
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Statistically sound experiments with OpenAirInterface

Cloud-RAN prototypes

CLEEN 2016

 Niccolò Iardella
(1)
, Giovanni Stea

(1)
, Antonio Virdis

(1)
, Dario Sabella

(2)
,

Antonio Frangioni
(1)

(1) University of Pisa, Italy; (2) Telecom Italia Lab, Turin, Italy

niccolo.iardella@for.unipi.it,
giovanni.stea@unipi.it, a.virdis@iet.unipi.it,

dario.sabella@telecomitalia.it, frangio@di.unipi.it

Abstract— Research on 4G/5G cellular networks is progressively shifting to

paradigms that involve virtualization and cloud computing. Within this context,

prototyping assumes a growing importance as a performance evaluation meth-

od, besides large-scale simulations, as it allows one to evaluate the computa-

tional requirements of the system. Both approaches share the need for a struc-

tured and statistically sound experiment management, with the goal of reducing

errors in both planning and measurement collection. In this paper, we describe

how we solve the problem with OpenAirInterface (OAI), an open-source sys-

tem for prototyping 4/5G cellular networks. We show how to integrate a sound,

validated software, namely ns2-measure, with OAI, so as to enable harvesting

samples of arbitrary metrics in a structured way, and we describe scripts that al-

low structured experiment management, such as launching a parametric simula-

tion campaign and harvesting its results in a plot-ready format. We complete the

paper by demonstrating some advantages brought about by our modifications.

Keywords: LTE-A, Cloud-RAN, OpenAirInterface, performance evaluation,

experimentation, ns2-measure

1 Introduction

Future 5G cellular networks will employ virtualization and cloudification of the Ra-

dio Access Network (RAN) [12], whereby the baseband processing is done on virtual

baseband units (BBU) running on commodity hardware, leaving only antennas on

site. On the other hand, software products, both commercial and open-source, are

already available that emulate a software BBU compliant with the 3GPP standards.

One such product OpenAirInterface (OAI), which runs an LTE protocol stack entirely

implemented in software [2]. OAI also allows one to carry out experiments using

hardware equipment and commercial terminals. The above two fact motivate a shift in

the research paradigm, which is progressively based on prototypes of cellular net-

works. In fact, OAI has been and is being widely used in EU-funded and academic

projects in the field of cellular networks. The Flex5GWare EU project [6], where the

authors of this paper are involved, aims at building cost-effective hardware/software

platforms for 5G so as to increase the hardware versatility and reconfigurability, in-

crease capacity and decrease the overall energy consumption. Within it, one of the

proof of concepts will consist in evaluating resource allocation algorithms in a Cloud-

RAN environment, which will be realized running a customized version of the

OpenAirInterface software on virtual machines.

This implies the need to get credible performance metrics out of the OAI software,

for both the cell and the user, and at several levels: what is the cell MAC-level

throughput, how user application-level throughput varies with the number of users or

interfering eNBs, how much energy is consumed, etc. It goes without saying that the

above activity must be done with a long-term perspective, so as to keep the software

maintainable, and ensuring that rigorous, unbiased and statistically sound results are

obtained. In this respect, it has already been observed in [7], [8] that an unstructured

approach to experiment management is often a major source of bugs, and ultimately

affects the credibility of the results.

Unfortunately, OAI offers little in the way of a structured experiment management,

leaving the task almost entirely to the user. First of all, emulation scenarios are de-

fined in non-parametric XML files. This requires a user to manually change the XML

file so as to modify the parameters (e.g,. in order to vary the number of users), possi-

bly in several parts simultaneously, which is error-prone. For instance, even generat-

ing a new replica of the same emulation scenario with a different random seed be-

comes non trivial. As far as measure gathering is concerned, OAI offers two basic

ways: one is system logging printouts, which can be redirected to file and parsed (us-

ing standard tools such as grep). The other is a built-in dashboard, which shows the

instantaneous situation at the physical level in terms of channel response and signal

power. These tools, which were probably meant for different purposes – namely, log-

ging/debugging for the first one, and debugging and providing a quick visual feed-

back regarding physical-layer parameters for the second, are not suited for a systemat-

ic performance evaluation. For instance, the throughput is computed having the simu-

lation duration at the denominator, regardless of when the generator is actually start-

ed. This implies that – if generators are started at different times in the simulation –

the throughput results are incorrect. Moreover, there is no way to define a warm-up

phase, where samples are not collected. Finally, the overhead of writing on file the

entire system log (of which just a minor portion may be of interest) is non negligible.

In this paper we describe how to automate experiment management with OAI so as

to make it faster, structured and less error prone. First of all, we show how to integrate

an existing software, namely ns2-measure [7], into OAI. ns2-measure was originally

developed for the ns2 simulator, and offers to researchers a framework for data col-

lection and creation of statistically sound results. We describe the steps to compiling

the two software together (something made slightly tricky by the fact that OAI is

written in ANSI C, whereas ns2-measure is in C++), and the few, localized modifica-

tions required to OAI. This enables a user to gather a wide range of measures of inter-

est in a seamless way, adding a negligible overhead to the OAI running time and

memory consumption. Moreover, we describe intuitive, yet general scripts that can be

used to generate parametric emulation scenarios and aggregate performance metrics

across a set of parametric scenarios to facilitate producing output graphs and tables.

As for parametric scenario generation, our script describe the set of parameters that

should vary across the scenarios (therein including the initial seed for the random

generators when independent replicas are required) at a high level, and the script gen-

erates the XML scenario files to run the OAI emulation and manages their execution.

As for aggregation of performance metrics, we show scripts that allow to compute

means and related confidence intervals, taking measures from ns2-measure outputs or

OAI built-in logging facilities.

The rest of the paper is organized as follows: Section 2 reports background infor-

mation on OAI. Section 3 describes the ns2-measure software. In Section 4 we de-

scribe our tools and explain how to integrate ns2-measure with OAI. We report some

example evaluation results in Section 5, and we conclude the paper in Section 6.

2 OpenAirInterface

OpenAirInterface (OAI) is an open-source platform for wireless communication

systems, developed at Eurecom’s Mobile Communications Department. It allows one

to prototype and experiment with LTE and LTE-Advanced (Rel-10) systems, so as to

perform evaluation, validation and pre-deployment tests of protocol and algorithmic

solutions. OAI allows one to experiment with link-level simulation, system emulation

and real-time radio frequency experimentation. As such, it is widely used to setup

Cloud-RAN and Virtual-RAN prototypes. It includes a 3GPP-compliant LTE protocol

stack, namely the entire access stratum for both eNB and UE and a subset of the

3GPP LTE Evolved Packet Core protocols [2].

OAI can be used in two modes: the first one is a real-time mode, where it provides

an open implementation of a 4G system interoperable with commercial terminals, so

as to allow experimentation. This requires using a software-defined radio frontend

(e.g. the Ettus USRP210 external boards [3]) for airtime transmission.

The second mode is an emulation mode, where software modules emulating eNBs

and UEs communicate through an emulated physical channel. In the emulation mode,

scenarios are completely repeatable since channel emulation is based on pseudo-

random number generation. In emulation mode, OAI can emulate a complete LTE

network [1], using the oaisim package. Several eNBs and UEs can be virtualized on

the same machine or in different machines communicating over an Ethernet-based

LAN. The PHY and the radio channels are either fully emulated (which is time-

consuming) or approximated in a PHY abstraction mode, which is considerably faster.

In both cases, emulation mode runs the entire protocol stack, using the same MAC

code as the real-time mode. This way, the oaisim package can be used to alpha-test

and validate new implementations or sample scenarios, dispensing with all the prob-

lems that airtime transmission on a SDR frontend may bring about. Since the same

code is used in the emulation and the real-time mode, a developer can then switch

seamlessly to the real-time environment.

OAI includes the OAI Traffic Generator (OTG), which can be mounted on top of

the LTE stack and used to run an emulation with different loads [4]. The generator

includes predefined traffic profiles, such as device-to-device, gaming, video stream-

ing and full buffer, and can be customized using OAI scenario descriptors (OSDs).

OAI’s structure reflects the one of the LTE protocol stack: every layer of the stack

is composed of one or more modules, implemented by one or more C libraries. Every

layer or module uses calls to interface functions of other modules to retrieve status

information and to encapsule/decapsule data. For example, the MAC scheduling

module gets called by the main MAC module at every subframe and is implemented

in eNB_scheduler.c and pre_processor.c files [9]. Every application in the OAI suite

(such as oaisim and the real time eNB) instantiates and initializes the stack layers and

the other modules it needs: oaisim, for example, makes use of other modules for the

emulation capabilities, the most notable being the OTG, the OAI Channel Generator

(OCG) which emulates the radio channel and the OAI Mobility Generator (OMG)

that emulates the movements of the nodes. After the init phase, the application enters

in a loop phase where modules and layers execute their functions on a per-subframe

basis; lastly, before exiting, the main process deallocates the layers and possibly exe-

cutes termination operations (e.g., output of performance stats).

OAI software uses three methods for the output of performance metrics:

• a graphical dashboard that can be optionally shown while the system emulation or

the eNB implementation runs, which shows received/sent signal power, channel

impulse and frequency responses, constellation diagram and PUSCH/PDSCH

throughput (see Fig. 1).

• A series of prints in the standard output logging of the system emulation, which

appear when the traffic generator is enabled, and show traffic-related metrics (sent

and received bytes, application level throughput, one-way delay and so on).

• One or more files with PHY level stats on HARQ processes and DLSCH/PDSCH

throughput.

All these methods are useful to get a rough idea of how the system behaves, but

none of them, taken alone, is sufficient to profile it completely and effectively: the

graphical dashboard is shown in real-time, it leaves no logs and it is destroyed once

OAI terminates. The traffic generator stats have the disadvantage of being written on

standard output together with the entire OAI log, so they must be collected using

grep or other text search tools, which can be more and more impractical as the num-

ber of simulation runs and input parameters increases. The same can be said of the

output files for the PHY stats. Another limitation of the traffic generator stats is that

throughput is calculated on the entire emulated time, taking no account of the initial

warmup time in which the system is running but the generator is not.

In general, OAI is missing a structured, flexible and extendable system for the col-

lecting and managing performance measures. Different metrics get collected and

shown in different ways and the only way for the user to keep track of experiment

results is to tailor custom scripts to launch OAI and extract the desired data from the

existing outputs. The time interval of samples collection cannot be selected and this

makes the analysis of dynamic scenarios difficult when not impossible and leads to

warped measurements when warmup time is a critical factor.

Moreover, built-in metrics might not be sufficient for research purposes. For ex-

ample, the performance evaluation of MAC scheduling algorithms would need to

keep track of resource block allocation, which is not among the built-in metrics. In

this case, the lack of an efficient and robust metrics collection framework makes cus-

tom metrics hard to implement and collect, and even when they are implemented they

are bound to the same limits of the built-in ones.

Fig. 1. Detail of the graphical dashboard showing in real-time the physical-level stats of a node

in OAI system emulation.

3 Ns2-measure

The ns2-measure package [7] is a C++-based framework for collection of statistics. It

was originally developed for the ns2 network simulator [10], offering an interface to

TCL, its main configuration language. Its C++ API however, can be used for integra-

tion into any C/C++ code. The main goal of ns2-measure is to provide researchers a

structured and ready-to-use tool for collection of statistically sound measurements.

More in detail it can be used for both collecting samples of user-defined metrics dur-

ing the simulation, and to estimate the average values or the probability density func-

tion (PDF) of the above samples. Metrics can be of three types, depending on how

their samples are collected, as listed below:

• RATE, which are time-related and time-averaged, e.g. the throughput;

• CONTINUOUS, describing a continuous-time stochastic process (either discrete-

or continuous-state), i.e. one whose trajectories are continuous in time. An example

is the number of packets in the queue during the simulation, which is a discrete

quantity (hence discrete-state) that varies at any time (hence continuous-time);

• DISCRETE, describing a discrete-time stochastic process, i.e. one whose trajecto-

ries are impulses. An example is the end-to-end delay of a flow, a continuous quan-

tity measured at successive packet departure instants (hence discrete-time).

The framework also offers the user support for independent replicas, which are

used to obtain statistically sound results (e.g., with associated confidence intervals).

Each metric (of any type) can be defined for more than one entity at a time within

the system. This allows a user to obtain both system-wide and per-entity statistics. For

example, when simulating an LTE network one might be interested in both a cell-

level and a per-UE throughput, and both can be defined and sampled simultaneously.

Data collection can be enabled and disabled dynamically at runtime by flipping the

collect variable. This allows the user some (very much needed) freedom: for instance,

she can define a warm-up time wherein statistics are not collected, or she can meas-

ure the throughput of intermittent applications in a meaningful way, by turning on

throughput sample collection only when a burst of activity occurs.

The core element of ns2-measure is the Stat C++ class. It is responsible for creat-

ing data structures for each metric at the beginning, collecting samples while the emu-

lation runs and producing output at the end. It also keeps a reference to the elapsed

emulated time, to tag time-related metrics, such as the RATE ones. These operations

are made available via three main C++ functions. The Stat::command instantiates the

data structures for the user-defined metrics, activates and deactivates the collection

and manages the output file. The available metrics are configured via file and are

included into the system during compilation. The above data structures are imple-

mented in the Sample class, which stores the measured samples for each entity, keep-

ing track of their total, maximum and minimum values.

The Stat::put function is used to insert data collection probes within the code. This

function takes as a parameter the name of the considered metric, the ID of the entity

for which the sample is collected and the measured value, which will be stored in the

appropriate instance of the Sample class, possibly updating the max and min values.

The Stat::print function is used to finalize an experiment. More in detail, it com-

putes and stores to a file the estimated mean value of each metric. Files will also con-

tain the run-id of the experiment, which can be used when multiple replications of the

same scenario are run, e.g. to aggregate metrics across the various replications.

The output of experiments performed on complex and possibly large system can

grow quite big in some cases. For this reason results are stored into binary files, thus

reducing the occupancy with respect to text files. If needed, the results can be con-

verted to human-readable text format using external tools that come together with the

ns2-measure framework.

4 Contributions and integration

In this section we first explain how to integrate ns2-measure with OAI, and then

show scripts that automate experiment management, so as to facilitate running entire

simulation campaigns.

4.1 Integrating ns2-measure

As outlined before, the core of ns2-measure is the Stat class, which collects the raw

samples from user-defined probes. It is a static C++ class which uses the method

Stat::command to implement the TCL interface and interpret the commands specified

in Table 1. The other main method is Stat::put, which implements the collecting

probe and accepts as input parameters the name and type of the metric and the value

of the sample. The metrics’ names are defined in two headers, metrics.h (which con-

tains macros with names to use when calling the put method) and metric_names.h

(which contains human-readable names to be used when saving the output).

Since the Stat class has been developed with ns2 in mind, a certain effort of adapta-

tion must be spent to port it on other simulators. In particular we need to work: a) on

code interoperability so that the Stat methods can be used in the new environment; b)

on the method that the Stat collecting probe must use to read the simulated time when

acquiring samples, and c) since build automation tools (such as CMake) are likely to

be used, we need to make them aware of the new code. The following passages de-

scribe the specific interventions on OAI. However, they are general enough to apply

to other C++-based simulation softwares.

Code wrapping - OAI is mainly implemented in C and makes no use of the TCL

language, so the static class must be modified so as to allow its methods to be called

from the C code. To achieve this, we implemented a wrapping library which contains

one C function per TCL command: for example stat_cmd_add() calls Stat::command,

thus emulating the "add" TCL command and so on. Similarly, the stat_put() function

wraps the Stat::put method (see Fig. 2).

Simulated-time reading – On collecting a sample, the Stat class calls an ns2

method to read the current value of the simulated time. In OAI these calls must be

replaced by a read to the time_ms variable, which is updated at every new subframe.

 Build tools – Since OAI uses CMake [11] as an automation tool for building, we

added as a libraries the Stat class and the wrapping library, and we added these librar-

ies to the OAI System Emulation target. To speed up testing, we added the ability to

activate or deactivate the ns2-measure functionality at run time via configuration file,

without having to recompile the target.

Table 1. Main commands of ns2-measure TCL interface.

$ stat file <filename> Specify the output file

$ stat on Enable sample collection

$ stat off Disable sample collection

$ stat print Print stats on output file

Stat wrapper library

Statstat_cmd_file()

stat_cmd_add()

stat_cmd_on()

stat_cmd_print()

stat_put()

Stat::command()

Stat::put()

«on»

«add»

«file <filename>»

«print»

stat_init() {

Fig. 2. The wrapping library contains one wrapper function per TCL command and a wrapper

function for the probe. An initialization procedure is defined for the sake of convenience.

In order to use the new code, the OAI code must be modified in at least two points,

namely the initialization phase and the termination phase, plus all the points where we

want to put a probe in the loop phase. In the initialization phase we need to call the

file command, specifying the name of the output file (again, the file name can be

specified through a configuration file), and the add command, once per metric. In

this phase one may want to activate measure collection using the on command (alter-

natively, this can be deferred to the time when the traffic is actually started). For the

sake of convenience, all these operations are gathered in a stat_init() function. In the

termination phase we need to call the print command so that the output metrics are

calculated and the output is printed of the specified file. In the loop phase, probes are

added where required. The procedure to add a new metric is thus quite straightfor-

ward, and consists of the following steps:

• define its name in the ns2-measure files metrics.h and metrics_names.h,

• add a call to stat_add() inside the stat_init() function (stat_init.c),

• add the probe using stat_put() wherever samples are to be collected, including the

stat.h header. For example, if we need the number of resource blocks allocated by

the scheduler, we need to insert a stat_put() call inside the pre_processor.c file.

Note that the target code must be recompiled only when new probes and/or new

metrics are inserted, while ns2-measure can be (de)activated via configuration file.

4.2 Experiment management automation

The method used by OAI to define scenarios is XML files, the so-called OAI Sce-

nario Descriptors (OSDs). These allow a very fine-grained customization of the emu-

lation scenario, editing parameters such as the transmission power of the eNB anten-

nas, the mobility model for the nodes and the profile of the traffic flows. However,

OSDs do not support variable parameters, so when running an emulation campaign a

different OSD must be prepared for each combination of parameter values.

To fill this gap we implemented an automatization script package: the main script

takes as input a configuration file where parameter values or ranges of values are

specified; then, for every combination of parameter values it calls another script

which generates a specific XML descriptor, and launches the OAI system emulation

using that descriptor; lastly, another script parses the results from different runs and

gathers them in a CSV file. For example, if we want to try the same scenario with 1, 2

or 3 UEs, we specify the parameter numUEs as {1, 2, 3} and the script will generate

three different XML descriptors, launch OAI three times, and merge the three sets of

results in a CSV file. This process is shown in Fig. 3.

5 Experimental results

The purpose of this section is twofold. On one hand, we show that the integration

of ns2-measure framework has a negligible impact on OAI performance. On the other

hand, we exemplify the benefits that our framework brings to the user by showing that

different (and unbiased) throughput results are obtained by allowing sample collection

to start with the traffic generation (instead of at time zero), and by showing that com-

paring different metrics allows a user to get an immediate insight on the behavior of

the system.

To assess the impact of the new code on performance, we evaluate the execution

time and memory occupancy as a function of the traffic rate, both with and without

ns2-measure samples collection activated.

We run OAI System Emulation (oaisim) on a machine with an AMD FX 8350 4

GHz CPU, 8 GB RAM, running Xubuntu 14.04.2, emulating an eNB sending down-

link traffic to a UE, using increasing traffic rates. The main emulation parameters are

summarized in Table 2.

A note on traffic generation: OAI allows one to specify the size of generated traffic

packets at the application level. OAI appends 55 bytes of TCP/IP headers and OTG

metadata [9] to each packet. If we specify a packet size of 100 B and an inter-packet

time of 1 ms, we obtain a data rate of 100×8=800 kbits/s at the application level, or

(100+55)×8=1240 kbits/s at the IP level. OAI statistics refer to IP-level traffic.

We added 12 custom metrics, which get collected on a per-subframe basis. This

adds 12 function calls to the init phase and 12×1000=12000 function calls per second

to the loop phase. Each configuration/scenario is run three times with three different

seeds, for a total of nine runs per configuration. To evaluate the execution time and

the memory occupancy (more specifically the maximum resident set size, i.e., the

maximum amount of memory the process allocates during its execution) we use the

/usr/bin/time command [5].

Fig. 4 shows the results for the execution time: the introduction of ns2-measure

samples collection introduces minimal to null overhead. Also memory occupancy is

unchanged, being about 800000 kB for every run.

Campaign manager script

Campaign

configuration

file

Campaign

results

OSD

Generator

script

Results

handling

script Scenario

results

XML OSD

oaisim
ns2m

Fig. 3. Automated campaign management using handling scripts.

Table 2. Main parameters for the performance evaluation campaign.

Parameter Value

Emulated time 20000 TTIs (20 s)

eNBs 1

UEs 1

Mobility and position Static - eNB and UE are 200 m apart

Traffic type CBR: 800, 1600, 2400, 3200 kbits/s at the application level

ns2-measure metrics 12

Fig. 4. Execution time of OAI system emulation, determined with /usr/bin/time, emulating 20

seconds of DL CBR traffic from an eNB to a UE.

We now show that our solution eliminates biases in throughput measurement.

Since the traffic generator needs the underlying protocol stack and an active radio

bearer to work, it needs to wait for the initialization of the stack and the establishment

of the RRC connection. The OAI in-code documentation fixes the minimum starting

time at 310 ms [14], and we chose a starting time of 500 ms in our experiments.

The native stat collection uses the entire emulation time to calculate traffic

throughput and other rates, without considering the traffic starting time. Conversely,

in our experiments, ns2-measure started collecting samples when the traffic started. In

Fig. 5 we show the IP-level throughput of the UE, as measured by the native traffic

generator and by ns2-measure. As expected, the values reported by ns2-measure are

slightly higher, since the measurement interval is 500ms shorter (as it should be).

This very experiment can also be used to show another benefit of using a flexible

metric collection: a sub-linear behavior can be observed in the throughput curve,

which suggests that the network approaches saturation as the offered load increases.

This claim can be easily verified by collecting the number of resource blocks (RBs)

allocated to the UE by the eNB scheduler (25 being the maximum number of RBs for

the specific configuration). The number of RBs is shown on the right vertical axis,

and clearly shows that the knee in the throughput is due to resource depletion. The

same metric can also be used to infer the energy consumed by the eNB, according to

well-established models of energy consumption ([13]), e.g. to evaluate the energy

efficiency of the scheduling algorithm in use.

Moreover, while the statistics offered by OTG are calculated above the LTE pro-

tocol stack (i.e., at the IP level), with ns2-measure we can probe all the layers, e.g. to

assess the overhead introduced by each of them. Fig. 6 shows the throughput meas-

7

7.5

8

8.5

9

9.5

10

800 1600 2400 3200

E
x
ec
u
ti
o
n
 t
im

e
[s
]

CBR traffic (kbits/s)

With ns2m

Without ns2m

ured at different layers. As we expect, the closer we get to the physical layer the high-

er the throughput is, as more headers are added to the application payload.

Fig. 5. IP-level throughput between an eNB and a UE as measured by OAI traffic generator and

ns2-measure (left vertical axis); number of RBs allocated to the UE (right vertical axis).

Fig. 6. Data throughput between an eNB and a UE, using different profiles of DL CBR traffic,

as measured by ns2-measure at different layers of the LTE protocol stack.

6 Conclusions

This paper presented a set of tools to automate experiment management with a C-

RAN prototype realized through OpenAirInterface. These tools allow a user to create

a whole simulation campaign, i.e., to launch (possibly several replicas of) scenario

where parameters vary, and to harvest the results obtained in the above campaign in a

plot-friendly way. Having these tools spares a user time-consuming and error-prone

0

5

10

15

20

25

30

35

40

0

500

1000

1500

2000

2500

3000

3500

1240 2040 2840 3640

#
 o
f
R
B
s

IP
-l

e
ve

l
th

ro
u

g
h

p
u

t
[k

b
it

s/
s]

IP level CBR traffic (kbits/s)

RBs

OAI troughput

ns2m troughput

0

500

1000

1500

2000

2500

3000

3500

1240 2040 2840 3640

T
h

ro
u

g
h

p
u

t
[k

b
it

s/
s]

CBR traffic (kbits/s)

OAI IP

Below IP Physical

tasks, which can be automated, thus enhancing the credibility of her simulations and

increasing her productivity.

As a companion and complementary contribution, we integrated a structured and

validated measuring framework, namely ns2-measure, into OAI. This allows one to

define metrics in an easy way, and enable/disable measure gathering dynamically. On

one hand, this speeds up debugging, since it allows a user to analyze the reasons of

unexpected behaviors in the system by cross-checking different related metrics. On

the other hand, this presents the user with a simple unified approach to harvesting

measures, thus facilitating experimenting in the large (e.g., in teamwork).

7 Acknowledgements

The subject matter of this paper includes description of results of a joint research

project carried out by Telecom Italia and the University of Pisa. Telecom Italia re-

serves all proprietary rights in any process, procedure, algorithm, article of manufac-

ture, or other result of said project herein described.

This work was partially supported by the European Commission in the framework

of the H2020-ICT-2014-2 project Flex5Gware (Grant agreement no.671563).

8 References

[1] R. Wang et al. “OpenAirInterface - An effective emulation platform for LTE and LTE-Advanced”,
Proc. of ICUFN 2014, Shanghai, China: IEEE, 2014, pp. 127–132.

[2] OpenAirInterface website, Url: http://www.openairinterface.org. (accessed January 2016)

[3] Ettus Research USRP B200/B210 Bus Series, Url: http://www.ettus.com/content/files/b200-
b210_spec_sheet.pdf (accessed January 2016).

[4] A. Hafsaoui, N. Nikaein, W. Lusheng, "OpenAirInterface Traffic Generator (OTG): A Realistic
Traffic Generation Tool for Emerging Application Scenarios", Proc. of MASCOTS 2012, pp.492-494,
7-9 Aug. 2012

[5] M. Kerrisk., time(1) - Linux manual page. url: http://man7.org/linux/man-pages/man1/time.1.html.
(accessed January 2016)

[6] Flex5Gware website: http://www.flex5gware.eu (accessed Jan 2016)

[7] C. Cicconetti, E. Mingozzi, and G. Stea 2006. An integrated framework for enabling effective data
collection and statistical analysis with ns-2. In Pro. WNS2‘06, Pisa, Italy, October 10, 2006.

[8] L.F. Perrone, C. Cicconetti, G. Stea and B. Ward, “On the Automation of Computer Network
Simulators”, in Proc. of SIMUTOOLS 2009, Rome, 3-5 March 2009.

[9] A. Virdis, N. Iardella, G. Stea, D. Sabella, “Performance analysis of OpenAirInterface system
emulation”, in Proc. of PMECT 2015, Rome, Italy, August 26, 2015.

[10] The Network Simulator - ns-2, Url: http://www.isi.edu/nsnam/ns/ (Accessed Jan 2016).

[11] CMake, Url: https://cmake.org/ (Accessed Jan 2016).

[12] “C-RAN: The Road Toward Green RAN”, China Mobile Research Institute (2011), Beijing, China,
Oct. 2011, Tech Rep.

[13] D. Migliorini, G. Stea, M. Caretti, D. Sabella, " Power-aware allocation of MBSFN subframes using
Discontinuous Cell Transmission in LTE systems", CLEEN 2013, Las Vegas, USA, Sep. 2 2013

[14] Gitlab OpenAirInterface repository, Url: https://gitlab.eurecom.fr/oai/openairinterface5g/blob/

master/targets/SIMU/EXAMPLES/OSD/WEBXML/template_0.xml (accessed January 2016).

