1605.09293v1 [cs.LO] 30 May 2016

arxXiv

Internal Guidance for Satallax

Michael Farber! and Chad Brown?

! Universitéat Innsbruck, Austria
michael.faerber@uibk.ac.at
2 Czech Technical University in Prague, Czech Republic

Abstract. We propose a new internal guidance method for automated
theorem provers based on the given-clause algorithm. Our method in-
fluences the choice of unprocessed clauses using positive and negative
examples from previous proofs. To this end, we present an efficient scheme
for Naive Bayesian classification by generalising label occurrences to types
with monoid structure. This makes it possible to extend existing fast
classifiers, which consider only positive examples, with negative ones. We
implement the method in the higher-order logic prover Satallax, where
we modify the delay with which propositions are processed. We evaluated
our method on a simply-typed higher-order logic version of the Flyspeck
project, where it solves 26% more problems than Satallax without internal
guidance.

1 Introduction

Experience can be described as knowing which methods to apply in which context.
It is a result of experiments, which can show a method to either fail or succeed in
a certain situation. Mathematicians solve problems by experience. When solving
a problem, mathematicians gain experience, which in the future can help them
to solve harder problems that they would not have been able to solve without
the experience gained before.

Fully automated theorem provers (ATPs) attempt to prove mathematical
problems without user interaction. A thriving field of research is how to make
ATPs behave more like mathematicians, by learning which decisions to take from
previous proof attempts, in order to find more proofs in shorter time, and to
prove problems that were previously out of reach for the ATP. Machine learning
can help advance that field, for it provides techniques to model experience and
to compare the quality of possible decisions. Machine learning approaches to
improve ATP performance include:

— Premise selection: Preselecting a set of axioms for a problem can be done
as a preprocessing step or inside the ATP at the beginning of proof search.
Examples of this technique are the Sumo INference Engine (SInE) [HVTI]
and E.T. [KSUV15].

— Internal guidance: Unlike premise selection, internal guidance influences
choices made during the proof search. The hints technique [Ver96] was among

mailto:michael.faerber@uibk.ac.at

the earliest attempts to directly influence proof search by learning from
previous proofs. Other systems are E/TSM [Sch00], an extension of E [Sch13]
with term space maps, and MaLeCoP [UVS11] respectively FEMaLeCoP
[KU15], which are versions of leanCoP [Ott08] extended by Naive Bayesian
learning.

— Learning of strategies: Finding good settings for ATPs automatically has
been researched for example in the Blind Strategymaker (BliStr) project
[Urb15].

— Learning of strategy choice: Once one has found good ATP strategies for
different sets of problems, it is not directly clear which strategies to apply
for which time when encountering a new problem. This problem was treated
in the Machine Learning of Strategies (MaLeS) [Kiil4].

In this paper, we show an internal guidance algorithm for ATPs that use
(variations of) the given-clause algorithm. Specifically, we study a Naive Bayesian
classification method, introduced for the connection calculus in FEMalLeCoP,
and generalise it by measuring label occurrences with an arbitrary type having
monoid structure, in place of a single number. This generalisation has the benefit
that it can handle positive and negative occurrences. As a proof of concept, we
implement the algorithm in the ATP Satallax [Brol2], using no features at all,
which already solves 26% more problems given the same amount of time, and
which can solve about as many problems in 1s than without internal guidance in
2s.

2 Naive Bayesian classifier with monoids

2.1 Motivation

Many automated theorem provers have a proof state in which they make decisions,
by ranking available choices (e.g. which proposition to process) and choosing the
best one. This is related to the classification problem in machine learning, which
takes data about previous decisions, i.e. which situation has led to which choice,
and then orders choices by usefulness for the current situation.

For example, let us assume that the state of the theorem prover is modelled
by the set of constants appearing in the previously processed propositions or in
the conjecture. Let our conjecture be = 4+ y = y 4+ x and let our premises include

VP.[P(0) = (Vz.P(zx) = P(s(x))) = Vz.P(x)], (1)
z+0==zx. (2)

If we first process|[Equation 1} the prover state is characterised by F' = {+, s,0}.
If we then continue to process and it turns out that this contributes

to the final proof, we register that in the situation F, was useful.
In other proof searches, processing in a certain prover state will
not contribute towards the final proof. We call such situations negative examples.

Intuitively, we would like to apply propositions in situations that are similar
to those in which the propositions were useful, and avoid processing propositions
in situations similar to those where the propositions were useless. In general,
examples (positive and negative) can be characterised by a prover state ' and a
proposition ! that was processed in state F'. This makes it possible to treat the
choice of propositions as classification problem. In the next section, we show how
to rank choices based on previous experience.

2.2 Classifiers with positive examples

A classifier takes pairs (F,l), relating a set of features F' with a label I, and
produces a function that, given a set of features, predicts a label. Classifiers can
be characterised by a function (I, F'), which represents the relevance of a label
wrt a set of features. For internal guidance, we use r to estimate the relevance of
a clause [to process in the current prover state F.

A Bayesian classifier estimates the relevance of a label by its probability to
occur with a set of features, i.e. P(I | F'). By using the Naive Bayesian assumption
that features are conditionally independent, the conditional probability is:

PPF 1) POIlerP(f

1)
P(l| F) = G PUF) aP(l)Jgp(fZ).

To increase numerical stability, we use sums of logarithms. Furthermore, we weight
the probabilities with the inverse document frequency (IDF) of the features, and
we omit the constant factor P(F'). The resulting classifier then is:

r(l, F) =log P(1) + Y _ log(idf(f;))log P(f | 1).
fer

In FEMaLeCoP, the simplified probability functionﬁ are approximated by

c if D =0
P(l) = Dy, P(f|1)~ {Dw .

D, otherwise

where D; ; denotes the number of times [appeared among the training examples
in conjunction with f, D; denotes how often | appeared among all training
examples, and c is a constant.

2.3 Generalised classifiers

In our experiments, we found negative training examples to be crucial for in-
ternal guidance. Therefore, we generalised the classifier to represent the type of
occurrences as a commutative monoid.

3 We omitted several constant factors. Furthermore, FEMaLeCoP considers also fea-
tures of training examples that are not part of the features F', albeit this is a further
derivation of the theoretical model.

Definition 1. A pair (M, +) is a monoid if there exists a neutral element 0 € M
such that for all z,y,z€ M, (z+y)+z=a2+(y+2) andz+0=0+z==z. If
furthermore x +y = y + x, then the monoid is commutative.

The generalised classifier is instantiated with a commutative monoid (M, +)
and reads triples (F,[,0), which in addition to features and label now store the
label occurrence o € M. For example, if the classifier is to support positive and
negative examples, then one can use the monoid (N x N, +5), where the first and
second elements of the pair represent the number of positive respectively negative
occurrences, the +o operation is pairwise addition, and the neutral element is
(0,0). A triple learnt by this classifier could be (F,, (1,2)), meaning that [occurs
with F' once in a positive and twice in a negative way. Commutativity imposes
that the order in which the classifier is trained does not matter.

We now formally define D; (occurrences of label), D; ; (co-occurrences of
label with feature) and idf (inverse document frequency):

Dy =Y {o| (F.l',o)e D,1=1,
Diy=) {o| (F.l''o)eD,i=1f€eF},

o D)
idf(f) = {(F,l",0)| (F,l'yo) € D, f € F}|

With this, our classifier for positive and negative examples can be defined as
follows:

if Djy=0
+ cn"Tf otherwise

lp —n] c
P(l) = ptn (cpp+cnn)a P(f? ‘ l) = Cp%’

where (p,n) = Dy, (pr,ny) = Dy s, and ¢, ¢p, and ¢, are constants. The term
lp—n|
p+n
always in the same role (say, as positive example) should have a greater influence

than more ambivalent labels. For example, if a label occurs about the same
number of times as positive and as negative example, confidence is approximately
0, and when a label is almost exclusively positive or negative, confidence is 1.

We call Dy, Dy ¢, and idf classification data. They are precalculated to allow
fast classification. Furthermore, new training examples can be added to existing
classification data efficiently, similarly to [KU15].

represents confidence and models our intuition that labels which appear

3 Learning scenarios

In this section, we still consider ATPs as black boxes, taking as input a problem
and classification data for internal guidance, returning as output training data
(empty if the ATP did not find a proof).

We propose two different scenarios to generate training data and to use it in
subsequent proof searches, see

— On-line learning: We run the ATP on every problem with classification data.
For every problem the ATP solves, we update the classifier with the training
data from the ATP proof.

— Off-line learning: We first run the ATP on all problems without classification
data, saving training data for every problem solved. We then create classifi-
cation data from the training data and rerun the ATP with the classifier on
all problems.

While the second scenario can be parallelised, thus taking less wall-clock time,
it has to treat every problem twice in the worst case (namely when every problem
fails), thus taking up to double the CPU time of the first scenario.

(a) Online learning.

(b) Offline learning.

Fig.1: Comparison of online and offline learning. The large boxes symbolise an
ATP proof search, which takes classifier data and returns training data (empty
if no proof found). The small "+" boxes combine classifiers and training data,
returning new classifier data.

4 Internal guidance for given-clause provers

Variants of the given-clause algorithm are commonly used in refutation-based
ATPs, such as Vampire [KV13] or E [SchI3][]] We introduce a simple version of the

4 Technically, our reference prover Satallax does not implement a given-clause algorithm,
as Satallax treats terms instead of clauses, and it interleaves the choice of unprocessed
terms with other commands. However, for the sake of internal guidance, we can
consider Satallax to implement a version of the given-clause algorithm. We describe

the differences in more detail in [section 6

algorithm: Given an initial set of clauses to refute, the set of unprocessed clauses
is initialised with the initial set of clauses, and the set of processed clauses is the
empty set. At every iteration of the algorithm, a given clause is selected from the
unprocessed clauses and moved to the processed clauses, possibly generating new
clauses which are moved to the unprocessed clauses. The algorithm terminates
as soon as either the set of unprocessed clauses is empty or the empty clause was
generated.

The integration of our internal guidance method into an ATP with given-
clause algorithm involves two tasks: The recording of training data, and the
ranking of unprocessed clauses, which influences the choice of the given clause.
To reduce the amount of data an ATP has to load for internal guidance, we
process training data and transform it into classification data outside of the ATP.
We describe these tasks below in the order they are executed when no internal
guidance data is present yet.

4.1 Recording training data
Recording training data can be done in different fashions:

— In situ: Information about clause usage is recorded every time an unprocessed
clause gets processed. This method allows for more expressive prover state
characterisation, on the other hand, we found it to decrease the proof success
rate, as the recording of proof data makes the inference slower.

— Post mortem: Only when a proof was found, information about clause
usage is reconstructed. As this method does not place any overhead on the
proof search, we resorted to post-mortem recording, which is still sufficiently
expressive for our purposes.

For every proof, we save: conjecture (if one was given), axioms A (premises
given in the problem), processed clauses C, and clauses C; that were used in
the final proof (C} C C). We call such information for a single proof a training
datum. We ignore unprocessed clauses, as we cannot easily estimate whether they
might have contributed to a proof.

4.2 Postprocessing training data

In our experiments, we frequently encounter clauses that are the same, differing
only by containing different Skolem constants. To this end, we process the training
data before creating classification data from it. We tried different techniques to
handle Skolem constants, as well as other postprocessing methods:

— Skolem filtering: We discard clauses containing any Skolem constants.

— Consistent Skolemisation: We normalise Skolem constants inside all
clauses, similarly to [UVS11]. That is, a clause P(z,y,z), where z and
y are Skolem constants, becomes P(cy, ¢, ¢1).

— Consistent normalisation: Similarly to consistent Skolemisation, we
normalise all symbols of a clause. That is, P(x,y,z) as above becomes
¢1(ca, c3,¢2). This allows the ATP to discover similar groups of clauses, for
example a +b = b+ a and a * b = b * a both map to ¢;(cq, c3) = ¢1(c3,ca),
but on the other hand, this also maps possibly different clauses such as P(z)
and Q(z) to the same clause. Still, in problem collections which do not share
a common set of function constants (such as TPTP), this method is suitable.

— Inference filtering: An interesting experiment is to discard all clauses
generated during proof search that are not part of the initial clauses.

We denote the consistent Skolemisation/normalisation of a clause ¢ described
above as N (c).

4.3 Transforming training data to classification data

For a given training datum with processed clauses C' and proof clauses Cy, we
define the corresponding classifier data to be:

{(F(0),¢,(1,0)) [e € CL}U{(F(0),¢,(0,1)) [e € C\ Oy},

where F(c) denotes the features of a clause. We use the monoid (N x N, +5,(0,0))
introduced in storing positive and negative examples. The classifier
data of the whole training data is then the (multiset) union of the classifier data
of the individual training data.

4.4 Clause ranking

This section describes how our internal guidance method influences the choice of
unprocessed clauses using a previously constructed classifier.

At the beginning of proof search, the ATP loads the classifier. Some learning
ATPs, such as E/TSM [Sch00], select and prepare knowledge relevant to the
current problem before the proof search. However, as we store classifier data in a
hash table, filtering irrelevant knowledge to the problem at hand would require a
relatively slow traversal of the whole table, whereas lookup of knowledge is fast
even in the presence of a large number of irrelevant facts. For this reason we do
not filter the classification data per problem.

Then, at every choice point, i.e. every time the ATP chooses a clause from
the unprocessed clauses C, it picks a clause ¢ € C that maximises the clause
rank R(c, F'), where

R(c, F) = rarp(c) +1(N(c), F)
and:

— rarp(c) is an ATP function that calculates the relevance of a clause with
traditional means (such as weight, age, ...),
F' is the current prover state,

— r(c, F) is the Naive Bayesian ranking function as shown in and
N (c) is the normalisation function as introduced in [subsection 4.2

5 Tuning of guidance parameters

We employed two different methods to automatically find good parameters for

internal guidance, such as c, cp, and ¢, from [section 2

5.1 Off-line tuning

Off-line tuning analyses existing training data and attempts to find parameters
that give proof-relevant clauses from the training data a high rank, while giving
proof-irrelevant clauses a low rank. To do this, we evaluate for every training
datum the following formula, which adds for every proof-relevant clause the
number of proof-irrelevant clauses that were ranked higher:

S Hel R(e,F) > Ry, Fy),c € C\ Gy},
cy€Cy

where C' and Cy come from the training datum (see , F and
F, are the features of the prover states when c¢ respectively c; were processed
(we reconstruct these from the training datum), and R is the ranking formula
from

In the end, we sum up the results of the formula above for all training data,
and take the guidance parameters which minimise that sum.

5.2 Particle Swarm Optimisation

Particle Swarm Optimisation [KE95] (PSO) is a standard optimisation algorithm
that can be applied to minimise the output of a function f(x), where « is a vector
of continuous values. A particle is defined by a location x (a candidate solution
for the optimisation problem) and a velocity v. Initially, p particles are created
with random locations and velocities. Then, at every iteration of the algorithm,
a new velocity is calculated for every particle and the particle is moved by that
amount. The new velocity of a particle is:

v(t+1) =w-v(t)+ ¢p- 1y (bp(t) —x(t)) + g -7y - (be(t) — (1)),
where:

— v(t) is the old velocity of the particle,

— b, (t) is the location of the best previously found solution among all particles,

— by(t) is the location of the best previously found solution of the particle,

— r, and T4 are random vectors generated at every evaluation of the formula,
and

- w=04, ¢, =04, and ¢, = 3.6 are constants.

We apply PSO to optimise the performance of an ATP on a problem set S.
For this, we define f(x) to be the number of problems in S the ATP can solve
with a set of flags being set to & and with timeout ¢. We then run PSO and take
the best global solution obtained after n iterations. We fixed ¢t = 1s, p = 300,
and |S| = 1000. The algorithm has worst-case execution time ¢ -p-n - |S].

6 Implementation

We implement our internal guidance in Satallax version 2.8. Satallax is an
automated theorem prover for higher-order logic, based on a tableaux calculus
with extensionality and choice. It is written in OCaml by Brown [Brol2]. Satallax
implements a priority queue, on which it places several kinds of proof search
commands: Among the 11 different commands in Satallax 2.8, there are for
example proposition processing, mating, and confrontation. Proof search works
by processing the commands on the priority queue by descending priority, until a
proof is found or a timeout is reached. The priorities assigned to these commands
are determined by flags, which are the settings Satallax uses for proof search. A
set of flag settings is called a mode (in other ATPs frequently called strategies)
and can be chosen by the user upon the start of Satallax. Similar to other modern
ATPs such as Vampire [KV13] or E [Sch13], Satallax also supports timeslicing
via strategies (in other ATPs frequently called schedules), which define a set of
modes together with time amounts Satallax calls each mode with. Formally, a
strategy is a sequence [(mq,t1),..., (My,t,)], where m; is a mode and ¢; the
time to run the mode with. The total time of the strategy is the sum of times,
ie tx(S) = Z(m,t)es t.

As a side-effect of this work, we have extended Satallax with the capability
of loading user-defined strategies, which was previously not possible as strategies
were hard-coded into the program. Furthermore, we implemented modifying flags
via the command line, which is useful e.g. to change a flag among all modes of
a strategy without changing the flag among all files of a strategy. We used this
extensively in the automatic evaluation of flag settings via PSO, as shown in

When running Satallax with a strategy S and a timeout t,,4:, then all the
times of the strategy are multiplied by tt;(“sf) if tiae > tx(S), to divide the time
between modes appropriately when running Satallax for longer than what the
strategy S specifies. Then, every mode m; in the strategy is run sequentially for
time t; until a proof is found or the timeout ¢,,,, is hit.

An analysis of several proof searches yielded that on average, more than 90%
of commands put onto the priority queue of Satallax are proposition processing
commands, which correspond to processing a clause from the set of unprocessed
clauses in given-clause provers. For that reason, we decided to influence the
priority of proposition processing commands, giving those propositions with a
high probability of being useful a higher priority. The procedure follows the one
described in but the ranking of a proposition is performed when
the proposition processing command is put onto the priority queue, and the
Naive Bayes rank is added to the priority that Satallax without internal guidance
would have assigned to the command. As other types of commands are in the
priority queue as well, we pay attention not to influence the priority of term
processing commands too much (by choosing too large guidance parameters), as
this can lead to disproportionate displacement of other commands.

To record training data, we use the terms from the proof search that con-
tributed to the final proof. For this, Satallax uses picomus [Bie08| to construct a
minimal unsatisfiable core.

To characterise the prover state of Satallax, we tried different kinds of features:

— Symbols of processed terms: We collect the symbols of all processed proposi-
tions at the time a proposition is inserted into the priority queue and call
these symbols the features of the proposition. However, this experimentally
turned out to be a bad choice, because the set of features for each proposition
grows quite rapidly, as the set of processed propositions grows monotonically.

— Axioms of the problem: We associate every proposition processed in a proof
search with all the axioms of the problem. In contrast to the method above,
this associates the same features to all propositions processed during the
proof search for a problem, and is thus more a characterisation of the problem
(similar to TPTP characteristics [SB10]) than of the prover state.

In our experiments, just calculating the influence of these features without
them actually influencing the priority makes Satallax prove less problems (due to
the additional calculation time), and the positive impact of the features on the
proof search does not compensate for the initial loss of problems. Therefore, we
currently do not use features at all and associate the empty set of features to all
labels, i.e. F(c) = {}. However, it turns out that even without features, learning
from previous proofs can be quite effective, as shown in the next section.

7 Evaluation

To evaluate the performance of our internal guidance method in Satallax, we used
a THFO0 [SBI0] version (simply-typed higher-order logic) of the top-level theorems
of the Flyspeck [HAB™15| project, as generated by Kaliszyk and Urban [KUT4].
The test set consists of 14185 problems from topology, geometry, integration, and
other fields. The premises of each problem are the actual premises that were used
in the Flyspeck proofs, amounting to an average of 84.3 premises per problemﬂ
We used an Intel Core i3-5010U CPU (2.1 GHz Dual Core, 3 MB Cache) and
ran maximally one instance of Satallax at a time.

To evaluate the performance of the off-line learning scenario described in
we run Satallax on all Flyspeck problems, generating training data
whenever Satallax finds a proof. We use the Satallax 2.5 strategy (abbreviated as
“S2.57), because the newest strategy in Satallax 2.8 can not always retrieve the
terms that were used in the final proof, which is important to obtain training
data.

As the off-line learning scenario involves evaluating every problem twice (once
to generate training data and once to prove the problem with internal guidance),

® The test set, as well as our modified version of Satallax and instructions to recreate our
evaluation, can be found under: [http://cl-informatik.uibk.ac.at/~mfaerber/satallax
html.

http://cl-informatik.uibk.ac.at/~mfaerber/satallax.html
http://cl-informatik.uibk.ac.at/~mfaerber/satallax.html

it doubles runtime in the worst case, i.e. if no problem is solved. Therefore, a user
might like to compare its performance to simply running the ATP with double
timeout directly: When increasing the timeout from 1s to 2s, the number of
solved problems increases from 2717 to 3394. However, this is mostly due to the
fact that Satallax tries more modes, so to measure the gain in solved problems
more fairly, we create a strategy “S2.5_1s” which contains only those modes that
were already used during the 1s run, and let each of them run about double the
time. This strategy proves 2845 problems in 2s.

We now compare the different postprocessing options introduced in
tion 4.2] For this, we create a classifier from the training data gathered during
the 1s run. We then run Satallax with internal guidance in off-line learning mode
with 1s timeout and the Satallax 2.5 strategy. We perform this procedure for
each postprocessing option. We call a problem “lost” that Satallax with guidance
could not solve and Satallax without guidance could. Vice versa for “gained”. The
results are given in We perform best when influencing only the priority
of axioms (inference filtering), solving 786 problems that could not be solved by
Satallax in 1s without internal guidance.

Table 1: Comparison of postprocessing options.

Postprocessing Solved Lost Gained

Consistent normalisation 1911 920 114
Consistent Skolemisation 1939 885 107

None 2166 688 137
Skolem filtering 3395 98 776
Inference filtering 3428 75 786

To evaluate online learning, we run Satallax on all Flyspeck problems by
ascending order, accumulating training data and using it for all subsequent proof
searches. We filter away terms in the training data that contain Skolem variables.
As result, Satallax with online learning, running 1s per problem, solves 3374
problems (59 lost, 716 gained), which is a plus of 24%.

In the next experiment, we evaluate the prover performance with the “S2.5_ 1s”
strategy and a timeout of 30s. For this, we use an 48-core server with 2.2GHz
AMD Opteron CPUs and 320GB RAM, running 10 instances of Satallax in
parallel. First, we run Satallax without internal guidance for 30s, which solves
3097 problems. Next, we create from the training data a classifier with Skolem
filtering, which takes 3s and results in a 1.8M file. Finally, we run Satallax with
internal guidance in off-line learning mode using the classifier. This proves 4028
problems in 30s, which is a plus of 30%. Results are shown in The
“jumps” in the data stem from changes of modes.

4,000 |- B
~ 3,000 - B
(&)
=
2
@ 2,000 - -
<
e
2
& 1,000 [.
—e— Offline
0 —a— Training |
! ! ! ! | I I

0 5 10 15 20 25 30

Time [s]

Fig.2: Problems solved in a certain time.

8 Conclusion

We have shown how to integrate internal guidance into ATPs based on the
given-clause algorithm, using positive as well as negative examples. We have
demonstrated the usefulness of this method experimentally, showing that on
a given test set, we can solve up to 26% more problems. ATPs with internal
guidance could be integrated into hammer systems such as Sledgehammer (which
can already reconstruct Satallax proofs [SBP13]) or HOL(y)Hammer [KU14],
continually improving their success rate with minimal overhead. It could also be
interesting to learn internal guidance for ATPs from subgoals given by the user in
previous proofs. Currently, we learn only from problems we could find a proof for,
but in the future, we could benefit from considering also proof searches that did
not yield proofs. Furthermore, it would be interesting to see the effect of negative
examples on existing ATPs with internal guidance, such as FEMaLeCoP. We
believe that finding good features that characterise prover state are important to
further improve the learning results.

Acknowledgements

We would like to thank Sebastian Joosten and Cezary Kaliszyk for reading
initial drafts of the paper, and especially Josef Urban for inspiring discussions
and inviting the authors to Prague. Furthermore, we would like to thank the
anonymous IJCAR referees for their valuable comments.

This work has been supported by the Austrian Science Fund (FWF) grant
P26201 as well as by the European Research Council (ERC) grant AI{REASON.

[Bie08]
[Brol2]

[HAB*15]

[HV11]

[KE95]

[KSUV15]

[KU14]

[KU15]

[KV13]

Bibliography

Armin Biere. PicoSAT essentials. JSAT, 4(2-4):75-97, 2008.

Chad E. Brown. Satallax: An automatic higher-order prover. In
Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, Automated
Reasoning - 6th International Joint Conference, IJCAR 2012, Manch-
ester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture
Notes in Computer Science, pages 111-117. Springer, 2012.

Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John
Harrison, Truong Le Hoang, Cezary Kaliszyk, Victor Magron, Sean
McLaughlin, Thang Tat Nguyen, Truong Quang Nguyen, Tobias
Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev,
An Hoai Thi Ta, Trung Nam Tran, Diep Thi Trieu, Josef Urban,
Ky Khac Vu, and Roland Zumkeller. A formal proof of the Kepler
conjecture. CoRR, abs/1501.02155, 2015.

Krystof Hoder and Andrei Voronkov. Sine qua non for large theory rea-
soning. In Nikolaj Bjgrner and Viorica Sofronie-Stokkermans, editors,
Automated Deduction - CADE-23 - 23rd International Conference on
Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011.
Proceedings, volume 6803 of Lecture Notes in Computer Science, pages
299-314. Springer, 2011.

J. Kennedy and R. Eberhart. Particle swarm optimization. In IFEE
International Conference on Neural Networks, volume 4, pages 1942—
1948, Nov 1995.

Cezary Kaliszyk, Stephan Schulz, Josef Urban, and Jiri Vyskocil.
System description: E.T. 0.1. In Amy P. Felty and Aart Middeldorp,
editors, Automated Deduction - CADE-25 - 25th International Con-
ference on Automated Deduction, Berlin, Germany, August 1-7, 2015,
Proceedings, volume 9195 of Lecture Notes in Computer Science, pages
389-398. Springer, 2015.

Cezary Kaliszyk and Josef Urban. Learning-assisted automated rea-
soning with Flyspeck. J. Autom. Reasoning, 53(2):173-213, 2014.
Cezary Kaliszyk and Josef Urban. FEMaLeCoP: Fairly efficient ma-
chine learning connection prover. In Martin Davis, Ansgar Fehnker,
Annabelle Mclver, and Andrei Voronkov, editors, Logic for Program-
ming, Artificial Intelligence, and Reasoning - 20th International Con-
ference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceed-
ings, volume 9450 of Lecture Notes in Computer Science, pages 88-96.
Springer, 2015.

Laura Kovécs and Andrei Voronkov. First-order theorem proving and
Vampire. In Natasha Sharygina and Helmut Veith, editors, Computer
Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of
Lecture Notes in Computer Science, pages 1-35. Springer, 2013.

[Kiil4]

[Ott08]

[SB10]

[SBP13]

[Sch00]

[Sch13]

[Ver96]

Daniel A. Kiithlwein. Machine Learning for Automated Reasoning.
PhD thesis, Radboud Universiteit Nijmegen, April 2014.

Jens Otten. leanCoP 2.0 and ileanCoP 1.2: High performance lean
theorem proving in classical and intuitionistic logic (system descrip-
tions). In Alessandro Armando, Peter Baumgartner, and Gilles Dowek,
editors, Automated Reasoning, 4th International Joint Conference,
IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings,
volume 5195 of Lecture Notes in Computer Science, pages 283-291.
Springer, 2008.

Geoff Sutcliffe and Christoph Benzmiiller. Automated reasoning in
higher-order logic using the TPTP THF infrastructure. J. Formalized
Reasoning, 3(1):1-27, 2010.

Nik Sultana, Jasmin Christian Blanchette, and Lawrence C. Paulson.
LEO-IT and Satallax on the Sledgehammer test bench. J. Applied
Logic, 11(1):91-102, 2013.

S. Schulz. Learning Search Control Knowledge for Equational Deduc-
tion. Number 230 in DISKI. Akademische Verlagsgesellschaft Aka
GmbH Berlin, 2000.

Stephan Schulz. System description: E 1.8. In Kenneth L. McMil-
lan, Aart Middeldorp, and Andrei Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning - 19th International
Conference, LPAR-19, Stellenbosch, South Africa, December 14-19,
2013. Proceedings, volume 8312 of Lecture Notes in Computer Science,
pages 735-743. Springer, 2013.

Josef Urban. BliStr: The Blind Strategymaker. In Georg Gottlob,
Geoff Sutcliffe, and Andrei Voronkov, editors, GCAI 2015. Global
Conference on Artificial Intelligence, volume 36 of EPiC Series in
Computing, pages 312-319. EasyChair, 2015.

Josef Urban, Jiff Vyskoéil, and Petr Stépanek. MaLeCoP machine
learning connection prover. In Kai Briinnler and George Metcalfe,
editors, Automated Reasoning with Analytic Tableaux and Related
Methods - 20th International Conference, TABLEAUX 2011, Bern,
Switzerland, July 4-8, 2011. Proceedings, volume 6793 of Lecture Notes
in Computer Science, pages 263-277. Springer, 2011.

Robert Veroff. Using hints to increase the effectiveness of an au-
tomated reasoning program: Case studies. J. Autom. Reasoning,
16(3):223-239, 1996.

	Internal Guidance for Satallax

