Skip to main content

Robust Color Gradient Estimation for Photographic Volumes

  • Conference paper
  • First Online:
E-Learning and Games (Edutainment 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9654))

  • 1556 Accesses

Abstract

Photographic volumes keep the original color in each voxel, and play an important role in medical and biological researches. The gradient is one of the most widely used attributes in volume visualization. However, it is more difficult to accurately estimate gradients for photographic volumes than scalar volumes. Current gradient estimators for photographic volumes do not work well for all cases, especially when the data is noisy. In this paper, we propose a new method to estimate gradients accurately and robustly for photographic volumes. Colors are directly used for gradient estimation instead of being converted to grayscale values, to ensure the accuracy of the gradient direction. For each of three gradient components in x, y and z directions, different filters are combined to reduce the negative effect of noises and generate an accurate result. Experiment results show that the proposed method can estimate gradients robustly in the presence of noise and outperforms other gradient estimators in photographic volume visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Correa, C., Hero, R., Ma, K.-L.: A comparison of gradient estimation methods for volume rendering on unstructured meshes. IEEE Trans. Vis. Comput. Graph. 17(3), 305–319 (2011)

    Article  Google Scholar 

  2. Ebert, D.S., Morris, C.J., Rheingans, P., Yoo, T.S.: Designing effective transfer functions for volume rendering from photographic volumes. IEEE Trans. Vis. Comput. Graph. 8(2), 183–197 (2002)

    Article  Google Scholar 

  3. Ercan, G., Whyte, P.: Digital image processing. US Patent 6,240,217 29 May 2001

    Google Scholar 

  4. Evans, A.N., Liu, X.U.: A morphological gradient approach to color edge detection. IEEE Trans. Image Process. 15(6), 1454–1463 (2006)

    Article  Google Scholar 

  5. Gargesha, M., Qutaish, M., Roy, D., Steyer, G., Bartsch, H., Wilson, D.L.: Enhanced volume rendering techniques for high-resolution color cryo-imaging data. In: SPIE Medical Imaging, p. 72622V. International Society for Optics and Photonics (2009)

    Google Scholar 

  6. Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of the 1998 IEEE Symposium on Volume Visualization, pp. 79–86. ACM (998)

    Google Scholar 

  7. Kniss, J., Premoze, S., Hansen, C., Shirley, P., McPherson, A.: A model for volume lighting and modeling. IEEE Trans. Vis. Comput. Graph. 9(2), 150–162 (2003)

    Article  Google Scholar 

  8. Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (1988)

    Article  Google Scholar 

  9. Max, N.: Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995)

    Article  Google Scholar 

  10. Morris, C.J., Ebert, D.: Direct volume rendering of photographic volumes using multi-dimensional color-based transfer functions. In: Proceedings of the Symposium on Data Visualisation 2002, pp. 115-ff. Eurographics Association (2002)

    Google Scholar 

  11. Nezhadarya, E., Ward, R.K.: A new scheme for robust gradient vector estimation in color images. IEEE Trans. Image Process. 20(8), 2211–2220 (2011)

    Article  MathSciNet  Google Scholar 

  12. Pfister, H., Lorensen, B., Bajaj, C., Kindlmann, G., Schroeder, W., Avila, L.S., Raghu, K., Machiraju, R., Lee, J.: The transfer function bake-off. IEEE Comput. Graph. Appl. 21(3), 16–22 (2001)

    Article  Google Scholar 

  13. Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications: Digital Signal Processing. Springer, Heidelberg (2000)

    Book  Google Scholar 

  14. Roettger, S., Bauer, M., Stamminger, M.: Spatialized transfer functions. In: Proceedings of the Seventh Joint Eurographics/IEEE VGTC Conference on Visualization, pp. 271–278. Eurographics Association (2005)

    Google Scholar 

  15. Roy, D., Steyer, G.J., Gargesha, M., Stone, M.E., Wilson, D.L.: 3D cryo-imaging: a very high-resolution view of the whole mouse. Anat. Rec. 292(3), 342–351 (2009)

    Article  Google Scholar 

  16. Russo, F., Lazzari, A.: Color edge detection in presence of Gaussian noise using nonlinear prefiltering. IEEE Trans. Instrum. Meas. 54(1), 352–358 (2005)

    Article  Google Scholar 

  17. Sereda, P., Bartroli, A.V., Serlie, I.W., Gerritsen, F.A.: Visualization of boundaries in volumetric data sets using LH histograms. IEEE Trans. Vis. Comput. Graph. 12(2), 208–218 (2006)

    Article  Google Scholar 

  18. Spitzer, V., Ackerman, M.J., Scherzinger, A.L., Whitlock, D.: The visible human male: a technical report. J. Am. Med. Inform. Assoc. 3(2), 118–130 (1996)

    Article  Google Scholar 

  19. Zhang, B., Tao, Y., Lin, H., Dong, F., Clapworthy, G.: Intuitive transfer function design for photographic volumes. J. Vis. 18(4), 571–580 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China No. 61472354 and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China under Grant 2014BAK14B01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, B., Tao, Y., Lin, H. (2016). Robust Color Gradient Estimation for Photographic Volumes. In: El Rhalibi, A., Tian, F., Pan, Z., Liu, B. (eds) E-Learning and Games. Edutainment 2016. Lecture Notes in Computer Science(), vol 9654. Springer, Cham. https://doi.org/10.1007/978-3-319-40259-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40259-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40258-1

  • Online ISBN: 978-3-319-40259-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics