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Abstract. We present the technique of completeness-via-canonicity in a
coalgebraic setting and apply it to both positive and boolean coalgebraic
logics with relational semantics.

1 Introduction

Coalgebraic logic has been very successful at unifying the multitude of modal
logics used to describe and specify state-based systems, both semantically and
syntactically (see e.g. [CKP+09,KP11]). One of the great insights of coalge-
braic logics is that there exists a close correspondence between the coalgebraic
semantics and rank 1 axiomatizations, i.e. axioms with nesting depth of modal
operators uniformly equal to 1. For a Set-endofunctor T the class of all T -
coalgebras can be characterised logically in rank 1 (see [Sch06]). Conversely,
given a modal logic axiomatized in rank 1, there exist a Set-endofunctor T such
that the logic is strongly complete with respect to the class of all T -coalgebras
(see [SP10]).

However, one is often interested in providing a sound and complete semantics
to modal logics which are known to include axioms of rank greater than one. Most
temporal logics for example (see [Gol92]) contain such axioms. Alternatively, one
may have a rank 1 axiomatization of the class of T -coalgebras for a functor T of
particular interest, and be interested in logically carving out important proper
sub-classes of T -coalgebras, which may very well require axioms with nested
modalities, for example the axiomatization of transitive Kripke frames by the
axiom ♦♦p → ♦p.

Very little is known about the question of completeness for coalgebraic logics
with axioms of arbitrary rank. To our knowledge, the only results in this direction
are the work of Pattinson and Schröder in [PS08] as well as our previous work
in [DP13] which dealt with the ∇ formalism of coalgebraic logic and [DP15a]
which focused on a coalgebraic account of distributive substructural logics. In
what follows we will present the general principles of coalgebraic completeness-
via-canonicity, a method for proving strong completeness of coalgebraic logics
with axioms of arbitrary rank, in as much abstraction and generality as possi-
ble. To this end we will use the abstract presentation of coalgebraic logic (see
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e.g. [KKP04,KKP05,KP11,JS10]) which can be summarized by the following
fundamental diagram:

C

F

��
L

��
⊥ Dop

G

��

T op

��
(1)

where C is the category in which ‘modal formulas’ are built from the functor L
and interpreted in T -coalgebras over ‘carriers’ in D . We must however be careful:
in this abstract formulation coalgebraic logic is extremely general indeed, and
the notion of canonical extension (and thus of canonicity) does not in general
make sense in the base category C on which the logic is defined. We therefore
need to restrict our attention to base categories whose objects have a notion
of canonical extension. This presents us with a conceptual restriction which
in practice is harmless since all examples of coalgebraic logics are based on
a category with a good notion of canonical extension, viz. the categories BA
of boolean algebras, DL or distributive lattice, or MSL of meet semilattices
(see [JS10] for an example of meet semilattice-based coalgebraic logic, and see
[GP14] for a discussion of canonical extensions in MSL). A second restriction
comes from the fact that canonicity must spontaneously appear from the diagram
above, in the sense that for any C -object A, the canonical extension of A must be
representable as GFA. This condition is more restrictive. In the case of boolean
logics, this poses no problem: if we take D = Set and the usual adjunction F =
Uf � P = G between the ultrafilter and powerset functors then PUfA is indeed
the canonical extension of A. However, in the case of positive coalgebraic logics
this requirement precludes the use of Set-based models for positive coalgebraic
logics, and we have to take F = Pf : DL → Posop the prime filter functor and
G = U : Posop → DL the upsets functor to represent the canonical extension of a
distributive lattice A as UPfA. The situation for MSL-based logics is much more
involved. The canonical extension of general semilattices is described in [GP14],
however no adjunction F � G between MSL and a category Dop emerges as a
‘natural’ way of building it. A duality theory for distributive meet-semilattices
is given in [BJ11]. It consists in building a distributive lattice D(A) from a
distributive semilattice A and then applying the usual functor Pf. It follows
from the construction of [BJ11] that F = Pf ◦ D � U ◦ U = G (where U is
the obvious forgetful functor), but we have not investigated if GFA is then the
canonical extension of A as described in [GP14]. We will therefore restrict our
attention to logics based on the category DL of which boolean logics (based on
BA) are a special case.

Having established the scope of logics which coalgebraic completeness-via-
cano-nicity can hope to tackle a priori, we must make the following remark
about what can be achieved in practice. Questions of canonicity are very hard;
in general it is undecidable whether a given formula is canonical, and establishing
that a particular class of formulas is canonical is almost always highly non-trivial.
What we will present in this paper is a general coalgebraic template which avoids
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these hard questions altogether, a conceptual roadmap of how the technique of
completeness-via-canonicity works in coalgebraic logic. To actually prove com-
pleteness of a particular coalgebraic logic with a particular coalgebraic semantic
means implementing the technique, at which point the hard work begins.

So why choose the technique of completeness-via-canonicity to prove com-
pleteness if implementing it is so difficult? First of all, much of the implemen-
tation has been done for many well-known logics and as we will show, we now
have a complete theory for all positive or boolean logics with a relational seman-
tics. Secondly, because of all the methods for proving completeness in modal
logic, it is probably the best suited to being generalized to coalgebraic logic
since it has a very clean and abstract algebraic formulation which connects in a
very generic fashion to the coalgebraic semantics via the well-established coalge-
braic Jónsson-Tarski theorem (see [KKP05,KR12,SP09]). Moreover, we believe
that generalising completeness-via-canonicity to coalgebraic logics also greatly
clarifies the technique itself. The connection between the syntactic/algebraic
part of the method on one side, viz. canonical extensions and canonical equa-
tions, and the semantics/coalgebraic part of the method on the other side, viz.
the construction of ‘canonical models’, is greatly clarified by the abstracting
power of coalgebraic logics and its semantics. Another advantage of coalgebraic
completeness-via-canonicity is that it applies equally well to positive coalgebraic
logics (see [KKV12]). In fact, since the traditional boolean setting is a special
case of the more general setting of positive coalgebraic logics, we will formu-
late most results in terms positive coalgebraic logics. A final advantage of the
technique its modularity : we can combine strongly complete logics to create
new strongly complete logics in a completely mechanical way (in the spirit of
[CP07,DP11]). This work is in many ways a continuation and generalisation of
the author’s previous work with his PhD supervisor Dirk Pattinson [DP13]. The
paper will be structured as follows. We start by presenting coalgebraic logics
in its ‘abstract’ flavour. In Sect. 3 we describe the semantics/coalgebraic side of
completeness-via-canonicity, whilst Sect. 4 will deal with the syntactic/algebraic
side of the technique. Section 5 will show how and when the algebraic and
coalgebraic halves of the method can be combined, and strong completeness
proved. We will use the example of (positive) modal logic to illustrate every
important concept, and conclude with an application to ‘positive separation
logics’.

2 Preliminaries

Coalgebraic logics require seven mathematical entities, six of which we intro-
duced in the fundamental diagram (1). These six entities are:

(1) a ‘minimal reasoning structure’ in the form of a category C whose
objects are endowed with the fundamental logical operations we wish
to take for granted. Due to the algebraic nature of C -objects, we will
assume throughout that there exist a free-forgetful adjunction F � U
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between Set and C (note the sans-serif font for the free functor). We
will take C to be DL,BDL or BA, the categories of distributive lat-
tices, bounded distributive lattices or boolean algebras with the obvious
morphisms.

(2) a ‘minimal modelling structure’ in the form of a category D whose
objects have the structure we wish the carriers of models to have. In
our examples we will take D to be either Pos or Set, the category of
posets and monotone functions or sets and functions.

(3)-(4) two functors F : C → Dop and G : Dop → C forming a dual adjunction
F � G relating the world of syntax to the world of semantics. In the
examples we will take F = Pf : DL → Posop the functor sending a
distributive lattice to the poset of its prime filters and DL-morphisms
to their inverse images, and G = U : Posop → DL the functor sending
a poset to the distributive lattice of its upsets and monotone maps to
their inverse images. An important special case of the adjunction Pf � U
is its restriction Uf � P to boolean algebras and sets: since prime filters
are maximal in boolean algebras – i.e. ultrafilters (hence the ultrafilter
functor Uf), their posets are trivial and thus simply form sets; upsets of
trivial posets are simply subsets (hence the powerset functor P).

(5) a syntax building functor L : C → C which specifies how to build ‘modal
algebras’, and in particular how to build modal formulas.

(6) a model building functor T : D → D which specifies the kind of transition
structure we want our models to have.

Languages, Logics and Free Algebras. As will be illustrated in the examples,
L can specify much more than a grammar, it can also enforce axioms. What is
included in L is a matter of convenience, but as we shall see, including some
axioms – specifically distribution laws – is a good idea. The distinction between
language and logic therefore becomes blurred, and indeed may not be terribly
useful in this presentation of coalgebraic logics. The relevant notion is that of a
free L-algebra. For our purpose it will be enough to say that the free L-algebra
over a C -object A, written as FLA, is the initial L(−) + A algebra. We will
assume throughout that these algebras exist, i.e. that L is a varietor, and focus
on a particular choice of objects in C , namely those which are themselves free
objects (recall that we assume a free-forgetful adjunction between Set and C ).
For example, if C = DL and V is a set of propositional variables, we will
consider the free L-algebra over the free distributive lattice over V , i.e. we will
consider L-algebras of the type FLFV . These are the entities which play the
role of language since their carriers contain terms freely built from propositional
variables, modulo the axioms of C and those encoded in L. In particular, it is
the elements of these algebras which we will want to interpret.

Coalgebraic Semantics. Terms in a free L-algebra are interpreted as ‘pred-
icates’ on the carriers of T -coalgebras. The exact meaning of the word ‘predi-
cate’ is specified by the functor G which maps the carrier of a T -coalgebra to
a C -structure whose elements are by definition the predicates. An interpreta-
tion is thus a map from terms over V , viz. elements FLFV , to predicates on
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X, viz. elements of GX. We produce such an map by equipping GX with an
L(−)+FV -algebra structure and using the initiality of FLFV amongst L(−)+FV -
algebras. By definition of the coproduct, to define a morphism LGX+FV → GX
we need:

1. a morphism of the type FV → GX, and
2. a morphism of the type LGX → GX

By adjunction any morphism of the type FV → GX is equivalent to a map
V → UGX interpreting each propositional variable as a predicate, i.e. a valua-
tion v : V → UGX. The second morphism deals with modal terms whose inter-
pretation should depend on the transition structure γ : X → TX. To encode this
dependency we make the second morphism factor through Gγ : GTX → GX.
What we therefore need is a morphism δX : LGX → GTX for any D-object X.
Moreover, if β : Y → TY is another T -coalgebra and f : Y → X is a T -coalgebra
morphism, it is not hard to check that the unicity of catamorphisms enforces
Gβ ◦ GTf ◦ δX = Gβ ◦ δY ◦ LGf . In fact we assume the somewhat stronger con-
dition that the maps δX in fact define a natural transformation δ : LG → GT .
This natural transformation will be called the semantic transformation and is
the final necessary ingredient of coalgebraic logics. Given a semantics transfor-
mation and a valuation we define the interpretation of ‘formulas’ of FLFV in
γ : X → TX as the catamorphism �−�(γ,v) given by:

LFLFV + FV

��

L�−�(γ,v)+IdFV

���������� LGX + FV
δX+IdFV��

GTX + FV
Gγ+v̂��

FLFV
�−�(γ,v) �������������� GX

Modularity. Coalgebraic logics defined on a common minimal reasoning struc-
ture can be freely combined to form new logics combining the modalities of their
constituents in a process called the fusion of modal logics (see [CP07,DP11]).
Formally, if L1, L2 : C → C are two syntax constructors, then the fusion of
FL1FV and FL2FV is the language defined by the (point-wise) coproduct of
these functors, i.e. FL1+L2FV . Assuming that free Li-algebras are interpreted in
Ti-coalgebras via a semantics transformation δi for i = 1, 2, we can combine the
semantics in a dual way to the syntax by interpreting free L1 + L2-algebras in
T1 × T2-coalgebras via the semantics transformation Gπ1 ◦ δ1 + Gπ2 ◦ δ2 where
π1, π2 are the usual projections from a product.

Example 1 ((Positive) Modal Logic). Standard Modal Logic, henceforth ML, is
boolean and we therefore choose BA as our minimal reasoning structure. The
syntax building functor is LML : BA → BA defined by:

LMLA = F{♦a | a ∈ UA}/{♦(a ∨ b) = ♦a ∨ ♦b,♦⊥ = ⊥}
i.e. LML builds the free boolean algebra over the formal expressions ♦a with
a ∈ A, and then quotients this object by the fully invariant equivalence relation
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(in BA!) generated by the distribution laws above. We will show how LMLA
can be defined categorically in Sect. 4. An LML-algebra is a boolean algebra with
operator, i.e. a boolean algebra together with a unary operation which distributes
over joins. Given a set V of propositional variables, the object representing the
language of ML will be FLMLFV , the colimit of the diagram

2
c0 �� LML2 + FV

c1=LML(c0)+IdFV �� LML(LML2 + FV ) + FV . . .

where 2 = {⊥,	} is the initial object in BA. The LML-algebra FLMLFV thus
contains all terms which can be built from elements of V,	,⊥,¬, ∨,∧ and ♦
modulo the axioms of BA and the distribution laws encoded in LML. For the
semantics we take T = P, the covariant powerset functor on Set, and the trans-
formation δ : LP → PP given at any set X and generator ♦U ∈ LMLPX by:

δML
X (♦U) = {V ⊆ X | U ∩ V 
= ∅}

It is clear that δX(♦(U1 ∪ U2)) = δX(♦U1 ∪ ♦U2) and δX(♦∅) = δX(∅), and δX

is thus well-defined. P and δ give the standard Kripke semantics of ML, the only
difference being that here we interpret equivalence classes of formulas.

Mutantis mutandis we can perform the exact same construction for positive
ML. The minimal reasoning structure becomes either DL or BDL depending on
whether we want 	 and ⊥ or not, and due to the lack of negation one needs to
introduce the dual operator � explicitly. The functor becomes LML : DL → DL

LMLA = F{♦a,�a | a ∈ UA}/{♦(a ∨ b) = ♦a ∨ ♦b,�(a ∧ b) = �a ∧ �b}
In the case of BDL one also adds ♦⊥ = ⊥ and �	 = 	 to the equations
defining the quotient. The construction of the language FLMLFV is exactly the
same as in the boolean case, with the caveat that the initial object in DL is the
empty distributive lattice ∅. On the semantics side we need to find an equivalent
of the covariant powerset for Pos. This is not entirely straightforward, but as
was persuasively argued in Example 5.3 of [VK11] and in [BKV13], the Pos
equivalent of P is the convex powerset functor Pc : Pos → Pos sending a poset
to the set of its convex subsets ordered by the Egli-Milner order. Since we are
not yet enforcing any relation between ♦ and �, we interpret positive ML in
TML-coalgebras for the functor TML = Pc × Pc (one copy of Pc per modality).
The semantics transformation δML : LMLU → U(Pc × Pc) is then defined as:

δML
X (♦U) = {(V1, V2) | U ∩ V1 
= ∅} δML

X (�U) = {(V1, V2) | V2 ⊆ U}

and it is not hard to check that δX is well-defined, although interestingly this
relies heavily on the definition of the Egli-Milner order, confirming the choice of
Pc as the ‘correct’ generalization of P.

3 Strong Completeness and Jónsson-Tarski Extensions

We have seen how important the ‘predicate’ functor G : Dop → C is to define
the coalgebraic semantics but have so far ignored its left-adjoint F : C → Dop.
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The intuition behind F is that it sends a reasoning structure to ‘states’ on this
structure, where a ‘state’ is a collection of elements structured in such a way that
it may be understood as a consistent set of logical terms which can simultane-
ously hold at some point in a model. A coarse description of the semantic half of
completeness-via-canonicity, which we present in this section, is that it consists
in equipping a (po)set of such states with the target coalgebraic structure, i.e. in
building models on collections of algebraic terms. Formally, starting from a C -
object A with an L-algebra structure, we want to place a T -coalgebra structure
on its set of ‘states’ FA. When A is of the shape FLFV , such a T -coalgebra is
often referred to as a ‘canonical’ model, although it is usually far from canonical.
In fact such a model almost always requires a non-constructive principle such as
the axiom of choice or the Prime Ideal Theorem (henceforth PIT). In this sense
‘canonical’ models are deeply non-canonical, which is why we will settle for an
alternative terminology.

The Coalgebraic Jónsson-Tarski Theorem. To formulate this important
result we need the following natural transformation: by using the adjunction
F � G, we can associate with each semantics transformation δ : LG → GT its
adjoint semantic transformation δ̂ : TF → FL given by δ̂ = FLη ◦ FδF ◦ εTF

where η, ε are the unit and counit of F � G.

Theorem 1 (Coalgebraic Jónsson-Tarski Theorem). Consider the funda-
mental situation of diagram (1) and let δ : LG → GT be a semantic transfor-
mation. For any AlgC (L)-object (A,α), if δ̂A has a right-inverse ζA then the
morphism ηA : A → GFA lifts to an L-algebra morphism.

Proof [KKP05]. We show that the following diagram commutes

LA
α ��

LηA
��

ηLA

���������������������� A
ηA

��
LGFA

δF A

�� GTFA
GζA

�� GFLA
GFα

�� GFA

(2)

The right-hand-side trapezium commutes by naturality of η, so we need only
show that the left-hand-side triangle commute.

ηLA = GζA ◦ Gδ̂A ◦ ηLA ζA right-inverse

= GζA ◦ GεTFA ◦ GF (δFA ◦ LηA) ◦ ηLA Definition of δ̂

= GζA ◦ GεTFA ◦ ηGTFA ◦ δFA ◦ LηA Naturality of η

= GζA ◦ δFA ◦ LηA F � G

Jónsson-Tarski Extensions. For C = DL, F = Pf and G = U if we assume
the PIT or the axiom of choice (the latter being strictly stronger than the for-
mer), then the unit of Pf � U is a monomorphism, i.e. ηA is injective at every
stage A. This means that in the conditions of Theorem 1, GFA is an extension
of A as an L-algebra. We call such an extension a Jónsson-Tarski extension of



Coalgebraic Completeness-via-Canonicity 181

(A,α) and denote it by αζ : LGFA → GFA. As this notation implies, we use the
terminology an extension, rather than the extension because in general, differ-
ent right-inverses ζA will lead to different extensions, although we will encounter
nice situations in the last section when there exists a unique Jónsson-Tarski
extension. We will however refer to the Jónsson-Tarski extension when a par-
ticular choice of right-inverse ζA has been made and no ambiguity is possible.
Note that ζA ◦ Pfα : PfA → TPfA is a T -coalgebra – i.e. a model – on ‘states’.
When A is of the shape FLFV this coalgebra is commonly known as a ‘canoni-
cal model’, although in practice the construction of right inverses to the adjoint
semantic transformation also requires the PIT or the AC, which makes these
models deeply non-canonical. It follows from the unicity of catamorphisms that
if δ̂FLFV has a right-inverse ζFLFV then the interpretation map in

PfFLFV → PfLFLFV
ζFLFV−−−−→ TPfFLFV

is given by Diagram (2), in other words �−�PfFLFV = ηFLFV . Modal logicians refer
to this as the truth lemma: a formula a holds at a prime filter w in a ‘canonical
model’ iff a ∈ w, by definition of η.

The Case of Boolean Coalgebraic Logics. In practice, when C = DL,
right-inverses to adjoint semantic transformations must be built explicitly, and
in fact this is also done in the construction of the standard ‘canonical’ model of
ML. However, when the minimal reasoning structure is BA the criterion for the
existence of Jónsson-Tarski extensions can be simplified somewhat, at the cost
of being even less constructive. Assuming the axiom of choice all epimorphisms
in Set are split, i.e. all surjections have a right inverse. For boolean coalgebraic
logics, it is therefore sufficient to require that δ̂ be a pointwise epimorphism, and
useful criteria for this to happen have been developed in [Dah15,KR12,SP09].

Strong Completeness. The main application of Jónsson-Tarski extensions is
to prove strong completeness. Let us first define precisely what we mean by
strong completeness. Let C be DL,BDL or BA, let V be a set of propositional
variables, let q : FLFV � L be a regular epi, and let Φ, Ψ ⊆ L be two families
of ‘formulas’ such that Φ 
� Ψ , i.e. such that no finite set Φ0 of elements of Φ
and no finite set Ψ0 of elements of Ψ can be found such that

∧
Φ0 ≤ ∨

Ψ0. The
statement that L is strongly complete w.r.t. to a class T of T -coalgebras means
that for any such choice of Φ, Ψ there exists a T -coalgebra γ : X → TX in T, a
valuation v : FV → GX, and a point x ∈ X such that x ∈ �a�(γ,v) for all a ∈ Φ
and x /∈ �b�(γ,v) for all b ∈ Ψ .

Theorem 2 (Strong Completeness). If the adjoint semantic transformation
δ̂ has a right-inverse ζFLFV at FLFV , then FLFV is strongly complete w.r.t. to
the class CoalgD(T ) of T -coalgebras.

Proof. Let Φ, Ψ ⊆ FLFV and Φ 
� Ψ . Then the filter 〈Φ〉↑ generated by Φ and the
ideal 〈Ψ〉↓ generated by Ψ obey 〈Φ〉↑ ∩〈Ψ〉↓ = ∅. By the PIT there exists a prime
filter wΦ extending 〈Φ〉↑ such that wΦ ∩ 〈Ψ〉↓ = ∅. By Theorem 1, the L-algebra
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FLFV has a Jónsson-Tarski extension which provides an interpretation of FLFV

in the T -coalgebra PfFLFV → PfLFLFV
ζFLFV−−−−→ TPfFLFV , which coincides with

ηFLFV . In this interpretation wΦ ∈ �a� for all a ∈ Φ and wΦ /∈ �b� for all b ∈ Ψ .

Jónsson-Tarski extensions, and thus strong completeness, are modular:

Theorem 3 [DP15b]. Let Li : C → C , Ti : D → D , δi : LiG → GTi, i = 1, 2.
For any AlgC (L1 +L2)-object (A,α), if δ̂i

A has a right-inverse ζi
A, i = 1, 2, then

ηA : A → GFA lifts to an L1 + L2-algebra morphism.

In a nutshell, the purpose of coalgebraic completeness-via-canonicity is to deter-
mine how and when Theorem 2 resists to quotienting FLFV .

Example 2. The PIT-based technique of [DP15a] becomes particularly simple
for unary operators and shows that the adjoint transformation δ̂ML : TMLPf →
PfLML of the semantic transformation defined in Example 1 has right-inverses
ζML
A : PfLMLA → TMLPfA at every A in DL given by:

ζML
A (F ) = ({F1 | a ∈ F1 ⇒ ♦a ∈ F}, {F2 | �a ∈ F ⇒ a ∈ F2})

The (positive) language for ML defined by the functor LML is thus strongly
complete w.r.t. Pc × Pc-coalgebras. We will show later that quotienting this
language by the axioms relating ♦ and � defines a variety closed under Jónsson-
Tarski extension. Strong completeness with respect to Pc-coalgebras interpreting
both modalities by the same relation will then follow (modulo two lemmas).

4 Canonical Equations and Canonical
Extensions of L-algebras

In the previous section we have shown how to construct coalgebraic models
whose carriers are the ‘states’ FA of an L-algebra A in a way that provides
an L-algebra embedding of A into GFA. When C = DL (or BDL or BA) and
F � G is the adjunction Pf � U , objects of the form GFA are very well-known to
algebraists studying boolean algebras and distributive lattices, and are known as
canonical extensions and denoted Aσ. Motivated by the algebraic semantics of
modal logic, this notion was extended to boolean algebra with operators (BAOs)
[JT51] and distributive lattice expansions (DLEs) [GJ94,GJ04]. One of the key
areas of research in this domain is to find conditions under which the validity of
an equation in an BAO or a DLE can be transferred to its canonical extension,
i.e. conditions under which A |= s = t implies Aσ |= s = t. Such equations are
called canonical. In this section we will review the basic facts about canonical
equations and about a topological technique for establishing the canonicity of
equations. As a by-product of this theory we will give a theoretically partial but
practically complete answer to the following question:

For which functors L : DL → DL does the canonical extension construction in
DL lift to AlgDL(L)?
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Canonical Extensions of DLs. For any A in DL, UPfA is known as the
canonical extension of A and denoted Aσ. It can be characterised uniquely up to
isomorphism through purely algebraic properties, namely that A is dense and
compact in Aσ. In this sense the adjective ‘canonical’ is fully justified, in contrast
with its usage in the expression ‘canonical model’. For our purpose however,
defining the canonical extension of A as UPfA will be sufficient. The canonical
extension Aσ of a distributive lattice A is always completely distributive (see
[GJ04]). The following terminology will be important: Aσ is a completion of A
and all joins of elements of A therefore exist in Aσ, such elements are called open
and their set is denoted by O(A). Dually, meets in Aσ of elements of A will be
called closed and their set denoted K(A). Elements of A = K(A) ∩ O(A) are
therefore called clopens.

Canonical Extension of DLEs. It was shown in [JT51] that if A is a BA with
a map f : UA → UA preserving joins then Aσ = PUfA can be equipped with
a map fσ : UAσ → UAσ which extends f and preserves all non-empty joins.
This construction was later extended to DLs with n-ary maps and no particular
preservation properties in [GJ94,GJ04]. Formally, given a signature Σ with arity
map ar : Σ → N, define the syntax building functor LΣ : DL → DL by:

LΣA = F

(
∐

s∈Σ

UAar(s)

)

(3)

An LΣ-algebra is a distributive lattice with n-ary maps defined by the signature,
i.e. a Distributive Lattice Expansion, or DLE for short. We now sketch the theory
of their canonical extensions. Each map f : UAn → UA can be extended to a
map (UAσ)n → UAσ in two canonical ways:

fσ(x) =
∨

{
∧

f [d, u] | K(A)n � d ≤ x ≤ u ∈ O(A)n}
fπ(x) =

∧
{
∨

f [d, u] | K(A)n � d ≤ x ≤ u ∈ O(A)n}

where f [d, u] = {f(a) | a ∈ An, d ≤ a ≤ u}. In many important cases, the two
extensions (viz. fσ and fπ) agree, in which case f is said to be smooth. We define
the canonical extension of an LΣ-algebra A as the LΣ-algebra Aσ defined by
(Aσ, (fσ

s : (UAσ)ar(s) → UAσ)s∈Σ). This gives us a first class of functors L which
answers the question above: for any finitary signature Σ, the DL-endofunctor
LΣ defined by Eq. (3) lifts canonical extensions from DL to AlgDL(LΣ).

Topological Methods where introduced in [GJ04,Ven06] to study the canon-
ical extension of maps. These methods are useful because they (a) uniquely
characterize canonical extensions, (b) reflect interesting algebraic properties of
maps (e.g. the preservation of meets) and, crucially (c) provide a very effective
way of studying the composition of canonical extensions which is essential to
establishing canonicity. We need six topologies on Aσ. First, we define σ↑, σ↓

and σ as the topologies defined by the bases {↑ p | p ∈ K},{↓ u | u ∈ O} and
{↑ p ∩ ↓ u,K � p, u ∈ O}. The next set of topologies is well-known to domain
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theorists: a Scott open in Aσ is a subset U ⊆ Aσ such that (1) U is an upset
and (2) for any up-directed set D such that

∨
D ∈ U , D ∩U 
= ∅. The collection

of Scott opens forms a topology called the Scott topology, which we denote γ↑.
The dual topology will be denoted by γ↓, and their join by γ. Since for every
x ∈ Aσ, x =

∨ ↓ x ∩ K =
∧ ↑ x ∩ O, it is easy to see that γ↑ ⊆ σ↑, γ↓ ⊆ σ↓,

and γ ⊆ σ. We denote the product of topologies by ×, and the n-fold product
by (−)n.

Proposition 1 [GJ04]. For any DL A and map f : UAn → UA,

1. fσ is the largest (σn, γ↑)-continuous extension of f ,
2. fπ is the smallest (σn, γ↓)-continuous extension of f
3. f is smooth iff it has a unique (σn, γ)-continuous extension.

The following result which relates algebraic and topological properties, is a
straightforward generalization of results from [GH01,GJ94,GJ04,Ven06].

