Skip to main content

Evolving Possibilistic Fuzzy Modeling and Application in Value-at-Risk Estimation

  • Chapter
  • First Online:
  • 576 Accesses

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 344))

Abstract

This chapter suggests an evolving possibilistic fuzzy modeling approach for value-at-risk modeling and estimation. The modeling approach is based on an extension of the possibilistic fuzzy c-means clustering and functional fuzzy rule-based systems. It employs memberships and typicalities to update clusters centers and creates new clusters using a statistical control distance-based criteria. Evolving possibilistic fuzzy modeling (ePFM) also uses an utility measure to evaluate the quality of the current cluster structure. The fuzzy rule-based model emerges from the cluster structure. Market risk exposure plays a key role for financial institutions in risk assessment and management. A way to measure risk exposure is to evaluate the losses likely to incur when the prices of the portfolio assets decline. Value-at-risk (VaR) estimate is amongst the most prominent measure of financial downside market risk. Computational experiments are conducted to evaluate ePFM for value-at-risk estimation using data of the main equity market indexes of United States (S&P 500) and Brazil (Ibovespa) from January 2000 to December 2012. Econometric models benchmarks such as GARCH and EWMA, and state of the art evolving approaches are compared against ePFM. The results suggest that ePFM is a potential candidate for VaR modeling and estimation because it achieves higher performance than econometric and alternative evolving approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The computation details are found in [19].

  2. 2.

    The data was provided by Bloomberg.

References

  1. Aggarwal, R., Inclan, C., Leal, R.: Volatility in emergent stock markets. J. Financ. Quant. Anal. 34(1), 33–55 (1999)

    Article  Google Scholar 

  2. Angelov, P.: Evolving Takagi-Sugeno fuzzy systems from data streams (eTS+). In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Systems: Methodology and Applications, chap. 2, pp. 21–50. Wiley and IEEE Press, Hoboken, NJ, USA (2010)

    Google Scholar 

  3. Angelov, P., Filev, D.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern.—Part B 34(1), 484–498 (2004)

    Article  Google Scholar 

  4. Angelov, P., Filev, D.: Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models. In: IEEE International Conference on Fuzzy Systems, Reno, Nevada, USA, pp. 1068–1073 (2005)

    Google Scholar 

  5. Angelov, P., Zhou, X.: Evolving fuzzy systems from data streams in real-time. In: International Symposium on Evolving Fuzzy Systems, Ambleside, Lake District, United Kingdom, pp. 29–35(2006)

    Google Scholar 

  6. Azzem, M.F., Hanmandlu, M., Ahmad, N.: Structure identification of generalized adaptive neuro-fuzzy inference systems. IEEE Trans. Fuzzy Syst. 11(5), 668–681 (2003)

    Google Scholar 

  7. Ballini, R., Mendonça, A.R.R., Gomide, F.: Evolving fuzzy modeling in risk analysis. Intell. Syst. Acc. Finan. Manage. 16, 71–86 (2009)

    Article  Google Scholar 

  8. Bera, A., Jarque, C.: Efficient tests for normality, homocedasticity and serial independence of regression residuals: Monte Carlo evidence. Econ. Lett. 7, 313–318 (1981)

    Article  Google Scholar 

  9. Bounhas, M., Hamed, M.G., Prade, H., Serrurier, M., Mellouli, K.: Naive possibilistic classifiers for imprecise or uncertain numerical data. Fuzzy Sets Syst. 239, 137–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Casarin, R., Chang, C., Jimenez-Martin, J., Pérez-Amaral, M.M.T.: Risk management of risk under the basel accord: a Bayesian approach to forecasting value-at-risk of VIX futures. Math. Comput. Simul. 94, 183–204 (2013)

    Article  MathSciNet  Google Scholar 

  11. Dovzan, D., Loga, V., Skrjanc, I.: Solving the sales prediction with fuzzy evolving models. In: WCCI 2012 IEEE World Congress on Computational Intelligence, June, Brisbane, Australia, pp. 10–15 (2012)

    Google Scholar 

  12. Dovžan, D., Škrjanc, I.: Recursive clustering based on a Gustafson-Kessel algorithm. Evol. Syst. 2(1), 15–24 (2011)

    Article  Google Scholar 

  13. Dovžan, D., Škrjanc, I.: Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes. ISA Trans. 50(2), 159–169 (2011)

    Article  Google Scholar 

  14. Dowd, K., Blake, D.: After var: the theory, estimation and insurance applications of quantile-based risk measures. J. Risk Insur. 73(2), 193–229 (2006)

    Article  Google Scholar 

  15. Dunis, C., Laws, J., Sermpinis, G.: Modeling commodity value-at-risk with high order neural networks. Appl. Finan. Econ. 20(7), 585–600 (2010)

    Article  Google Scholar 

  16. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4), 987–1007 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Engle, R.F., Manganelli, S.: Caviar: conditional autoregressive value-at-risk by regression quantiles. J. Bus. Econ. Stat. 22(4), 367–381 (2004)

    Article  MathSciNet  Google Scholar 

  18. Ferraro, M.B., Giordani, P.: On possibilistic clustering with repulsion constraints for imprecise data. Inf. Sci. 245, 63–75 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Filev, D., Georgieva, O.: An extended version of the Gustafson-Kessel algorithm for evolving data streams clustering. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Systems: Methodology and Applications, chap. 12, pp. 273–299. Wiley and IEEE Press, Hoboken, NJ, USA (2010)

    Google Scholar 

  20. Haas, M., Mittinik, S., Paolella, M.S.: A new approach to Markov switching GARCH models. J. Finan. Econom. 2(4), 493–530 (2004)

    Article  Google Scholar 

  21. Hartz, C., Mittinik, S., Paolella, M.S.: Accurate value-at-risk forecasting based on the normal-GARCH model. Comput. Stat. Data Anal. 51(4), 2295–2312 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kasabov, N.K., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10(2), 144–154 (2002)

    Article  Google Scholar 

  23. Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 15(4), 580–585 (1985)

    Article  Google Scholar 

  24. Kohonen, T.: Self-organization and Associative Memory, 3rd edn. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  25. Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 2(1), 98–110 (1993)

    Article  Google Scholar 

  26. Kuester, K., Mittinik, S., Paolella, M.S.: Value-at-risk prediction: a comparison of alternative strategies. J. Finan. Econom. 4(1), 53–89 (2005)

    Article  Google Scholar 

  27. Lemos, A.P., Caminhas, W., Gomide, F.: Fuzzy evolving linear regression trees. Evol. Syst. 2, 1–14 (2011)

    Article  Google Scholar 

  28. Leng, G., McGINNITY, T.M., Prasad, G.: An approach for on-line extraction of fuzzy rules using a self-organizing fuzzy neural network. Fuzzy Sets Syst. 150(2), 211–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liang, N., Huang, G., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006)

    Article  Google Scholar 

  30. Lima, E., Hell, H., Ballini, R., Gomide, F.: Evolving fuzzy modeling using participatory learning. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving intelligent systems: methodology and applications, chap. 4, pp. 67–86. Wiley and IEEE Press, Hoboken, NJ, USA (2010)

    Google Scholar 

  31. Ljung, L.: System Identification: Theory for the User. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  32. Lopez, J.A.: Regulatory evaluation of value-at-risk models. J. Risk 1, 37–64 (1999)

    Article  Google Scholar 

  33. Lughofer, E.D.: FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 16(6), 1393–1410 (2008)

    Article  Google Scholar 

  34. Lughofer, E.: Evolving fuzzy systems: methodologies, advances concepts and applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  35. Luna, I., Ballini, R.: Online estimation of stochastic volatility for asset returns. In: IEEE Computational Intelligence for Financial Engineering and Economics (CIFEr 2012) (2012)

    Google Scholar 

  36. Maciel, L., Gomide, F., Ballini, R.: Enhanced evolving participatory learning fuzzy modeling: an application for asset returns volatility forecasting. Evol. Syst. 5(1), 75–88 (2014)

    Article  Google Scholar 

  37. Maciel, L., Gomide, F., Ballini, R.: Recursive possibilistic fuzzy modeling. Evolving and autonomous learning systems (EALS). In: IEEE Symposium Series on Computation Intelligence (SSCI), Orlando, FL, pp. 9–16 (2014)

    Google Scholar 

  38. Maciel, L., Gomide, F., Ballini, R.: Evolving possibilistic fuzzy modeling for realized volatility forecasting with jumps. IEEE Trans. Fuzzy Syst. (submitted) (2015)

    Google Scholar 

  39. Maciel, L., Gomide, F., Ballini, R., Yager, R.: Simplified evolving rule-based fuzzy modeling of realized volatility forecasting with jumps. In: IEEE Workshop on Computational Intelligence for Financial Engineering and Economics (CIFEr 2013), Cingapura, pp. 76–83 (2013)

    Google Scholar 

  40. McNeil, A.J., Frey, R.: Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. J. Empirical Finan. 7(3), 271–300 (2000)

    Article  Google Scholar 

  41. Moussa, A.M., Kamdem, J.S., Terraza, M.: Fuzzy value-at-risk and expected shortfall for portfolios with heavy-tailed returns. Econ. Model. 39, 247–256 (2014)

    Article  Google Scholar 

  42. Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)

    Article  MathSciNet  Google Scholar 

  43. Qiao, J., Wang, H.: A self-organising fuzzy neural network and its application to function approximation and forest modeling. Neurocomputing 71(4–6), 564–569 (2008)

    Article  Google Scholar 

  44. Riskmetrics, J.P.: Morgan technical documentation, 4th edn. Technical report. J.P. Morgan, New York (1996)

    Google Scholar 

  45. Rong, H.J., Sundarajan, N., Huang, G., Zhao, G.: Extended sequential adaptive fuzzy inference system for classification problems. Evol. Syst. 2, 71–82 (2011)

    Article  Google Scholar 

  46. Rosa, R., Maciel, L., Gomide, F., Ballini, R.: Evolving hybrid neural fuzzy network for realized volatility forecasting with jumps. In: IEEE Workshop on Computational Intelligence for Financial Engineering and Economics (CIFEr 2014), Londres, vol. 1, pp. 1–8 (2014)

    Google Scholar 

  47. Schwarz, G.: Estimating the dimension of model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  48. Timm, H., Borgelt, C., Doring, C., Kruse, R.: An extension to possibilistic fuzzy cluster analysis. Fuzzy Sets Syst. 147(1), 3–16 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tung, W.L., Quek, C.: Financial volatility trading using a self-organising neural-fuzzy semantic network and option straddle-based approach. Expert Syst. Appl. 38(5), 4668–4688 (2011)

    Article  Google Scholar 

  50. Yager, R.: A model of participatory learning. IEEE Trans. Syst. Man Cybern. 20(5), 1229–1234 (1990)

    Article  MathSciNet  Google Scholar 

  51. Yager, R.R., Filev, D.P.: Modeling participatory learning as a control mechanism. Int. J. Intell. Syst. 8(3), 431–450 (1993)

    Article  MATH  Google Scholar 

  52. Yoshida, Y.: An estimation model of value-at-risk portfolio under uncertainty. Fuzzy Sets Syst. 160(22), 3250–3262 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zmeskal, Z.: Value-at-risk methodology of international index portfolio under soft conditions (fuzzy-stochastic approach). Int. Rev. Finan. Anal. 14(2), 263–275 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian Ministry of Education (CAPES), the Brazilian National Research Council (CNPq) grant 304596/2009-4, and the Research of Foundation of the State of São Paulo (FAPESP) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Maciel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maciel, L., Ballini, R., Gomide, F. (2017). Evolving Possibilistic Fuzzy Modeling and Application in Value-at-Risk Estimation. In: Kacprzyk, J., Filev, D., Beliakov, G. (eds) Granular, Soft and Fuzzy Approaches for Intelligent Systems. Studies in Fuzziness and Soft Computing, vol 344. Springer, Cham. https://doi.org/10.1007/978-3-319-40314-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40314-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40312-0

  • Online ISBN: 978-3-319-40314-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics