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Abstract. Path-based storytelling with Linked Data on the Web pro-
vides users the ability to discover concepts in an entertaining and edu-
cational way. Given a query context, many state-of-the-art pathfinding
approaches aim at telling a story that coincides with the user’s expec-
tations by investigating paths over Linked Data on the Web. By taking
into account serendipity in storytelling, we aim at improving and tailor-
ing existing approaches towards better fitting user expectations so that
users are able to discover interesting knowledge without feeling unsure
or even lost in the story facts. To this end, we propose to optimize
the link estimation between - and the selection of facts in a story by
increasing the consistency and relevancy of links between facts through
additional domain delineation and refinement steps. In order to address
multiple aspects of serendipity, we propose and investigate combinations
of weights and heuristics in paths forming the essential building blocks
for each story. Our experimental findings with stories based on DBpedia
indicate the improvements when applying the optimized algorithm.

Keywords: Storytelling - Serendipity * Pathfinding - A* - Linked data -
Heuristics

1 Introduction

Algorithmic storytelling can be seen as a particular kind of querying data. Given
a set of keywords or entities, which are typically, but not necessarily dissimilar,
it aims at generating a story by explicitly relating the query context with a path
that includes semantically related resources. Storytelling is utilized for example
in entertaining applications and visualizations [21] in order to enrich related
Linked Data resources with data from multimedia archives and social media [9]
as well as in scientific research fields such as bio-informatics where biologists try
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to relate sets of genes arising from different experiments by investigating the
implicated pathways [16] or discovering stories through linked books [7].

The aspects that make a story a good story are captured in the term serendip-
ity. The term depicts a mixture between casual, lucky, helpful and unforeseen
facts, also in an information context [11]. In fact, users want to be surprised and
they want to discover, confirm, and extend knowledge - but not feel unsure while
doing so. This means that users can always relate presented story facts to their
background knowledge.

In order to generate a story, graph-based pathfinding approaches are typically
utilized. The most frequently encountered algorithm to determine a path between
multiple resources is the A* algorithm [14]. This algorithm, which is based on
a graph representation of the underlying data (i.e., resources and links between
them define nodes and edges, respectively) determines an optimal solution in
form of a lowest-cost traversable path between two resources. The optimality of
a path, which is guaranteed by the A* algorithm, does not necessarily comply
with the users’ expectations.

By considering for instance large real-world semantic graphs, such as Linked
Data graphs, where links between nodes are semantically annotated, users are
able to directly interpret the transitions between nodes and thus the meaning
of a path. Caused by the inevitable increasing number of nodes and sometimes
loosely related links among them, optimal paths frequently show a high extent
of arbitrariness: paths appear to be determined by chance and not by reason
or principle and are often affected by resources that share many links. In addi-
tion, large real-world semantic graphs typically exhibit small-world properties.
Applying pathfinding approaches increases arbitrariness due to the large number
of possible relations that connect two entities in a query context.

In order optimize the serendipity level of the storytelling and to mitigate
arbitrariness of a story, we propose an in-depth extension of our algorithm [8],
embedded in the Everything is Connected Engine (EiCE) [9]. In fact, our con-
tribution is twofold: (i) We outline the extended algorithm which reduces arbi-
trariness by increasing the relevance of links between nodes through additional
pre-selection and refinement steps; and (ii) we discuss the reorganization of code
execution between client and server utilizing Linked Data Fragments. We con-
clude our paper with preliminary results and an outlook on future work.

2 Related Work

We divide related work into two categories: (i) retrieving associations, and (ii)
ranking associations. The former category considers approaches for retrieving
semantic associations, with a particular focus on paths, while the latter category
considers methods to rank semantic associations.

Retrieving Associations. The original implementation' of the “Everything is
Connected Engine” (EiCE) [9] uses a distance metric based on the Jaccard for

! http://demo.everythingisconnected.be/.
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pathfinding. It applies the measure to estimate the similarity between two nodes
and to assign a random-walk based weight, which ranks more rare resources
higher, thereby guaranteeing that paths between resources prefer specific rela-
tions over general ones [18]. The A* algorithm is applied for revealing relations
between Linked Data resources to recombine data from multimedia archives and
social media for storytelling. In contrast to the EiCE system, which heuristically
optimizes the choice of relationship explanations, the REX system [10] identifies
a ranked list of relationship explanations. A slightly different approach with the
same goal of exploratory association search is Explass [5]. It provides a flat list
(top-K) clusters and facet values for refocusing and refining a search. The app-
roach detects clusters by running pattern matches on the datasets to compute
frequent, informative and small overlapping patterns [5]. All of these approaches
where investigated on DBpedia.

Ranking Associations. The number of possible combinations to fill in the bridg-
ing resources between entities in the a knowledge base such as DBpedia is much
larger than the number of entities themselves. Thus, the likelihood that this type
of queries would result in an overwhelming number of possible results for users is
increased. Furthermore, it is unlikely that traditional ranking schemes for ranking
results may be applied to a graph representation [4]. Ranking semantic associa-
tions is different from ranking documents. In general, document ranking accord-
ing to relevance focuses on the match degree of search keywords (without formal
semantics). When ranking semantic associations, approaches semantically rein-
terpret query results in relation to the query context by using semantic distance
(or similarity) to the datasets or search graph. Alternatively, a ranking can vary
from rare relationships discovery mode to common relationships in conventional
mode [3]. Techniques that support context driven ranking take into account onto-
logical relations of the result instances in respect to the query context [2].

3 Pathfinding for Storytelling

Each path that contributes to a story is determined within a query context com-
prising both start and destination resources. Our algorithm reduces the arbi-
trariness of a path between these resources by increasing the relevance of the
links between the nodes using a domain-delineation step. The path is refined
by iteratively applying the A* algorithm and with each iteration attempting
to improve the overall semantic relatedness between the resources until a fixed
number of iterations or a certain similarity threshold is reached.

3.1 Domain Delineation

Instead of directly initializing the graph as-is by including all links between
the resources, we identify the relevance of predicates with respect to the query
context. This is done by extracting and giving higher preference to the type of
relations (predicates) that occur frequently in the query context. In this way,
we make sure that the links included in the story matter because each predicate
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Data: start, destination, graph, k
Result: list of important predicates given the context
initialize pf_irf_p_list;
predicates_start = unique predicates start;
predicates_dest = unique predicates destination;
predicates_considered = intersection predicates_start predicates_dest;
foreach predicates_considered as p do
pfirf_p = compute pf_irf p;
add pf.irf_p to list
end
reverse sort pf_irf_p_list;
take the first k elements of the list as important predicated;
Algorithm 1. Important predicate selection

that describes the semantics of a link also occurs in the direct neighborhood of
the query context. The selection of the most important predicates for domain
delineation is shown in Algorithm 1.

In order to select the links in a graph that are most relevant based on the given
start and destination nodes, we utilize an adapted variant of the TF/IDF [1]
measure: PF/IRF. The PF/IRF measure reflects the importance of a predicate
with respect to a resource in a dataset and is defined as follows:

Number of times predicate p appears in a resource

PF(p) (1)

~ Total number of predicates linked to the resource

Total number of resources

IRF(p) =1 (2)

For example, the PF/IRF computation for predicates linked to Carl Linnaeus
is explained below for the case when PF/IRF is determined in the context of
start Carl Linnaecus and destination Charles Darwin based on DBpedia.

n
Number of resources with predicate pin it

1. We determine predicates that are important in the context. This is done by
retrieving the distinct predicates that are linked to the context nodes.

2. For each predicate, we compute its occurrence based on linked nodes. In
addition, the total number of predicates linked to the resource Carl Linnaeus
is determined.

3. As a result, the total number of predicates linked to the resource Carl Lin-
naeus is 9890. For the predicates binomialAuthority and label we obtain the
values 2297 and 12, respectively. The total number of resources (including
objects) in the DBpedia is M = 27, 318, 782.

4. We compute the number of resources which are linked using each predicate by
counting the distinct number of resources through the predicate binomialAu-
thority and label in both directions. This results in 155,207 and 10,471,330
respectively.

5. By using the PF/IRF formula above we finally get the following values:
PF/IRF (binomial Authority) = 2297/9890 * In(27, 318, 782/155,207) = 1.20
and PF/IRF(label) = 12/9890 * In(27, 318, 782/10,471, 330) = 0.0011
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Since the PF/IRF value of binomialAuthority is much higher than that of label,
the predicate binomialAuthority is more likely to be included.

3.2 Algorithm

The output of the aforementioned domain delineation step can be thought of
a Linked Data graph comprising nodes and predicates which are semantically
related to the user’s query context. In order to provide a serendipitous story
based on this Linked Data graph, the graph has to be traversed via a meaningful
path including the start and end destination of the query context. A single or
multiple paths are then used as essential building blocks for generating a story.

In order to find a path in a Linked Data graph, we utilize the A* algorithm
due to its ability of computing an optimal solution, i.e., a (shortest) cost-minimal
path between two nodes with respect to the weights of the linking predicates
contained in the path. In order to reduce the number of predicates to be examined
when computing the lowest-cost path between two nodes and, thus, to achieve
an improvement in the computation time of the A* algorithm, heuristics are
frequently used to determine the order of expansion of the nodes according to the
start and end node provided within the query context. In addition to a heuristic,
the A* algorithm utilizes a weighting function in order to determine paths which
are semantically related to source and destination nodes as specified within the
query context. Thus, the serendipity of a story generated based on a single or
multiple paths is strongly connected to the underlying weighting scheme and
heuristic. In the following section, we propose and investigate various heuristics
before we will introduce different weighting schemes.

3.3 Heuristics

The objective of a heuristic is to determine whether a node in a Linked Data
graph is semantically related to the query context, i.e. source and destination
nodes, and thus a good choice for expansion within the A* algorithm. For this
purpose, we formally define a heuristic as a function heuristic : G x G — R that
assigns all pairs of nodes ny,n, € G from a Linked Data graph G a real-valued
number indicating their semantic relation.

Jaccard Distance. The first heuristic we consider is the Jaccard distance
which is a simple statistical approach taking into account the relative num-
ber of common predicates of two nodes. The higher the number of common
predicates, the more likely similar properties of the nodes and thus the semanti-
cally closer in terms of distance the corresponding nodes. The Jaccard distance
jaccard : G x G — R is defined for all nodes n,,ny € G as follows:

_ lna Nl

3)

jaccard(ng,ny) = 1
Joccardin, ) = 1= )

Normalized DBpedia Distance. Another approach that can be utilized as a heuris-
tic is the Normalized DBpedia Distance [13,19]. This approach adapts the
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idea of the Normalized Web Distance to DBpedia and considers two nodes n,
and np to be semantically similar if they share a high number of common neigh-
boring nodes linking to both n, and n,. The Normalized DBpedia Distance
NDD : G x G — R is defined for all nodes n,,n, € G as

max(log f(na)> log f(nb)) — log f(nm nb) (4)
log N' — min(log f(na), f(ns)) 7

where f(n) € N denotes the number of DBpedia nodes linking to node n € G,
f(n,m) € N denotes the number of DBpedia nodes linking to both nodes n and
m € G, and where the constant N is defined as the total number of nodes in
DBpedia, which is about 2.5M.

NDD(ng,np) =

Confidence. Another heuristic that has been proposed for semantic path search
in Wikipedia is the Confidence measure [12]. The Confidence measure is an
asymmetrical statistical measure that can be thought of as the probability that
node n, occurs provided that node n; has already occurred. The Confidence
measure P : G x G — R is defined for all nodes n,,ny € G as:

f(na,ny)
f(mw)

As opposed to the heuristics, which affect the expansion order within the A*
algorithm by estimating the potential semantic relatedness of a node, weighting
schemes are finally utilized in order to asses the quality of a path. We propose
different weighting schemes in the following section.

P(nglny) = ()

3.4 Weights

The objective of a weighting function is to determine the exact cost of a path,
which is the sum of weights of linking nodes. A weighting is formalized as a
function weight : G X G — R between the corresponding nodes from the Linked
Data graph.

Jaccard Distance. We apply the Jaccard distance in exactly the same way to
determine the weights so that the core algorithm prefers similarity in adjacent
nodes in each path. We use this distance between two directly adjacent nodes
rather than unconnected nodes in the graph.

Combined Node Degree. Moore et al. [18] proposed the combined node degree
which can be used to compute a weight that encourages rarity of items in a path.
It ranks more rare resources higher, thereby guaranteeing that paths between
resources prefer specific relations. The main idea is to avoid that paths go via
generic nodes. It makes use of the node degree, the number of in and outgoing
links. The combined node degree w : G x G — R is defined for all nodes n,,n, €
G as:

w(ng,np) = log(deg(n,)) + log(deg(ns)) (6)
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Jiang and Conrath Distance. Mazuel and Sabouret [17] suggest to take into
account the object property ontology relation between two adjacent items in a
path. The base distance measure there is the Jiang and Conrath distance [15],
which we can interpret in terms of RDF by looking at the classes of each of the
nodes and determining the most common denominator of those classes in the
ontology. Once this type is determined, the number of subjects that exist with
this type is divided by the total number of subjects. The higher this number,
the more generic the class, thus the more different two nodes.

3.5 Refinement

After a path is determined by the A* algorithm, we measure the semantic related-
ness, corresponding to the lowest semantic distance between all resources occur-
ring in the path with respect to the query context. This done for example by
counting the number of overlapping predicates (i) among each other combined
with those in the start and destination resources; and then (ii) averaging and
normalizing this count over all resources. Depending on the threshold and the
maximum number of iterations configured, this process is repeated, typically
between 3 and 10 times. Finally, the path with the shortest total distance (or
cost) is selected for the story. The distance for a path = (s1,s2, ..., s,) is com-

n—1 . .
puted based on a weight function w as distance(path) = W

4 Implementation and Presentation of Stories

The complexity of this approach is enforced by is the centrality of underly-
ing graph-indexing and data-processing algorithms. It turns out that server-side
query processing degrades the performance of a server and therefore limits its
scalability. While many approaches are suitable for a small-to-moderate number
of clients, they reveal to be a performance bottleneck when the number of clients
is increased.

Instead of running the algorithm entirely on the server, we moved CPU and
memory intensive tasks to the client. The server translates user queries into
smaller, digestible fragments for the data endpoint. All optimizations and the
execution of the algorithm are moved to the client. This has two benefits: (i)
the CPU and memory bottleneck at server side is reduced; and (ii) the more
complex data fragments to be translated stay on the server even though they
do not require much CPU and memory resources, but they would introduce to
many client-side requests.

A separate index with linked data documents to store the fragments for
fast navigating graphs served a first iteration but turned out to be only lim-
ited scalable. It required each time a pre-selection of datasets that would need
to be manually or semi automatically scheduled to be ingested or updated. The
improved algorithm? runs using Triple Pattern Fragments (TPFs)[22]. TPF pro-

2 The original algorithm can be found at https://github.com/mmlab/eice and the
improved algorithm at https://www.npmjs.com/package/everything_is_connected-
engine.
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vides a computationally inexpensive server-side interface that does not overload
the server and guarantees high availability and instant responses. Basic triple
patterns (i.e. s ?p ?0) suffice to navigate across linked data graphs (no complex
queries needed).

Obviously a set of paths is not a presentable story yet. We note that even
if a path comprise just the start and destination (indicating they are linked via
common hops or directly to each other), the story will contain interesting facts.
This is because each step in the path is separated with at least one hop from the
next node. For example, to present a story about Carl Linnaeus and Charles
Darwin, the story could start from a path that goes via J. W. von Goethe. The
resulting statements serve as basic facts, which are relation-object statements,
that make up the story. It is up to the application or visualization engine to
present it to end-users and enrich it with descriptions, media or further facts.
Table 1 exemplary explicates the idea of statements as story facts.

Table 1. The statements as story facts

About Relation | Object

Carl Linnaeus and Charles Darwin are scientists

J.W. von Goethe influenced | Carl Linnaeus and Charles
Darwin

J.W. von Goethe and Charles Darwin | influenced | Karl Marx and Sigmund
Freud

5 Evaluation

To determine whether the arbitrariness of a story is reduced, we validated that
our optimization improved the link estimation between concepts mentioned in a
story. To this end, we computed stories about the four highest ranked DBpedia
scientists, according to their PageRank score®. Resources with a high PageRank
are typically very well connected and have a high probability to lead to many
arbitrary paths.

5.1 Initial Sample

We have determined the pairwise semantic relatedness of the story about them
by applying the Normalized Google Distance (NGD). The results are shown in
Table 2.

Table 2 shows that the entities Aristotle and Physics are included in the
story when applying the original algorithm. These entities are perfect examples
of arbitrary resources in a story which decreases the consistency. Except that
they are related to science, it is unclear to the user why the algorithm ‘reasoned’
them to be in the story. When utilizing the optimized algorithm these entities
are replaced by J._W._Von_Goethe and D._Hume.

3 http://people.aifb kit.edu/ath#DBpedia_PageRank.
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Table 2. The comparison between the original and optimized algorithm shows that
the semantic relatedness can be improved in all cases except for the last two when the
entities were already closely related, their NGD in the original algorithm was already
relatively low.

No. | Query Context Original Algorithm | NGD | Optimized Algorithm | NGD
S1 | C._Linnaeus - C._Darwin | C._H._Merriam 0.50 | J._-W._Von_Goethe 0.43
S2 | C._Linnaeus - A._Einstein | Aristotle 0.70 | J..W._Von_Goethe 0.45
S3 | C._Linnaeus - I._Newton | P._L._Maupertuis |0.48 | D._Diderot 0.40
S4 | A._Einstein - I._Newton | Physics 0.62 | D._Hume 0.45
S5 | C._.Darwin - I._Newton D._Hume 0.38 | Royal_Liberty_School | 0.40

S6 | C._.Darwin - A._Einstein | D._Hume 0.43 | B._Spinoza 0.44

5.2 Detailed Sample

In order to verify our results, we also include the total semantic similarity of a
path by computing the semantic relatedness between all neighboring node pairs
in that path. As can be seen in Table 2, the optimized algorithm seemed to be
able to improve the link estimation of the resulting paths. To evaluate the results
we used three different similarity measures: W2V4 NGD [6], and SemRank [3,4].

We used an online available Wiki2VecCorpus using vectors with dimension
1000, no stemming and 10skipgrams®. We computed the similarities based on
that model by using gensim®. We implemented the NGD - generalized as the
normalized web search distance, on top of the Bing Search API, using the same
formula as depicted in the heuristic for the algorithm.

We applied SemRank to evaluate the paths, in particular to capture the
serendipity of each path. The serendipity is measured by using a factor u to
indicate the so called ‘refraction’ how different each new step in a path is com-
pared to the previous averaged over the entire path. Furthermore the information
gain is modulated using the same factor p. The information gain is computed
from the weakest point along the path and an average of the rest. So that we
get as formula for SemRank and a path p:

L—p
SemRank(, p) = [W + pul(p)] x [1 4 pR(p)], (7)

where I(p) is the overall information gain in the path and R(p) is the aver-
age refraction. There are three special cases [4]: (i) conventional with p = 0

leading to SemRank(0,p) = ﬁ, serendipity plays no role and so no emphasis
is put one newly gained or unexpected information; (ii) mixed with p = 0.5
leading to SemRank(0.5, p) = [QIl(p) + @] x [14 @}, a balance between unex-

pected and newly gained information; and (iii) discovery with u = 1 leading to

* https://code.google.com/p/word2vec/.
5 https://github.com/idio/wiki2vec.
5 https://radimrehurek.com/gensim /.
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Table 3. Abbreviations explained and short interpretation of the measures used.

Abbreviation | Description

W2Vs Word2Vector similarity using Wikipedia English Corpus
NGD Normalized Web Search Distance using Bing API

SR-C SemRank - Conventional - No particular role for serendipity
SR-M SemRank - Mixed - Serendipity plays partly a role

SR-D SemRank - Discovery - Serendipity has a major role

PR PageRank - Centrality Degree of a Node

Table 4. Detailed comparison between the original and optimized algorithm.

Measure | Higher | S1 S2 S3 S4 S5 S6 AVG | STDEV
Better?
Original | SR-C + 6.46 6.70 5.48 | 9.47 6.50 | 9.00 7.17 1.59
SR-M + 4.04 4.05 3.34 | 5.25 4.11|5.21 4.35 0.75
SR-D + 0.22 0.20 0.25]0.13 0.23/0.14 0.20 0.05
NGD — 0.64 0.69 0.48 | 0.31 0.48 | 0.29 0.48 0.16
W2Vs + ? ? 0.18 | 0.32 0.21]0.39 0.20 0.02
PR — 2631.89 | 66.27 | 179.50 | 62.39 | 357.36 | 62.39 | 166.38 | 128.58
Improved | SR-C + 9.19 8.00 7.1716.74 9.47 | 6.50 7.78 1.15
SR-M + 5.39 4.70 4.00 | 3.98 5.44 | 3.95 4.52 0.65
SR-D + 0.14 0.16 0.17 1 0.19 0.13]0.21 0.17 0.03
NGD - 0.53 0.22 0.60 | 0.38 0.32|0.55 0.45 0.14
W2Vs + 0.21 0.19 0.20 | 7 0.34 |7 0.27 0.10
PR - 40.42 97.11| 29.29|0.59 62.39 | 0.89 33.25 | 34.08

SemRank(1,p) = I(p) x [1 + R(p)], emphasizing unexpected and newly gained
information.

The DBPedia PageRank’ (PR) is an indicator for average ‘hub’ factor of
resources and their neighbourhood based links, how ‘common’ they are [20].

Table 3 summarizes and explains each of the used measures. Table 4 shows the
various improvements of the control algorithm using different measures: both the
original and optimized algorithms were configured with the same, the Jaccard
distance, weight and heuristic.

5.3 Effect of Weights and Heuristics

The results, shown in Fig. 1, confirm the findings in the detailed sample, but this
time the original algorithm uses a combination of the Combined Node Degree
(CND) and the Jaccard distance, while the optimized algorithm was configured
using a variety of heuristics and weights. To be able to compare the results with

each other each of the SR measures are normalized as follows: SRn = ﬁ(RSR).

7 http:/ /people.aifb.kit.edu/ath#DBpedia_PageRank.
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The standard deviation of the results, shown in Fig. 2, highly differs for each
case. In particular when using a random number instead of a weighting function
and a heuristic leads to a high standard deviation, which is expected - given the
randomness. The deviation is also relatively high when using the Jiang-Conrath
distance as weight (JCW) and when using the original algorithm.

On the one hand the conventional and mixed mode for SemRank put less
emphasis on novelty and focuses mainly on semantic association and information
content. The jaccard distance combination used as weight and heuristic is not
entirely surprisingly the best choice for this scenario. On the other hand the
results of the original algorithm making use of the common node degree as weight
together with the jaccard distance is confirmed by the results of the improved
algorithm with the common node degree however with a slightly lower rank in the
new algorithm. Using the JCW however leads to even higher ranks. In terms of
discovery, the original algorithm outperforms the JaccardJaccard combination.
The CNDJaccard improved algorithm is able to slightly outperform all the other
combinations.

5.4 User Judgments

We presented the output of each of the algorithms as a list of story facts using
the scientists example cases S1-S6 as shown in Table 4, typically 1 up to 20 facts
depending on the heuristic that was used. As with SemRank, we are interested
in the serendipity as a balance between unexpected facts and relevant facts. We
asked the users to rate the list of facts in terms of: (i) relevance; (ii) consis-
tency; and (iii) discovery. The users had to indicate how well the list of facts
scored according to them on a Likert scale from —2 (None, Not, Very Poor) to
+2 (Most, Very, Very Good). A score of 0 (neutral) was only possible in the
case of relevance. In total we collected 840 judgments, 20 judgments for each
combination of scenario and heuristic. The overall results of the user judgments,
rescaled to a score between 0 and 1 are: relevancy 0.45; consistency 0.45; and
discovery 0.33. The standard deviations are 0.34; 0.39 and 0.35 respectively.
The scores around 0.5 can be interpreted as a disagreement between the users.
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The overall score is below 0.5, this indicates that the majority of users judges
most of the presented list of story facts below normal or expected relevancy,
consistency and with little unexpected new facts. The standard deviation of the
user judgments is relatively high, which means that they cover a broad range of
judgments some users are very positive while other users are very negative. The
mixed results are likely due to varying expectations: some might expected more
in-depth results while others appreciated the basic facts about the scientists. The
suggested stories that center around a certain via-fact are not always considered
relevant by some users even though the algorithms might consider them so. Some
examples:

— The users least agreed on the following facts about Carl Linnaeus and Albert
Einstein, a score of 0.48 (very little effect) and standard devation of 0.39
when using the JCWJaccard :

Carl Linnaeus and Baruch Spinoza are Expert, Intellectual and Scholar
Baruch Spinoza’s and Albert Einstein’s are both Pantheists Intellectuals and
Jewish Philosophers

— The most relevant and consistent facts were found between Charles Darwin

and Carl Linnaeus: a score of 0.65 and 0.6 respectively with CNDJaccard.
Copley Medal’s the award of Alfred Russel Wallace and Charles Darwin
Alfred Russel Wallace’s and Charles Darwin’s awards are Royal Medal and Copley Medal
Alfred Russel Wallace and Charles Darwin are known for their Natural
selection
Carl Linnaeus and Alfred Russel Wallace have as subject ‘Fellows of the
Royal Society’
Carl Linnaeus and Alfred Russel Wallace are Biologists and Colleagues

— In terms of discovery the highest score has relatively little agreement among
users: 0.48 and standard deviation 0.42 with JCWJaccard:

Albert Einstein’s and Charles Darwin’s reward is Copley Medal.

The scores for relevancy, consistency and discovery as unexpected - but rel-
evant - facts are highly dependent on the user who judges. Some users might be
interested in the more trivial path as well in some cases. Nevertheless, we used
the overall judgment as a baseline to compare the judgments with the same
combinations of heuristics and weights as before.

+0.12
+0.10

+0.08

+0.06 W JaccardJaccard
JaccardNDD
+0.04 JaccardConfidence
40.02 p CNDJaccard
,/ I m JCWJaccard
0.00 I Z I Random

B Original
-0.02

-0.04

-0.06
Relevance Consistency Discovery

Fig. 3. The effect of the heuristics according to user judgments compared to the overall
median. The JCWJaccard confirms already good results with SemRank. The CNDJac-
card scores relatively well. (Color figure online)
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6 Conclusions and Future Work

We proposed an optimized pathfinding algorithm for storytelling that reduces
the number of arbitrary resources revealed in paths contained in the story. Pre-
liminary evaluation results using the DBpedia dataset indicate that our proposal
succeeds in telling a story featuring better link estimation, especially in cases
where the previous algorithm did not make seemingly optimal choices of links. By
defining stories as chains of links in Linked Data, we optimized the storytelling
algorithm and tested with several heuristics and weights. The most consistent
output was generated with the Jaccard distance used both as weight and heuris-
tic; or as heuristic in combination with the Jiang-Conrath distance as weight.
The most arbitrary facts occur in a story when using the combined node degree
as weight with the Jaccard distance as heuristic, both in the optimized and the
original algorithm. User judgments confirm the findings for the Jiang-Conrath
weight and the original algorithm and for the Jaccard distance used as weight
and heuristic in terms of discovery. There is no clear positive effect however
according the users in terms of consistency and relevancy there.

Future work will focus on validating the correlation between the effect of the
link estimation on the arbitrariness as perceived by users and computational
semantic relatedness measures such as SemRank. Additionally, we will measure
the scalability of our approach by implementing the algorithms (i) solely on
the client, (ii) completely on the sever, and (iii) in a distributed client/server
architecture.

References

1. Aizawa, A.: An information-theoretic perspective of Tf-idf measures. Inf. Process.
Manag. 39(1), 45-65 (2003)

2. Aleman-Meza, B., Halaschek, C., Arpinar, I.B., Sheth, A.P.: Context-aware seman-
tic association ranking (2003)

3. Aleman-Meza, B., Halaschek-Weiner, C., Arpinar, I.B., Ramakrishnan, C., Sheth,
A.P.: Ranking complex relationships on the semantic web. IEEE Internet Comput.
9(3), 37-44 (2005)

4. Anyanwu, K., Maduko, A., Sheth, A.: Semrank: ranking complex relationship
search results on the semantic web. In: Proceedings of the 14th International Con-
ference on World Wide Web, pp. 117-127. ACM (2005)

5. Cheng, G., Zhang, Y., Qu, Y.: Explass: exploring associations between entities via
top-k ontological patterns and facets. In: Mika, P., et al. (eds.) ISWC 2014, Part
I1. LNCS, vol. 8797, pp. 422-437. Springer, Heidelberg (2014)

6. Cilibrasi, R.L., Vitanyi, P.M.: The google similarity distance. IEEE Trans. Knowl.
Data Eng. 19(3), 370-383 (2007)

7. De Meester, B., De Nies, T., De Vocht, L., Verborgh, R., Mannens, E., Van de
Walle, R.: StoryBlink: a semantic web approach for linking stories. In: Proceedings
of the 14th International Semantic Web Conference (ISWC) Posters and Demon-
strations Track (2015)

8. De Vocht, L., Beecks, C., Verborgh, R., Seidl, T., Mannens, E., Van de Walle,
R.: Improving semantic relatedness in paths for storytelling with linked data on



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Effect of Heuristics on Serendipity 251

the web. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C.,
Zimmermann, A. (eds.) The Semantic Web: ESWC 2015 Satellite Events. LNCS,
vol. 9341, pp. 31-35. Springer, Heidelberg (2015)

De Vocht, L., Coppens, S., Verborgh, R., Vander Sande, M., Mannens, E., Van
de Walle, R.: Discovering meaningful connections between resources in the web
of data. In: Proceedings of the 6th Workshop on Linked Data on the Web
(LDOW2013) (2013)

Fang, L., Sarma, A.D., Yu, C., Bohannon, P.: Rex: explaining relationships between
entity pairs. Proc. VLDB Endow. 5(3), 241-252 (2011)

Foster, A., Ford, N.: Serendipity and information seeking: an empirical study. J.
Doc. 59(3), 321-340 (2003)

Franzoni, V., Mencacci, M., Mengoni, P., Milani, A.: Heuristics for semantic path
search in Wikipedia. In: Murgante, B., et al. (eds.) ICCSA 2014, Part VI. LNCS,
vol. 8584, pp. 327-340. Springer, Heidelberg (2014)

Godin, F., De Nies, T., Beecks, C., De Vocht, L., De Neve, W., Mannens, E., Seidl,
T., de Walle, R.V.: The normalized freebase distance. In: Presutti, V., Blomqvist,
E., Troncy, R., Sack, H., Papadakis, 1., Tordai, A. (eds.) ESWC Satellite Events
2014. LNCS, vol. 8798, pp. 218-221. Springer, Heidelberg (2014)

Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 100-107 (1968)

Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and
lexical taxonomy (1997). arXiv preprint arXiv:cmp-lg/9709008

Kumar, D.; Ramakrishnan, N., Helm, R.F., Potts, M.: Algorithms for storytelling.
IEEE Trans. Knowl. Data Eng. 20(6), 736—751 (2008)

Mazuel, L., Sabouret, N.: Semantic relatedness measure using object properties in
an ontology. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 681-694. Springer,
Heidelberg (2008)

Moore, J.L., Steinke, F., Tresp, V.: A novel metric for information retrieval in
semantic networks. In: Proceedings of 3rd International Workshop on Inductive
Reasoning and Machine Learning for the Semantic Web (IRMLeS 2011), Heraklion,
Greece, May 2011

Nies, T.D., Beecks, C., Godin, F., Neve, W.D., Stepien, G., Arndt, D., Vocht,
L.D., Verborgh, R., Seidl, T., Mannens, E., de Walle, R.V.: A distance-based app-
roach for semantic dissimilarity in knowledge graphs. In: Proceedings of the 10th
International Conference on Semantic Computing (2016, accepted)

Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web (1999)

Vander Sande, M., Verborgh, R., Coppens, S., De Nies, T., Debevere, P., De Vocht,
L., De Potter, P., Van Deursen, D., Mannens, E., Van de Walle, R.: Everything is
connected: using linked data for multimedia narration of connections between con-
cepts. In: Proceedings of the 11th International Semantic Web Conference Posters
and Demo Track, November 2012

Verborgh, R., et al.: Querying datasets on the web with high availability. In: Mika,
P, et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 180-196. Springer, Hei-
delberg (2014)


http://arxiv.org/abs/cmp-lg/9709008

	Effect of Heuristics on Serendipity in Path-Based Storytelling with Linked Data
	1 Introduction
	2 Related Work
	3 Pathfinding for Storytelling
	3.1 Domain Delineation
	3.2 Algorithm
	3.3 Heuristics
	3.4 Weights
	3.5 Refinement

	4 Implementation and Presentation of Stories
	5 Evaluation
	5.1 Initial Sample
	5.2 Detailed Sample
	5.3 Effect of Weights and Heuristics
	5.4 User Judgments

	6 Conclusions and Future Work
	References