Proposition 2. Let A be a distributive lattice, and let f : UAn → UA be a map.
For any (n − 1)-tuple a = (ai)1≤i≤n−1, we denote by fk

a : UA → UA the map
defined by x �→ f(a1, . . . , ak−1, x, ak, . . . , an−1).

1. If fk
a preserves binary joins, (fσ)k

a preserves all non-empty joins.
2. If fk

a preserves binary meets, (fσ)k
a preserves all non-empty meets.

3. If fk
a anti-preserves binary joins, (fσ)k

a anti-preserves all non-empty joins.
4. If fk

a anti-preserves binary meets, (fσ)k
a anti-preserves all non-empty meets.

5. If (fσ)k
a preserves all non-empty joins, it is (σ↓, σ↓)-continuous.

6. If (fσ)k
a preserves all non-empty meets, it is (σ↑, σ↑)-continuous.

7. If (fσ)k
a anti-preserves all non-empty joins, it is (σ↓, σ↑)-continuous.

8. If (fσ)k
a anti-preserves all non-empty meets, it is (σ↑, σ↓)-continuous.

9. In each case fk
a is is smooth.

Function composition and canonical extension interact in a non-trivial way, but
the following consequence of Proposition 1 greatly clarifies their interaction. This
result is our main tool for proving canonicity.

Theorem 4 (Principle of Matching Topologies, [GH01,Ven06]). Let A be
a DL, and f : UAn → UA and gi : UAmi → UA, 1 ≤ i ≤ n be arbitrary maps.
Assume that there exist topologies τi on A, 1 ≤ i ≤ n such that each gσ

i is
(σmi , τi)-continuous. If fσ is

1. (τ1 × . . . × τn, γ↑)-continuous, then fσ(gσ
1 , . . . , gσ

n) ≤ (f(g1, . . . , gn))σ,
2. (τ1 × . . . × τn, γ↓)-continuous, then fσ(gσ

1 , . . . , gσ
n) ≥ (f(g1, . . . , gn))σ,

3. (τ1 × . . . × τn, γ)-continuous, then fσ(gσ
1 , . . . , gσ

n) = (f(g1, . . . , gn))σ.

Monotone (i.e. isotone or antitone) maps have a nice property which com-
plements the Principle of Matching Topologies very effectively. The proof of
this property can already be found for isotone maps in [Rib52], and general-
izes tediously but straightforwardly to monotone maps (i.e. either isotone or
antitone).
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Proposition 3. Let gi : (UA)ni → UA, 1 ≤ i ≤ m and f : (UA)m → UA be
monotone maps, then (f(g1, . . . , gm))σ ≤ fσ(gσ

1 , . . . , gσ
m).

Canonicity. Before we consider the canonical extension of more general L-
algebras, we need to talk about canonicity. Let us fix a signature Σ. Recall that
an equation s = t in the language of LΣ-algebras (i.e. DLEs with signature Σ)
is canonical if it has the property that Aσ |= s = t whenever A |= s = t. To
say anything about the canonicity of equations, we therefore need to compare
interpretations in A with those in Aσ. It is natural to try to use the extension
(·)σ to mediate between these interpretations, but (·)σ is defined on maps, not
on terms. Moreover, not every valuation on Aσ originates from valuation on
A. We therefore want to recast the problem in such a way that (1) terms are
viewed as maps, and (2) we do not need to worry about valuations. The solution
is to adopt the language of term functions (as first suggested in [Jón94]). Let
Σ be a signature and t be a term in the language FLΣ

FV , there exist a finite
set V0 = {p1, . . . , pn} ⊆ V containing the propositional variables of t. For any
LΣ-algebra A, we can put an LΣ(−)+FV0-algebra structure on the distributive
lattice An of n-ary maps on A (with pointwise meets and joins) as follows:

– Define v : V0 → UAn, pi �→ πi, the ith projection (UA)n → UA.
– For each f ∈ Σ, we overload and define f : (UAn)ar(f) → UAn by

(g1, . . . , gar(f)) �→ f ◦ 〈g1, . . . , gar(f)〉, where 〈〉 denotes the product.

By taking the adjoint transpose of these maps (i.e. freely extending) we equip
An with the desired algebraic structure. We can now interpret a term t as the
term function tA : UAn → UA given by the catamorphism (·)A:

LΣFLΣ
FV0 + FV0

LΣ(·)A+IdFV0 ��������

��

LΣAn + FV0
∑

f∈Σ f̂+v̂��
FLΣ

FV0
(·)A

������������ An

For any two terms s, t ∈ FLΣ
FV we can take V0 to be the set of propositional

variables required to build both s and t and thus get a common catamorphism
(·)A interpreting both terms as maps (UA)n → UA. It is then well-known and
easy to check that A |= s = t iff sA = tA. Following [Jón94], we say that t ∈
FLΣ

FV is stable if (tA)σ = tA
σ

, that t is expanding if (tA)σ ≤ tA
σ

, and that t
is contracting if (tA)σ ≥ tA

σ

, for any A. The inequality between maps is taken
pointwise. The following proposition illustrates the usefulness of these notions:

Proposition 4 [Jón94]. If s, t ∈ FLΣ
FV are stable then s = t is canonical. If s

is contracting and t is expanding, then s ≤ t is canonical.

In practice, we use the Principle of Matching Topologies (Theorem 4) to deter-
mine when a term is stable, expanding or contracting, and thus when equations
or inequations are canonical.
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Canonical Extension of L-Algebras. We now show that LML defined in
Example 1 belongs to a general class of functors of the form LΣ/{E} for which
the canonical extension construction always lifts to AlgDL(L). To categorically
formalize functors of the type LΣ/{E} for a set E of equations, we need to
capture the notion of fully invariant equivalence relation generated by a set
of equations. We will only sketch the construction which can be performed in
great generality in any well-powered cocomplete regular category (see [Dah15],
Chap. 1). Consider a set E of equations in FLΣ

FV (e.g. E = {♦(a ∨ b) = ♦a ∨
♦b,♦⊥ = ⊥}), it is equivalent to a pair of jointly monic functions e1, e2 : E ⇒
UL where L is the distributive lattice underlying the LΣ-algebra FLΣ

FV . By
adjunction we can re-write this as a pair of morphisms ê1, ê2 : FE ⇒ L where
FE is the ‘free DL of equations’. Consider the coequalizer FE ⇒ L q

� Q of
ê1, ê2 and all the terms s, t ∈ L such that q(s) = q(t). They form an equivalence
relation in DL (the kernel pair of q) containing E, but not a fully invariant
one (e.g. ♦(c ∨ d) = ♦c ∨ ♦d for c 
= a, d 
= b does not in general belong to
this relation). To capture substitution instances we must consider a ‘bigger’
coequalizer, namely

∐

f∈hom(L,L)

FE

∐

f∈hom(L,L)
LΣf◦φ−1◦ê1

��
∐

f∈hom(L,L)
LΣf◦φ−1◦ê2

�� LΣL qL �� �� LL := LΣ/{E}(L) (4)

where φ : LΣL → L is the iso structure map of the free LΣ-algebra. The pairs of
terms s, t such that q(s) = q(t) now form a fully invariant equivalence relation
in DL. We nearly have a rigorous definition of functors of the shape LΣ/{E},
the final step is to notice that (4) can to some extent be made parametric in the
choice of the middle object. We define for any A the coequalizer qA:

∐

f∈hom(L,A)

FE

∐

f∈hom(L,A)
LΣf◦φ−1◦ê1

��
∐

f∈hom(L,A)
LΣf◦φ−1◦ê2

�� LΣA
qA �� �� LA := LΣ/{E}(A) (5)

It is easy to see that (5) defines a functor: for any f : A → B, amongst the
morphisms L → LΣB are all the ones which factor through LΣA via LΣf , and
thus LB is a co-cone for the diagram defining LA and so there must exist a
unique Lf : LA → LB. For the same reason LL is initial amongst all objects of
the form LA with A in DL. Any L-algebra α : LA → A defines an LΣ-algebra,
i.e. a Σ-DLE, α ◦ qA : LΣA → LA → A which will call the associated Σ-DLE.

Theorem 5 (Canonical Extension Lifting). Let Σ be a finitary signature,
let E be a set of equations between terms in FLΣ

FV of modal depth at most one
and let L : DL → DL be defined by LA = LΣ/{E}(A) as in (5). If for any
L-algebra α : LA → A, the n-ary maps of the associated Σ-DLE are monotone,
then the canonical extension construction lifts from DL to AlgDL(L).
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Proof. For any α : LA → A, the map φ = α ◦ qA : LΣA → LA → A defines an
LΣ-algebra, and we know how to build the canonical extension of LΣ-algebras.
Let φσ : LΣAσ → Aσ be this canonical extension and let us define ασ : LAσ →
Aσ by ασ(x) = φσ(y) for y ∈ q−1

Aσ (x). We need to show that ασ is well-defined, i.e.
that if qAσ (y) = qAσ (y′) = x then φσ(y) = φσ(y′). Note that if it is the case, then
it is immediate to check that ασ is a DL-morphism. If qAσ (y) = qAσ (y′) then
there must exist a z ∈ FE and f ∈ hom(L, LΣAσ) such that y = f ◦ ê1(z), y′ =
f ◦ ê1(z). But we know that φ(g ◦ ê1(z)) = φ(g ◦ ê2(z)) for any g ∈ hom(L, LΣA)
by definition of φ. This means that (A,φ) |= ê1(z) = ê1(z), and therefore if
the equation is canonical we are done, for then (Aσ, φσ) |= ê1(z) = ê2(z), i.e.
φσ(g ◦ ê1(z)) = φσ(g ◦ ê2(z)) for any g ∈ hom(L, LΣAσ), and thus for g = f .

The result thus amounts to showing that equations involving terms of modal
depth at most one are canonical, and this will follow immediately from Proposi-
tion 4 if we can show that terms of modal depth at most one are stable. Let A be
in DL and t ∈ FLΣ

FV be a term of modal depth 0 built from propositional vari-
ables in V0 = {p1, . . . , pn}. By distributivity, we can assume t =

∨l
i=1

∧mi

j=1 pk(i,j)

where k picks for each (i, j) the index of a variable in V . By definition

tA = ∨A ◦ 〈∧A ◦ 〈πk(1,1), . . . , πk(1,m1)〉, . . . ,∧A ◦ 〈πk(l,1), . . . , πk(l,ml)〉〉
where ∨A : (UA)l → UA is the l-ary join in A, and similarly for every ∧A.
Each πσ

i : (UAσ)n → UAσ is (σn, σ)-continuous by definition of σn. Moreover,
∨Aσ

and ∧Aσ

preserve meets and joins in every argument by distributivity, and
are thus (σl, σ)- and (σmi , σ)−continuous respectively by Proposition 2. It fol-
lows that tA

σ

= (tA)σ by the Principle of Matching Topologies. Assume now
that t is of modal depth 1, i.e. t =

∨n
i=1

∧mi

j=1 fij(aij1, . . . , aijar(fij)), where each
aijk is of modal depth 0. Since every extension fij is assumed to be monotone,
Proposition 3 implies that (tA)σ ≤ tA

σ

. So we need only show the reverse inequal-
ity. We have established above that each aAσ

ijk is (σn, σ)-continuous, and by Propo-
sition 1 fAσ

ij is (σar(fij), γ↑)-continuous. Finally since ∨Aσ

and ∧Aσ

preserve all
joins they preserve up-directed ones and are thus ((γ↑)k, γ↑)-continuous. The
result then follows from the Principle of Matching Topologies. A completely
analogous proof can be shown to hold in boolean algebras by using the de Mor-
gan laws and the antitone preservation properties of Proposition 2.

Remark. Not all sets E of equations satisfying the conditions of Theorem 5
make sense, take for example Σ = {♦} and E = {a = b,♦(c∨d) = ♦c∨♦d} with
a, b, c, d ∈ V all distinct. The equation a = b is canonical: choose V0 = {a, b, c, d},
then aA is simply the projection πA

1 : A4 → A and bA is simply πA
2 : A4 → A for

any LΣ-algebra A. It is easy to check from the definition that (πA
1 )σ = (π1)Aσ

,
and similarly for πA

2 , so the terms are stable, and the equation canonical. But it
is vacuously canonical: πA

1 and πA
2 are not equal.

Remark. As was mentioned earlier, [Sch06] shows that for a Set-endofunctor
T , the class of all T -coalgebras can be characterized by axioms of modal depth
one. From the point of view of coalgebraic logic, the only restrictive requirement
of Theorem 5 is therefore that the expansions defined by such an axiomatization
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should be monotone. This however covers most coalgebraic logics, for example
graded modal logic, probability logic, conditional logic, etc.

Example 3. It is clear from the definition of LML in Example 1 that LML satisfies
the conditions of Theorem 5, i.e. canonical extensions lift to AlgDL(LML). In
order to axiomatize the duality between ♦ and � in positive ML, one must
enforce Dunn’s Interaction Axioms on LML-algebras [Dun95]:

♦a ∧ �b ≤ ♦(a ∧ b), �(a ∨ b) ≤ �a ∨ ♦b

It follows from the proof of Theorem 5 that these inequations are also canonical.

5 Jónsson-Tarski vs Canonical Extensions.

Combining the results of Sects. 2 and 3, we know that for logics defined by an
endofunctor L : C → C satisfying the conditions of Theorem 5 and a semantic
transformation δ : LG → GT satisfying the conditions of Theorem 1, any L-
algebra α : LA → A has two extensions with a common carrier: the Jónsson-
Tarski extension αζ and the canonical extension ασ. There is no reason a priori
for them to be isomorphic L-algebras, but it turns out that this is frequently
the case in practice. It is in these instances that coalgebraic completeness-via-
canonicity applies. For now though the situation is the following:

LGFA

αζ

		

δF A��

LA

α

��

LηA




LηA

�� LAσ

ασ

��

GTFA
GζA��

GFLA
GFα��

GFA A
ηA

 ηA �� Aσ

(6)

The left-hand side of Diagram (6) deals with the model-building part of coal-
gebraic completeness-via-canonicity, whilst the right-hand side of Diagram (6)
deals with the algebraic part the method.

Theorem 6 (Coalgebraic Completeness-via-Canonicity). Let L : DL →
DL satisfy the conditions of Theorem5 and δ : LU → UT the conditions of
Theorem1. If q : FLFV � L is the quotient in AlgDL(L) of a fully invari-
ant equivalence relation defining a variety closed under canonical extensions,
and if the Jónsson-Tarski and canonical extensions coincide, then L is strongly
complete w.r.t. the class of T -coalgebras validating all equations s = t s.th.
q(s) = q(t).

