Skip to main content

Many Core Acceleration of the Boundary Element Method

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering (HPCSE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9611))

Abstract

The paper presents the boundary element method accelerated by the Intel Xeon Phi coprocessors. An overview of the boundary element method for the 3D Laplace equation is given followed by the discretization and its parallelization using OpenMP and the offload features of the Xeon Phi coprocessor are discussed. The results of numerical experiments for both single- and double-layer boundary integral operators are presented. In most cases the accelerated code significantly outperforms the original code running solely on Intel Xeon processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70(1), 1–24 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dautray, R., Lions, J., Amson, J.: Mathematical Analysis and Numerical Methods for Science and Technology. Integral Equations and Numerical Methods, vol. 4. Springer, Heidelberg (1999)

    Google Scholar 

  3. Deslippe, J., Austin, B., Daley, C., Yang, W.S.: Lessons learned from optimizing science kernels for Intel’s Knights Corner architecture. Comput. Sci. Eng. 17(3), 30–42 (2015)

    Article  Google Scholar 

  4. Dongarra, J., Gates, M., Haidar, A., Jia, Y., Kabir, K., Luszczek, P., Tomov, S.: HPC programming on intel many-integrated-core hardware with MAGMA port to Xeon Phi. Sci. Program. 2015, 11 (2015)

    Google Scholar 

  5. Langer, U., Steinbach, O.: Boundary element tearing and interconnecting methods. Computing 71(3), 205–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. López-Portugués, M., López-Fernández, J., Díaz-Gracia, N., Ayestarán, R., Ranilla, J.: Aircraft noise scattering prediction using different accelerator architectures. J. Supercomputing 70(2), 612–622 (2014). http://dx.doi.org/10.1007/s11227-014-1107-z

    Article  Google Scholar 

  7. Lukáš, D., Kovář, P., Kovářová, T., Merta, M.: A parallel fast boundary element method using cyclic graph decompositions. Numer. Algorithms 70, 807–824 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Merta, M., Zapletal, J.: Acceleration of boundary element method by explicit vectorization. Adv. Eng. Softw. 86, 70–79 (2015)

    Article  Google Scholar 

  10. Of, G., Steinbach, O.: The all-floating boundary element tearing and interconnecting method. J. Numer. Math. 17(4), 277–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Of, G.: Fast multipole methods and applications. In: Schanz, M., Steinbach, O. (eds.) Boundary Element Analysis. Lecture Notes in Applied and Computational Mechanics, vol. 29, pp. 135–160. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  13. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60(2), 187–207 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sauter, S., Schwab, C.: Boundary Element Methods. Springer Series in Computational Mathematics. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  15. Sirtori, S.: General stress analysis method by means of integral equations and boundary elements. Meccanica 14(4), 210–218 (1979)

    Article  MATH  Google Scholar 

  16. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Texts in Applied Mathematics. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  17. Intel Xeon Phi Coprocessor Peak Theoretical Maximums. http://www.intel.com/content/www/us/en/benchmarks/server/xeon-phi/xeon-phi-theoretical-maximums.html. Accessed 9 Oct 2015

Download references

Acknowledgments

This work was supported by the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), funded by the European Regional Development Fund and the national budget of the Czech Republic via the Research and Development for Innovations Operational Programme, as well as Czech Ministry of Education, Youth and Sports via the project Large Research, Development and Innovations Infrastructures (LM2011033). MM and JZ acknowledge the support of VŠB-TU Ostrava under the grant SGS SP2015/160. JJ was supported by the research project Architecture of parallel and embedded computer systems, Brno University of Technology, FIT-S-14-2297, 2014–2016 and by the SoMoPro II Programme co-financed by the European Union and the South-Moravian Region. This work reflects only the author’s view and the European Union is not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Zapletal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Merta, M., Zapletal, J., Jaros, J. (2016). Many Core Acceleration of the Boundary Element Method. In: Kozubek, T., Blaheta, R., Šístek, J., Rozložník, M., Čermák, M. (eds) High Performance Computing in Science and Engineering. HPCSE 2015. Lecture Notes in Computer Science(), vol 9611. Springer, Cham. https://doi.org/10.1007/978-3-319-40361-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40361-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40360-1

  • Online ISBN: 978-3-319-40361-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics