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Abstract. Uncertainty impacts many crucial issues the world is facing today —
from climate change prediction, to scientific modelling, to the interpretation of
medical data. Decisions typically rely on data which can be aggregated from
different sources and further transformed using a variety of algorithms and models.
Such data processing pipelines involve different types of uncertainty. As visual
data representations are able to mediate between human cognition and computa-
tional models, a trustworthy conveyance of data characteristics requires effective
representations of uncertainty which take productivity and cognitive abilities, as
important human factors, into account. We summarize findings resulting from
prior work on interactive uncertainty visualizations. Subsequently, an evaluation
study is presented which investigates the effect of different visualizations of
uncertain data on users’ efficiency (time, error rate) and subjectively perceived
cognitive load. A table, a static graphic, and an interactive graphic containing
uncertain data were compared. The results of an online study (N = 146) showed a
significant difference in the task completion time between the visualization type,
while there are no significant differences in error rate. A non-parametric K-W test
found a significant difference in subjective cognitive load [H (2) = 7.39,
p < 0.05]. Subjectively perceived cognitive load was lower for static and inter-
active graphs than for the numerical table. Given that the shortest task completion
time was produced by a static graphic representation, we recommend this for use
cases in which uncertain data are to be used time-efficiently.

Keywords: Visualization - Uncertainty -+ Ergonomics - Efficiency - Cognitive
load

1 Introduction

Exploring and analyzing data is often realized with the help of algorithms. Information
visualization and data visualization can also help users to interpret the results produced
by these algorithms e.g. by reducing information overload and aiding people
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understand (their) data. While many types of data are visualized in order to make them
more understandable, uncertainty measures are often excluded from these visualiza-
tions to limit visual complexity and clutter, which may lead to misunderstanding or
false interpretations or further information overload. However, uncertainty is an
essential component of the data, and a trustworthy representation requires it as an
integral part of data visualization. Visualizing uncertain data requires us to look ini-
tially at different kinds of visual representation and different types of uncertainty. While
the graphical attributes are assigned by the visualization developer, the type of
uncertainty is often inherent in the data as a predefined feature. In general, uncertainty
types are: errors within data, accuracy level, credibility of information source, sub-
jectivity, non-specificity or noise [1]. Pang et al. use a threefold distinction, including
statistical uncertainty, error and range caused by data acquisition, measurements,
numerical models and data entry [2] while Skeels et al.’s domain-independent classi-
fication of uncertainties includes (1) inference uncertainty resulting from imprecision of
modelling methods such as probabilistic modelling, hypothesis-testing or diagnosis,
(2) completeness uncertainty due to missing values, sampling or aggregation errors and
(3) measurement uncertainty caused by imprecise measurement [3].

Like all data, uncertain data can be represented by mapping numerical values to
graphical attributes. As a result, an abstract concept can be expressed in a visualization.
Uncertainty values can, for example, be represented as tables, glyphs, by geometrical
attributes or in terms of colour [2] (Fig. 1).
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Fig. 1. A table was the baseline in our experiment (left). It was compared to the static
visualization condition (right) and the interactive visualization condition (Fig. 2).

In addition, uncertainty measures can, for example, be represented by error bars,
boxplots or Tufte Quartile Plots. In principle it is possible to select any graphical
attribute as a representation of an uncertain value. This so-called graphical mapping is
often brought about by the personal preferences and data experience of the developer or
designer [4], by looking for an innovative solution [5], or by user requirements. While
the latter studies lead to domain-specific and task dependent visualization,
domain-independent studies about the influence of distinct visualizations on human
aspects could enable visualization developers and researchers to make their design
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decisions based on empirical evidence. The need of a design decision is characterized
by questions such as for example “Should I use a static or an interactive visualization?”
or “Should I use a table instead of a graphic?”, “Is cognitive effort lower if I use a bar
chart or a line graph?”’. We believe that design decisions can be supported by general
recommendations, resulting from visualization evaluation studies. Unlike
domain-specific, user-centered design studies, evaluation studies aim at results domain
spanning, thus permitting conclusions about the fundamental character of distinct
visualization characteristics. This paper illustrates the characteristics of both approa-
ches. First we derive human aspects relevant to domain-specific visualizations of a
marine ecology video retrieval system. Subsequently, we present an example for a
more general visualization evaluation aiming at giving general recommendations
supporting design decisions in different application fields.

This paper is structured as follows: Sect. 2 summarizes human aspects relevant
during the domain-specific development of uncertainty visualizations (marine ecology),
Sect. 3 outlines the problem and research questions, followed by a method description
in Sect. 4 and experimental results in Sect. 5. We end with a discussion and a con-
clusion in Sect. 6.

2 Related Work

A user study on trust and data provenance revealed that to be accepted in scientific use,
the video analysis tool must provide data provenance information that describes the data
collection methods (e.g., sampling methods), as well as the data processing methods and
their potential errors (e.g., computer vision software and their confusion matrices). This
would allow results to be compared with traditional statistical methods and increase the
trust in results [6]. A related study revealed that a high level of user confidence can,
however, be subjectively influenced by the visualization. Over-simplifying the visual-
ization had potentially lead to the possibility of negative adverse effects, such as
attention tunneling, memory loss, induced misinterpretations and unawareness of crucial
information, which can be similar to the effects of uncertainty [7]. In another study [8] it
was argue that simplifying expert-oriented visualization of uncertainty, misinterpreta-
tions of computer vision errors are less likely to occur. It remains unclear if findings are
applicable to other scenarios and how visualization characteristics influence user con-
fidence. But it can be stated that usability evaluation criteria such as efficiency, effec-
tiveness, intuitiveness, intelligibility and trust — which are regularly considered in
domain-specific research — are pivotal as a basis for evaluations supporting design
decisions. Designing visualization characteristics according to cognitive characteristics
are supposed to positively influence the usability [9]. As it is complex to analyze and
measure cognitive processes, a more feasible approach is to measure subjectively per-
ceived cognitive load. Cognitive load is strongly related to effectiveness, error rates and
learning times [10]. Measured either by EEG or subjective evaluation, it appeared to
differ depending on different visualization techniques. It remains unclear if different
visualizations of uncertain data also lead to differences in cognitive load [11, 12].

The difference between user-centered design and an ergonomic evaluation is that
the former aims at interface development, while the latter produces general
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recommendations supporting design decisions. Results of evaluation studies are able to
shorten the effort for user-centered development activities without completely replacing
them. General recommendations for the selection of visualization types require ergo-
nomic evaluations of common visualization types, which usually apply different
measures in order to obtain a true understanding of the strengths and weaknesses for all
visualizations in the context of a specific task. Performance data provides evidence for
the user’s ability to use the visualization. Subjective data reflects the opinion of the
user, which complements the performance data as often a higher subjective correlates
with better performance. Data visualization research focusses on the development of
specific tools, tasks or for specific user types. Research on domain independent rec-
ommendations for representations of uncertain data is rare. Ergonomics have mainly
been involved at an a posteriori stage [13—15] while large part of the work focusses on
creating new visual representations and interaction techniques [16], data representa-
tions [17, 18] or mathematical foundations [19, 20].

3 Research Question and Hypotheses

The following study therefore aims to generate recommendations for selecting the
distinct uncertainty visualization types in terms of task completion time, error rate and
cognitive effort by testing the following hypotheses: (1) H;: There is a significant
difference in task execution time per visualization type. (2) H,: There is a significant
difference in error rate per visualization type. (3) Hs: There is a significant difference in
cognitive load per visualization type.

4 Method

In order to test our hypotheses we chose a between-group design, testing visualization
type as the independent variable and task completion time, error rate and cognitive
effort as the dependent variables. Participants were exposed to an experiment website
which provided a task description and a task page where participants had to make a
decision with the help of visualizations. Afterwards they had to fill in a survey doc-
umenting their subjective perceived cognitive load and demographic parameters.

Procedure. During the first phase of the experiment, participants had to accomplish
a task using a visualization of uncertain data within the interface of a website. After
reading an introduction, the visualization was shown. Participants had to look at the
visualization and make a decision based on the information they could derive from it.
The time it took each user to come to a decision, as well as the decision value, were
recorded. During the second part, conducted to examine the cognitive effort, partici-
pants had to fill in a questionnaire.

Task. Weather prediction was chosen as the task topic because it provides
uncertain data that is most likely to be easily understood by all participants. We
suspected it would deliver the most domain-independent results, because it concerns a
major part of the population to which we want to generalize our results. In this case,
inference uncertainty [3] was the studied type of uncertainty. In the given case, a task
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Fig. 2. The interactive visualization was composed of the same visualization as in the static
visualization (SG) condition; each measure (max./min./pred. wind force and time) was equipped
with control elements (checkbox/slider).

using weather predictions was determined and participants had to make a decision. The
task required participants to choose one out of fourteen days to go sailing. They were
asked to select the day with the highest estimated wind force and the lowest uncer-
tainty, given one of three visualizations. Daily wind force and uncertainty values, and
one radio button for each day as selection options, were provided (see Fig. 2).

Data Set. Weather is usually predicted for the next five to seven days and rarely
contains explicit uncertainty values or intervals and if so, only the likelihood of a
weather phenomenon (e.g. 60 % chance of wind) is reported. Hence the 10-day
ensemble weather predictions published by the KNMI [21] were more suitable for our
purpose. The original ensemble predictions show one expected wind value per day and
changing minimum and maximum values within the time span of one day. The higher
the interval of minimum and maximum estimated wind force, the more uncertain is the
estimated wind value. We created an artificial data set, to prevent making any uncer-
tainty related decision too easy, because the more a predicted value is located in the
future, the more uncertain it is. Data was shaped, based on the structure (minimum,
maximum and estimated wind value) of the ensemble data, according to different
possible solution scenarios. In order to design a more difficult task, the original data
was extended to fourteen days. 10 days got a lower (2-4 m/s) to medium (4—6 m/s)
wind force, serving as distractive noise. Wind forces in the upper third (6-8.5 m/s, days
4,7, 13 and 14) were designed in order to increase the required attention the participant
had to invest for solving the task. These scenarios built a basis for the error rate
computation.

Visualizations. On the basis of our artificially created data set, three visualizations
were designed. By defining a visualization as visually structured, serving a better
perception of its content, we see a table as the simplest form of visualization. The table
itself was designed without any colour and graphics in order to distinguish it as much
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as possible from the graphics. In the graphic visualization the estimated wind value was
represented by a horizontal line. The dotted horizontal line represents minimum and
maximum estimated wind value and creates a contrast between both lines. The inter-
active visualization differs from the static one only by the interface control elements,
while all graphic attributes were retained. Each of the dimensions time, estimated wind
force, maximum and minimum estimated wind force were given a control component,
even if this does not contribute to the answer. Each wind value could be restricted by
sliders and particular days could be selected with a checkbox.

Questionnaire. Cognitive effort was examined by the SWAT (Subjective Work-
load Assessment Technique) definition of cognitive effort. This questionnaire tool
considers cognitive effort as the amount of concentration (Q8) and automatism (Q13)
required by a certain task [4]. The SWAT “cognitive load” subscale with its following
items was included: Q7: “The visualization caused low cognitive effort.” Q8: “Very
little concentration was required to come to a decision.” Q13: “Coming to a decision
was quite automatic”. Answers could be given on a 5-Point Likert scale (1 = “totally
agree”). Additionally, demographic and usability questions had to be answered.

Participants. Participants (N = 146) were acquired in two different ways. One part
was randomly selected from a research and non-research environment on 5 different
locations on 5 different days. The arbitrariness with which participants walked into the
experiment situation randomly assigned them to it. The other part was found by dis-
tributing the link of the experiment website on research and non-research platforms on
the internet (Facebook, Twitter, Researchgate, LinkedIn, Xing) and sent to 4 mailing
lists of the University of Amsterdam and at the national research institute for mathe-
matics and computer science in the Netherlands (CWI). 107 participants (Interactive:
n = 40, static: n = 33, table: n = 34) also filled in the questionnaire. 68 % of partici-
pants who filled in the questionnaire were male, 32 % were female, and they were
highly educated (77 % University degree or PhD). 56 data experts and 45 data novices
could be identified by participants self-reporting. The mean age was 29.3 years
(SD = 4.3 years). Excluding defective entries and incomplete answers lead to a
reduction of the sample size for some of the dependent variables.

5 Results

We define an effective and efficient visualization of uncertain data as a visualization
leading to a correct decision in the shortest amount of time with least cognitive effort.
We analyzed the task completion time, task error rate and cognitive effort for the table
(TAB), static graphic (SG) and interactive graphic (IG).

Task Time. The average task time differs per visualization: It took participants with
IG 2:19 min on average to come to a decision, while this was only 1:18 min with SG
and 1:19 min with TAB. Overall, experts, including students working in research
institutions and familiar with visualizations, completed the task faster with a time of
1:28 min than novices with 1:59 min.

A Kolmogorov-Smirnov (K-S) test after log transformation showed that the com-
pletion times of the interactive visualization [D(48) = 0.08, p > 0.05] the completion
times of the static visualization [D(50) = 0.12, p > 0.05] and the table [D(47) = 0.07,
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Fig. 3. Mean task completion time (in [log(sec.)]) of experts (n = 56) using an interactive
visualization (IG, n = 21), a static visualization (SG, n = 21) and a table (TAB, n = 14).
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Fig. 4. Transformed mean task completion time [log(sec.)] of novices (n = 45) using an
interactive visualization (IG, n = 17), a static visualization (SG, n =9) and a table (TAB,
n=19).

p > 0.05] did not significantly deviate from normality. A one-way ANOVA was
conducted to compare the effect of visualization types on task completion time. There
was a significant effect of task completion time on visualization type for the three
conditions [F(2, 142) = 5.15, p < 0.05]. This confirms our first hypothesis that there is
significant difference in task completion time among the different uncertainty visual-
ization types.

A K-S-test after log transformation showed that the task completion time of the
experts [D(56) = 0.08, p > 0.05] and non-experts groups [D(45) = 0.12, p > 0.05] did
not significantly deviate from normality. A one-way between subjects ANOVA was
conducted to compare the effect of the group (expert/non-expert) on task completion
time (Figs. 3 and 4). There was no significant effect of group on task completion time
for the two conditions [F(1, 99) = 0,85, p > 0.05]. Due to the small group sizes formed
by expert group per visualization type we did not test interaction effects.
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Table 1. Scenarios used for the computation of the error rate

No | Decision Options Rating

1 Highest wind force, lowest Day 4: Wind 8 m/s, Right
uncertainty Interval: 2 m/s

2 Higher wind force and moderate Day 13: Wind 8,5 m/s, Right
uncertainty Interval: 4 m/s

Day 7: Wind 8,5 m/s,
Interval: 3 m/s

3 High wind force und low Day 14: Wind 7,5 m/s, Wrong
uncertainty. Interval: 5 m/s

4 Low/moderate wind force and/or Day 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, Wrong
high uncertainty different intervals

Error Rate (ER). Error rates were computed for a strict definition of a right answer
(only day 4) as well as for adding day 13 and 7 as the satisfactory right answers
(see Table 1). Day 4 was defined as the day with the highest wind force and the lowest
interval between minimum and maximum estimated wind force. If day 4 is considered
the only right answer, from 145 valid answers (one missing value), 93 gave the wrong
answer. Thus, a total of 93 errors/146 answers = 0.64 ER can be stated. Most errors
were made with the interactive visualization (IG, ER = 0.74), while the fewest errors
were made with the table (TAB, 28 errors/47 answers = 0.59 ER,. The static visual-
ization led to 30 errors in proportion to 50 valid answers and an ER of 0.6. The
interactive graphic led to slightly more errors than the other two. Experts, including
students in research (57 participants), made 38 errors (0.66 ER) while 23 of 45 novices
gave the wrong answer (0.51 ER). To make the task more difficult, day 13 was
introduced with a higher wind force but larger uncertainty. According to the original
task definition it would be a wrong answer but when we consider it as an acceptable
second solution we get a much lower error rate for all visualizations. Experts make
fewer errors (0.14 ER) than novices (0.22 ER). Then, the interactive visualization
would cause a 0.14 ER, the static graphic would have the highest score of 0.22 ER and
the table would lead to a 0.19 ER. In order to test the differences error rate if day 4 is
right/wrong, a Chi-square test was conducted. There was no significant difference
between the type of visualization and whether or not the right answer was given
[X2 (2) =2.19, p > 0.5]. Likewise, there was no significant difference between the
different groups (expert/novice) and whether or not the right answer was given
(X2 (1) = 2.93, p > 0.05]. Even if day 13 and 7 were considered as right answers, no
significant difference was found. Therefore hypothesis 2 stating that there is a sig-
nificant difference in errors between different uncertainty visualizations was rejected.

Cognitive Load. Even if we selected a 3-item subscale of the SWAT questionnaire,
these items (see Table 2) had a high reliability, with Cronbach’s a = 0.691. A K-S
showed that all three items did significantly deviate from normality [Q7: D(97) = 0.19,
p <0.001, Q8: D7) =0.18, p<0.00l and Q13: D7) =0.21, p < 0.001].
A non-parametric Kruskal-Wallis test found a significant difference in subjective
cognitive load between visualization types [Q7: H(2) = 7.39, p < 0.05]. The effect of
visualization type on subjectively perceived concentration was non-significant
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Table 2. Mean values of cognitive load items (SWAT) depending on visualization type

IG SG TAB
Q7: the visualization caused low cognitive effort 2,55 (2,48 3,62
n=38n=29n=231
Q8: very little concentration was required to come to a decision | 3,00 |2,55 |3,18
n=40n =29 n =33
Q13: coming to a decision was quite automatic 2,79 1295 |3,06
n=38n=29n=32

[H (2) = 4.81, p > 0.05] as well as the item automation [Q 13: H (2) = 2.04, p > 0.05].
All three SWAT items together measure cognitive load. Two of them do not show
significant difference. We reject hypothesis 3, which assumes a significant difference
regarding cognitive effort between the different types of visualizations.

Qualitative Feedback. With the interactive visualization most participants used the
average wind force slider to find the highest and then select the day with the lowest
uncertainty interval without using other control elements (see Fig. 2). The following
quote describes the most common procedure: “I sub-selected the three highest wind
forces to see them more detailed, compared them and finally choose the one with the
highest amount and possible highest prediction.“Participants stated that not all controls
are really useful for the decision but the one they used made the decision easier. Some
would have preferred more explanation and feedback, especially when making unusual
selections. The only feedback received given an unusual selection was an empty screen
without values. Some participants also grounded their decision on the highest possible
maximum value, which showed that they did not take uncertainty into account or did
not understand the meaning of the different values. This was more often the case for
novice users. Unfortunately the questionnaire only examined the thoughts not the
interactions. In some cases it was not clear which, or whether, control elements were
used. Colour, interactivity and filtering functions were perceived as the positive attri-
butes of the visualization, while the amount of data was a negative aspect. Few people
indicated that they found it difficult to perform the task without having sailing expe-
rience. A common thinking process reported by users of the static visualization is
similar to the one of the interactive one: in the beginning participants try to understand
the meaning of graphical elements by reading the legend. Then they seek out the
highest mean values and examine the interval sizes. This process leads in most cases to
the right answer. Most of the participants grounded their decision on comparing mean
and maximum value of different days. This usually led to the answer of day 13. Most
errors occurred as a result of comparing mean, minimum and maximum values inde-
pendently from each other. While increasing the uncertainty of predictions located
further into the future, experts often included this existing knowledge into their process
of decision making. Especially when using the table visualization, participants tended
to ignore the relationship between minimum and maximum values as an uncertainty
interval. Often they started by selecting the highest minimum values and then pro-
ceeded by searching for not too high maximum values or just based their decision on
the maximum value. For the table visualization, notably fewer participants describe the
interval as influencing their decision. The typical cognitive process caused by the
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Table 3. Summary table defining which visualization is best (+), worst (—) or in between (0) in
terms of error, cognitive load and efficiency for all, experts (ex) and novices (nov).

1G SG TAB
all | ex |nov | all | ex [nov |all | ex | nov

Error rate o |+ |0 |+ —|o |+
Cognitive load |0 |0 |0 |+ |0 |0 |—

Time —]lo|o |+ |o |— |+

interactive and static visualization (searching for the highest means and then deciding
on interval size) was rarely documented in the table group. Apparently the table
emphasizes independence of values and hides their relation to each other. Overall, it
became clear that a majority of participants, especially from the non-researcher group,
had problems understanding the concept of uncertainty even though it was briefly
described in the introduction.

6 Summary and Future Work

We investigated the influence of three uncertainty visualizations on performance
measures and cognitive load. The findings show that task completion time significantly
differs per visualization. We found no significant differences in error rates depending
on visualization type. Significant differences in explicitly mentioned cognitive load
require further investigation. Considering Q7 as single indicator of cognitive load —
which would not be in line with our initial hypothesis — would show that data visu-
alizations produce lower subjectively perceived cognitive load than a numerical table
representation. We then would recommend data visualizations instead of numeric
tables for all cases where data comprehension should result in low cognitive effort.
Using the interactive visualization was most time consuming and also leads to a slightly
higher error rate than the static visualization and the table. Participants perceived the
cognitive effort induced by the interactive visualization as slightly higher than for the
SG, but still lower compared to the table. Users stated that the required concentration
and automatism during decision making was neutral for IG. Perceiving these attributes
is assumed to be difficult. Participants could complete the task most rapidly with the
SG, while also making the fewest errors with the lowest cognitive effort. The amount of
concentration needed with SG is the lowest. Slightly more time than with the static
visualization had to be spent with the table (Table 3).

While the error rate was equal, the table leads to the highest cognitive effort,
concentration and the lowest automatism. We found differences between experts and
novices. Surprisingly, novices can complete a task much faster with a numerical table
than with a SG, whereas experts are faster with a graphical visualization and much
slower with a numeric table. Experts make the least mistakes with the interactive and
the most with the static graphic visualizations. Novices make the least mistakes in the
day 4 scenario with the static visualization. In the day 4 and 13 scenario, this sur-
prisingly alters to the table visualization, while they are again better with the static one
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when also considering day 7 as a right answer. The number of participants per con-
dition has to be considered in the context of these results. This also applies to the
cognitive effort numbers between subjects. According to experts, a table requires both
the most cognitive effort and concentration, and could be used with the lowest amount
of automation. The static visualization scored best in all three categories. Similar, but
less distinctive, results were achieved by novices. On the basis of our results, we can
state the best visualization in terms of task completion time, error rate and cog-
nitive effort for data experts would be a static graphical visualization. Even if
experts complete tasks faster with a table this leads to higher error rates and cognitive
effort (assuming that it is more worthwhile to make the right decisions than making
them in the shortest period of time possible).

Given results affect visualization of uncertainty as those can be represented as table,
interactive or static visualization, but as these characteristics are more a general
visualization feature and not only related to the uncertainty, given findings might also
apply for data visualizations without uncertainty. Future studies are required to find out
whether our findings are also true for data visualization without uncertainty orwhether
the results change with an interactive visualization with improved usability, which is
more decision related. Moreover, since we found that a static visualization of uncer-
tainty can be recommended to experts, it would be interesting to investigate the detailed
attributes. It would be interesting to see if our findings also apply to other types of
uncertainties or to analyze cognitive load measurements with objective measures like
eye-tracking or pupil dilation or EEG.

Generalizing the findings to the point where designers can confidently rely on them
during design decisions would require much more experiments with several datasets,
user profiles, and visualization designs including different designs variants like colors,
sizes, bar charts or line charts, interactive features, tables with/without heat maps or
other graphical features etc.). And further work has to be done to investigate how those
features need to be designed for different user types like e.g. elderly whose perception
and cognitive functions change during life span. Present work is thus just one of the
first struggles within ergonomic evaluations generating general recommendations to
support design decisions in data and information visualization.
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