Proof. For any Φ, Ψ ⊆ L such that Φ 
� Ψ we can find a point in the coalgebra
γ : PfL → TPfA satisfying every formula in Φ and none of Ψ exactly as in
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Theorem 2, but we must also check that this T -coalgebra validates all the equa-
tions s = t where s, t ∈ FLFV and q(s) = q(t). If q(s) = q(t), then (L, α) |= s = t
by construction of L. Since L belongs to the variety it defines (in fact it is its
initial object), and since this variety is assumed to be closed under canonical
extensions, it follows that (Lσ, ασ) |= s = t. Finally, since the Jónsson-Tarski
and canonical extensions coincide we have (UPfL, αζ) |= s = t which means that
�s�(γ,v)= �t�(γ,v) for any valuation v : FV → UPfL.

Remark. If E is a set of equations between terms of FLFV , then the quotient
q : FLFV � L defined from E in the fashion of Diagram (4) is usually called the
Lindenbaum-Tarski algebra of the logic defined by L and E.

Remark. We choose to require that a variety defined by a regular quotient of
the free L-algebra should be canonical, i.e. closed under canonical extensions.
This is strictly more general than requiring that a variety be defined by canonical
equations (in which case it is also canonical). Indeed, as was shown in [HV05],
there exist canonical varieties of BAOs with no canonical axiomatization.

Remark. In fact we could require less than a full isomorphism of L-algebras,
what is really needed is the implication (Aσ, ασ) |= s = t ⇒ (UPfA,αζ) |= s = t.

We now give a useful criterion for the Jónsson-Tarski and canonical extensions
to be equal. Consider for a finitary signature Σ a set E of equations of the shape

{f(a1, . . . , ai−1,
�f,i

X, ai+1, . . . , an) =
�f,i

b∈X

f(a1, . . . , ai−1, b, ai+1, . . . , an) | (7)

f ∈ Σ, 1 ≤ i ≤ ar(f),
�f,i

,
�f,i ∈ {

∧
,
∨

}, X ∈ Pf (FLΣFV )}

and let L : DL → DL be defined as LA = LΣ/{E}(A) as in Eq. (5). It is easy
to see that for any α : LA → A, the associated Σ-DLE has n-ary expansions
which (anti)-preserve meets or joins in each argument.

Theorem 7. Let E be as in Eq. (7) and LA = LΣ/{E}(A). Let E∞ denote the
set equations defined as (7) but with Pf (FLΣ

FV ) replaced by P(FLΣ
FV ). If at

every A in DL the adjoint transformation δ̂ of δ : LU → UT has a right-inverse
ζA and δPfA ◦ qA coequalizes the pair of morphisms defined by plugging E∞ in
(5), then the Jónsson-Tarski and canonical extensions coincide.

Proof. Let (A,α) be an L-algebra. Note first that L is of the shape required by
Theorem 5: E is a set of equations of modal depth at most one, and if the n-ary
expansions of the Σ-DLE associated with (A,α) (anti)-preserve meets or joins
in each argument, they are in particular monotone in each argument.

The structure map of the Jónsson-Tarski extension of (A,α) is denoted by
αζ and that of the canonical extension by ασ. The situation can be summarised
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in the following diagram whose innermost and outermost triangles commute:

LΣAσ

αζ◦qAσ

�������������������

(α◦qA)σ

�������������������

qAσ �� LAσ

ασ

��

αζ

��
Aσ

We need to show αζ = ασ. It follows from the definition of E and Proposition 2
that the n-ary expansions of the Σ-DLE associated with (A,α) are smooth, and
therefore have unique (σn, γ)-continuous extensions given by (α◦qA)σ, moreover
ασ is defined in such a way that ασ ◦ qAσ = (α ◦ qA)σ (see Theorem 5).

By definition αζ = UPfα◦UζA◦δPfA. Since δPfA◦qAσ is assumed to coequalize
the maps defined by E∞ in the way of Diagram (5), so does αζ◦qAσ , and it follows
that that the n-ary expansions of the Σ-DLE associated with αζ satisfy one of
the conditions 5,6,7,8 of Proposition 2, and are in particular (σn, γ)-continuous.
They therefore define the same LΣ-algebra structure on Aσ as (α ◦ qA)σ. It
follows that αζ ◦ qAσ = ασ ◦ qAσ , i.e. that αζ = ασ since qAσ is (regular) epi.

Example 4. As was shown in Example 2, LML-algebras have Jónsson-Tarski
extensions. Moreover, it is not difficult to see directly from the definition of δML

that for any A in DL its composition with the quotient qA : L{♦,�}A � LMLA
determines two unary maps on A preserving respectively all non-empty joins
and all non-empty meets, i.e. δML meets the criterion of Theorem 7.

Moreover as was shown in Example 3, LML-algebras also have canonical
extensions, and it is clear from the definition that the equations defining LML

are of the general shape of (7). It follows that LML satisfies the conditions of
Theorems 7 and coalgebraic completeness-via-canonicity, i.e. Theorem 6, can
therefore be used. Consider for example Dunn’s Interaction axioms:

I = {♦a ∧ �b ≤ ♦(a ∧ b),�(a ∨ b) ≤ �a ∨ ♦b}
Since they are canonical (see Example 3), it follows from Theorem 6 that the
quotient of FLMLFV under the fully invariant equivalence relation in DL defined
by I, is strongly complete w.r.t. to Pc×Pc-coalgebras validating I. We will denote
this logic K+. These axioms do not collapse the relations interpreting ♦ and � as
might be expected and as is the case in standard Kripke frames (see [Dun95] and
6.1 of [GNV05] for a discussion on models with one or two relations). However,
we can always find such a model if we accept to have a relation closed upward and
downward. The following lemma is very useful in practice and greatly clarifies
correspondence theory for positive ML (see [CJ97]). We denote by ↓ γ (resp.
↑ γ) the pointwise downward (resp. upward) closure of a map γ : W → PcW .

Lemma 1. Let γ♦ × γ� : W → Pc(W ) ×Pc(W ), w ∈ W and a ∈ FLMLFV . then
(w, γ♦ × γ�, v) |= a iff (w, ↓ γ♦× ↑ γ�, v) |= a for any valuation v.

Proof. Immediate from the fact that denotations are upsets.
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Lemma 2. Let γ♦ × γ� : W → Pc(W ) × Pc(W ) be a coalgebra validating the
Interaction axioms, and let w ∈ W and a ∈ FLMLFV , then (w, γ♦ × γ�, v) |= a
iff (w, (γ♦ ∩ γ�) × (γ♦ ∩ γ�), v) |= a for any valuation v.

Proof. By induction on a, the interesting cases being a = ♦b and a = �b. We
show the ♦b case, the other is dual. From Lemma 1, we can assume w.l.o.g. that
γ� is upward-closed. We fix a valuation v : V → U(W ) and show the non-trivial
direction: assume (w, γ♦ × γ�, v) |= ♦b. Since ♦c ∧ �d ≤ ♦(c ∧ d) is valid, it
must hold at w for any valuation. Consider for instance the following valuation:
let q be a free variable, i.e. not occurring in b, and let us define v′(p) = v(p)
on V \ {q} and v′(q) = γ�(w), which is an upset. The denotations of b under v
and v′ are equal. By construction we have (w, γ♦ × γ�, v′) |= ♦b ∧ �q, and thus
(w, γ♦ × γ�, v′) |= ♦(b ∧ q), and therefore there exist x ∈ γ♦(w) ∩ γ�(w) ∩ �b�v′

but since �b�v′ = �b�v this means that there exists x ∈ γ♦(w) ∩ γ�(w) ∩ �b�v, i.e.
(w, (γ♦ ∩ γ�) × (γ♦ ∩ γ�), v) |= ♦b as desired.

The choice of which type of model to consider, viz. models with one or two rela-
tions, will in fine depend on what the models represent. In the next example we
will present models where states are memory resources and accessibility relations
correspond to the action of programs. A single relation then interprets each pair
of existential and universal modalities, and I is then trivially satisfied.

Example 5 (Modal separation logics). We conclude with a more elaborate family
of examples. In [DP15a] we introduced the functor LSL : DL → DL defined by

LSLA =F{I, a ∗ b, a −∗b, a ∗−b | a, b ∈ UA}/

{(a ∨ b) ∗ c = (a ∗ c) ∨ (b ∗ c), a ∗ (b ∨ c) = (a ∗ b) ∨ (a ∗ c)
a −∗(b ∧ c) = (a −∗b) ∧ (a −∗c), (a ∨ b) −∗c = (a −∗c) ∧ (b −∗c)
(a ∧ b) ∗−c = (a ∗−c) ∧ (a ∗−c), a ∗−(b ∨ c) = (a ∗−b) ∧ (a ∗−c)}

We interpret LSL-formulas in T SL-coalgebras for T SL : Pos → Pos defined by:

T SLW = 2 × Pc(W × W ) × Pc(W op × W ) × Pc(W × W op)

via the semantic transformation δSL : LSLU → UT SL defined on generators at
each poset W by δSLW (I) = {t ∈ T SLW | π1(t) = 0} and

δSLW (U ∗ V ) = {t ∈ T SLW | ∃(x, y) ∈ π2(t), x ∈ U, y ∈ V }
δSLW (U −∗V ) = {t ∈ T SLW | ∀(x, y) ∈ π3(t), x ∈ U ⇒ y ∈ V }

δSLW (U ∗−V ) = {t ∈ T SLW | ∀(x, y) ∈ π4(t), y ∈ V ⇒ x ∈ U}

The intended interpretation of this language is that worlds represent resources
which can be split and w |= p∗q means that the resource w can be split into two
resource s, t such that s |= p and t |= q. The operations −∗ and ∗− are left and
right residuals to ∗, and I acts as a unit. This is encoded by the (in)equations:
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FC1 a ∗ 1 = a, 1 ∗ a = a
FC2 1 ≤ a −∗a, 1 ≤ a ∗−a
FC3 a ∗ (b −∗c) ≤ (a ∗ b) −∗c

FC4 (c ∗−b) ∗ a ≤ c ∗−(a ∗ b)
FC5 (a −∗b) ∗ b ≤ a
FC6 b ∗ (b ∗−a) ≤ a

The logic defined by LSL and these (in)equalities is known as separation logic or
the logic of bunched implication or the distributive Lambek calculus depending
on the context, and we shall denote it as SL. These (in)equations are canoni-
cal (residuated maps and their residuals are very well-behaved under canonical
extension, even in posets see [Mor14]). As was shown in [DP15a], the adjoint
transformation δ̂SL has right-inverses at every A in DL, and LSL-algebras there-
fore have Jónsson-Tarski extensions. Moreover, as can be seen from the defi-
nition of δSL the criterion of (anti)-preservation of arbitrary joins or meets of
Theorem 7 is also satisfied. Finally, the equations defining LSL satisfy the con-
ditions of Theorem 5 and canonical extensions thus lift to AlgDL(LSL). All the
conditions of Theorem 7 are thus satisfied, and we can use Theorem 6 on the
regular quotient defined by FC1-FC6. The logic SL is thus strongly complete
w.r.t. the T SL-coalgebras validating these axioms, viz. T SL-coalgebras such that

(x, y) ∈ γ∗(w) iff (x,w) ∈ γ−∗(y) iff (w, y) ∈ γ∗−(x) (8)

and for every w ∈ W there exists (w, x), (y, w) ∈ γ∗(w) with x, y |= I. A typical
example of such coalgebra is given by memory states represented by the set H of
heaps, i.e. partial maps f : N+ ⇀f N with finite domain. These are ordered by
f ≤ g if g � domf = f , the empty heap is the unit and γ∗ : H → Pc(H ×H), f �→
{(g, h) | domg ∩ domh = ∅, g, h ≤ f} interprets the separation conjunction ∗
and its residuals via (8). In this context, it is reasonable to combine modal
logics for program specification with separation logic to describe heaps evolving
under the action of programs. Various fragments of PDL (see [Gol92]) are good
candidates. For example, consider the simple program syntax α:: = π | α;α with
π ∈ Π a set of atomic programs. By Theorem 3, the results for SL and K+, and
Lemma 2, it follows that the fusion

⊕
Π∗ K+ ⊕SL is strongly complete w.r.t. to∏

Π∗ Pc(−) × 2×Pc((−) × (−))-coalgebras. If we want to encode the sequential
composition of the grammar in the interpretation we need the axioms

Comp = {〈α1;α2〉a = 〈α1〉〈α2〉a, [α1;α2]a = [α1][α2]a | α1, α2 ∈ Π∗}
It is easy to check from Theorem 4 that these axioms are canonical. They

are valid in a model with a single relation Rα interpreting each pair 〈α〉, [α] if
R↓

α1
◦R↓

α2
= R↓

α1;α2
and R↑

α1
◦R↑

α2
= R↑

α1;α2
, where R↓

α and R↑
α are the downward

and upward closure of Rα respectively. Theorem 6 gives us strong completeness
of

⊕
Π∗ K+/{Comp} with respect to such coalgebras, and modularity then gives

us strong completeness of
⊕

Π∗ K+/{Comp} ⊕SL. Note how the use of positive
logics allows us to talk about existential access to all resources smaller than
certain upper bounds, and universal access to resources larger than certain lower
bounds. More interestingly perhaps, we could consider α:: = π | α;α | α ‖ α with
a parallel composition operation and interaction axioms of the shape

〈α1 ‖ α2〉a = 〈α1〉a ∗ 〈α2〉a
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This time, strong completeness will not simply transfer by modularity since we
are making the languages interact, however since such equations are canonical,
we can still apply completeness-via-canonicity, only this time to the entire logic.

6 Conclusion

We have described the key steps of the coalgebraic version of completeness-
via-canonicity, and in particular the key role played by the Jónsson-Tarski and
canonical extensions. We have sketched an implementation of the method for
all positive or boolean logics with modalities satisfying a set of equations in the
shape of (7) and a relational semantics. Much work remains to be done. We have
a complete implementation for boolean graded logics, but not yet in the positive
case, and no implementation at all for probability logic. For this we would like
to explore whether the method can be applied to MSL-based logics, since an
expressive logics for Markov chains can be formulated over MSL [JS10].
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