [Q2 ◦Q1, F, P2 ◦ P1].

Definition 11. Let C be a construction problem. Then [C] denotes the ≡-
equivalence class of C and [C]gW denotes the ≡gW-equivalence class of C.

3 A Method for negative Results

We develop a method for showing that a construction problem is not gW-
reducible to another. We will work with class-sized models of ZF−, which
denotes Zermelo-Fraenkel set theory without the axiom of powerset; more pre-
cisely, we take the formulation of ZF− given in [GH].

Remark: Note that the following theorem is not trivial even when ZF−

is strengthened to full ZF, since a ZF model M may contain a set x without
containing a suitable input format for x, so that the computation of an OTM
cannot be simulated within M .

Lemma 12. Let M |= ZF− be transitive and suppose that x ∈ M . Then
Px := {f : ω → x : |f | < ω ∧ f injective} is a set in M .

Proof. Let y := x × ω. For each n ∈ ω, we have yn ∈ M and the function
F : ω → M that maps n to yn is definable in M . By replacement and union,
A :=

⋃
{yn : n ∈ ω} ∈M . Now Px can be obtained from A via separation.

Theorem 13. Let F be a computable class function, M |=ZF− transitive such
that OnM = On. Assume moreover that x ∈ M is such that there are (in V )
two mutually generic Px-generic filters G1 and G2 over M . Then F (x) ∈M .

Proof. Let P be a program witnessing the computability of F . Let x ∈ M be
as in the assumption of the Theorem. By passing to tr(x) if necessary, we may
assume without loss of generality that x is transitive. Let G1, G2 be mututally
M -generic filters over Px which exist by assumption. In M1 and M2, x is well-
ordered in order type α by

⋃
G1 and

⋃
G2, respectively. Hence both M [G1]

and M [G2] contain tape contents coding x and thus contain the computations
of P on these inputs. As ZF− models, M [G1] and M [G2] contain the decoding
of every tape content they contain. Thus F (x) ∈ M [G1] ∩M [G2]. As G1 and
G2 are mutually generic, we have M [G1] ∩ M [G2] = M , so F (x) ∈ M , as
desired.

Remark: Again, some condition on the height of M is required to ensure
that the convergence of programs is absolute between V and M . In particular,
a parameter-free OTM can run for more than α many steps, where α is minimal
such that Lα |= ZF−.

This suggests a general method for proving, given constructions C1 and C2,
that C1 6≤gW C2. In general, find a class A sufficiently closed under OTM-
computability and a canonification F of C2 such that there is some x ∈ A

with the property that the closure of F [A] under OTM-computability does not
contain a C1-solution for x. By Theorem 13, we can take for A a transitive
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class model M of ZF−. We summarize the most important special case of this
method in the following lemma:

Lemma 14. Let C1, C2 be construction problems. Assume that there are a
canonification F of C2 and a transitive class-sized M |= ZF− and some x ∈
M ∩ dom(C1) such that M is closed under F , but {y : C1(x, y)} ∩ M = ∅.
Assume moreover that x is such that there are (in V ) two mutually generic
Px-generic filters G1 and G2 over M . Then C1 �gW C2.

Proof. Assume otherwise, and let P and Q be OTM-programs such that (P,Q)
witnesses the gW-reducibility of C1 to C2. Pick F,M and x as in the statement
of the Lemma. Then Q computes, for every code of x as an input, a code for
some (unique) set y. By Theorem 13, we have y ∈ M . As M is closed under
F , we have F (y) ∈ M . Now, for every code of F (y) as an input, P computes
a code for some (unique) set z. Again by Theorem 13, z ∈ M . Also, by the
choice of P and Q, we have C1(x, z). So z ∈ {y : C1(x, y)} ∩M , so the latter is
not empty, contradicting our assumptions.

4 Results on Generalized Effective Reducibility

As a sample application of the notions and methods developed above, we con-
sider variants of the axiom of choice with respect to effective reducibility.

Definition 15. Denote by AC the statement that for all sets x, there is a
function f such that f(∅) = ∅ and for y ∈ x, if y 6= ∅, then f(y) ∈ y. Denote
by AC′ the statement that for all sets x whose elements are non-empty and
mutually disjoint, there is a set r such that |r ∩ y| = 1 for all y ∈ x. Denote by
WO the well-ordering principle, i.e. the statement that for every set x, there is
an ordinal α and a bijection f : α ↔ x. Finally, denote by ZL Zorn’s lemma,
i.e. the statement that, for every partially ordered set (X,≤) in which every
ascending chain has an upper bound, there is a ≤-maximal element in X .

It is not hard to see that all of these principles are equivalent in the sense of
reducibility: The usual equivalence proofs explain, modulo a transfinite version
of Church’s thesis, how each of these principles can be reduced to any other.
This is perhaps not entirely obvious for WO≤AC, as the reduction seems to
require a choice function for the power set of a given set and the power set of a
set x is not OTM-computable from x (e.g. by Lemma 8). We give the proof as
an example.

Proposition 16. WO≤AC

Proof. Given a set x and a solution F for AC, construct α ∈ On along with a
bijection f : α ↔ x recursively as follows: To begin with, set x0 = x and f0 = ∅.
In the ιth step, apply F to {xι} to get some yι ∈ xι. Let fι+1 = fι ∪ {(ι, yι)},
xι+1 = xι \ {yι}. At a limit stage λ, let xλ =

⋂
ι<λ xι and fλ =

⋃
ι<λ fι. Once

xι = ∅ (which must eventually happen, as x is a set), stop the construction and
return fι, which will be a bijection between ι and x. This procedure can be
carried out on an OTM equipped with F .

The picture becomes much more interesting when we turn to gW-reducibility.
In fact, we can use Lemma 14 to show that the well-ordering principle is not
generalized Weihrauch reducible to the axiom of choice:
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Theorem 17. WO 6≤gWAC.

Proof. (Sketch) We use Lemma 14. In Theorem D.-A.C. of [Z], it is shown how
to construct a transitive model of ZF−+AC+¬WO as a union of an ascending
chain of symmetric extensions of a transitive ground model M of ZF−. Starting
with M = L, it is easily checked that, under the assumption that 0♯ exists, the
construction leads to a definable transitive class model N of ZF−+AC such that
some set A ∈ N that is non-wellorderable in N is countable in V and moreover
PA is countable and thus has two mutually generic filters over N . Hence the
assumptions of Lemma 14 are satisfied and the non-reducibility follows.

Many of the other relations between choice principles are effective, however:

Theorem 18. (1) AC′ ≡gW AC ≤gW ZL
(2) ZL ≤gW WO

Proof. The proofs consists in checking that the usual equivalence proofs over
ZF in fact effectivize. This is trivial for (1). We give some detail on (2) as an
exemplary case.

(2) For ZL≤gWWO, let (x,≤) be a partially ordered set satisfying the as-
sumptions of ZL. Let Q be an OTM-program that, given a code c((x,≤)) for x
on the input tape, copies c(x) to the miracle tape. After applying any canoni-
fication for WO, the miracle tape will contain a code c′ for a well-ordering <x

of x. Now let P be an OTM-program that runs as follows: Given an (initially
empty) set X of elements of x on the scratch tape, compute x \X and search
through it for the <x-minimal element e great than all elements of X . If none
exists, return e, otherwise set X = X ∪ {e} and continue. This computes a
maximal element of (x,≤), so (P,Q) witnesses ZL≤gWWO.

Remark: We do not know whether ZL belongs to one of the gW-degrees
[AC]gW, [WO]gW, is reducible to AC, lies strictly in between or is incompatible
with AC. We suspect that ZL�gWAC. Our current state of knowledge hence
gives some meaning to the humorous claim that ‘The Axiom of Choice is obvi-
ously true, the well-ordering principle obviously false, and who can tell about
Zorn’s lemma?’.

5 Conclusion and Further Work

We have introduced notions of effectivity, reducibility and ‘case-wise’ reducibil-
ity applicable to mathematical objects of arbitrary cardinality. The approach to
effectivity is supported by the remarkable conceptual stability of ordinal com-
putability (see e.g. [Fi] or [Ca]) and moreover, while not equivalent to e.g.
the approach by Hodges, agrees with it concerning the results obtained so far.
With regard to reducibility, we have seen how set-theoretical techniques can be
used to distinguish between various versions of set-theoretical principles usually
regarded as equivalent.

Clearly, there is a host of questions asking which statements are effectively
reducible or gW-reducible to which others. This may be viewed as a cardinality-
independent version of reverse mathematics (as e.g. considered in [Sh]) and the
theory of the Weihrauch lattice. Apart from that, it may be interesting to
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consider variants of these notions with parameter-free computability replaced
by other models of transfinite computation, like Infinite Time Turing Machines
([HL]) or OTMs with ordinal parameters. Another worthwhile topic would be
to replace (relativized) computability with (relativized) recognizability (see e.g.
[CSW]).

Finally, various notions from classical computability theory could be incor-
porated into our framework: For example, one should be able to make sense of
the concept of a ‘random construction’ and ask whether there are interesting
non-effective constructions that are reducible to them. We will also consider
candidates for a sensible notion of a ‘jump operator’ for construction problems,
a notion that led to a number of fascinating results about Weihrauch reducibility
([BGM]).
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