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RELATIONAL LATTICES VIA DUALITY

LUIGI SANTOCANALE

Abstract. The natural join and the inner union combine in different ways
tables of a relational database. Tropashko [18] observed that these two opera-
tions are the meet and join in a class of lattices—called the relational lattices—
and proposed lattice theory as an alternative algebraic approach to databases.
Aiming at query optimization, Litak et al. [12] initiated the study of the
equational theory of these lattices. We carry on with this project, making use
of the duality theory developed in [16]. The contributions of this paper are
as follows. Let A be a set of column’s names and D be a set of cell values;
we characterize the dual space of the relational lattice R(D,A) by means of
a generalized ultrametric space, whose elements are the functions from A to
D, with the P (A)-valued distance being the Hamming one but lifted to sub-
sets of A. We use the dual space to present an equational axiomatization of
these lattices that reflects the combinatorial properties of these generalized
ultrametric spaces: symmetry and pairwise completeness. Finally, we argue
that these equations correspond to combinatorial properties of the dual spaces
of lattices, in a technical sense analogous of correspondence theory in modal
logic. In particular, this leads to an exact characterization of the finite lattices
satisfying these equations.

1. Introduction

Tropashko [18] has recently observed that the natural join and the inner union,
two fundamental operations of the relational algebra initiated by Codd [2]—the
algebra by which we construct queries—can be considered as the meet and join
operations in a class of lattices, known by now as the class of relational lattices.
Elements of the relational lattice R(D,A) are the relations whose variables are listed
by a subset of a total set A of attributes, and whose tuples’ entries are taken from
a set D. Roughly speaking, we can consider a relation as a table of a database, its
variables as the columns’ names, its tuples being the rows.

Let us illustrate these operations with examples. The natural join takes two
tables and constructs a new one whose columns are indexed by the union of the
headers, and whose rows are the glueings of the rows along identical values in
common columns. As we emphasize in this paper the lattice theoretic aspects of
the natural join operation, we shall depart from the standard practice of denoting
it by the symbol ⊲⊳ and use instead the meet symbol ∧.
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The inner union restricts two tables to the common columns and lists all the possible
rows. The following example suggests how to construct, using this operation, a table
of users given two (or more) tables of people having different roles.
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Considering the lattice signature as a subsignature of the relational algebra, Litak,
Mikulás and Hidders [12] proposed to study the equational theory of the relational
lattices. The capability to recognize when two queries are equivalent—that is, a
solution to the word problem of such a theory—is of course an important step
towards query optimization.

Spight and Tropashko [17] exhibited equational principles in a signature strictly
larger than the one of lattice theory. A main contribution of Litak et al. [12]—a
work to which we are indebted in many respects—was to show that the quasiequa-
tional theory of relational lattices with the header constant is undecidable. The
authors also proposed a base of equations for the theory in the signature extended
with the header constant, and exhibited two non-trivial pure lattice equations hold-
ing on relational lattices. It was argued there that the lattice R(D,A) arises via
a closure operator on the powerset P (A ⊔ DA) and, at the same time, as the
Grothendieck construction for the functor P (D(−)), from P (A)op to SL∨ (the cat-
egory of complete lattices and join-preserving mappings), sending X ⊆ A to DX

and then DX covariantly to P (DX).
The focus of this paper is on the pure lattice signature. We tackle the study of

the equational theory of relational lattices in a coalgebraic fashion, that is, by using
the duality theory developed in [16] for finite lattices and here partially extended to
infinite lattices. Let us recall some key ideas from the theory, which in turn relies on
Nation’s representation Theorem [14, §2]. For a complete lattice L, a join-cover of
x ∈ L is a subset Y ⊆ L such that x ≤

∨
Y . A lattice is pluperfect if it is a complete

spatial lattice and every join-cover of a completely join-irreducible element refines
to a minimal one—see Section 2 for a complete definition. Every finite lattice is
pluperfect; moreover, relational lattices are pluperfect, even when they are infinite.
This property, i.e. pluperfectness, allows to define the dual structure of a lattice
L, named the OD-graph in [14]. This is the triple 〈J (L),≤,⊳m〉 with J (L) the set
of completely join-irreducible elements, ≤ the restriction of the order to J (L), and
the relation j⊳mC holds when j ∈ J (L), C ⊆ J (L), and C is a minimal join-cover
of j. The original lattice L can be recovered up to isomorphism from its OD-graph
as the lattice of closed downsets of J (L)—where a downset X ⊆ J (L) is closed if
j ⊳m C ⊆ X implies j ∈ X .

We characterize the OD-graph of the lattice R(D,A) as follows. Firstly recall
from [12] that we can identify completely join-irreducible elements of R(D,A) with
elements of the disjoint sum A ⊔ DA. The order on completely join-irreducible
elements is trivial, i.e. it is the equality. All the elements of A are join-prime,
whence the only minimal join-cover of some a ∈ A is the singleton {a}. The minimal
join-covers of elements in DA are described via an ultrametric distance valued in
the join-semilattice P (A); this is, morally, the Hamming distance, δ(f, g) = {x ∈
A | f(x) 6= g(x)}. Whenever f, g ∈ DA we have f ⊳m δ(f, g)∪ {g} and these are all
the minimal join-covers of f .

As in correspondence theory for modal logic, the combinatorial structure of the
dual spaces is an important source for discovering axioms/equations that uniformly



RELATIONAL LATTICES VIA DUALITY 3

hold in a class of models. For relational lattices, most of these combinatorial prop-
erties stem from the structure of the ultrametric space (DA, δ). When we firstly
attempted to show that equations (RL1) and (RL2) from [12] hold in relational
lattices using duality, we realized that the properties necessary to enforce these
equations were the following:

P1. Every non-trivial minimal join-cover contains at most one join-irreducible ele-
ment which is not join-prime.

Moreover, the generalized ultrametric space (DA, δ) is

P2. symmetric, i.e. δ(f, g) = δ(g, f), for each f, g ∈ DA,
P3. pairwise complete: if δ(f, g) ⊆ X ∪ Y , then δ(f, h) ⊆ X and δ(h, g) ⊆ Y for

some h ∈ DA.

Various notions of completeness for generalized ultrametric spaces are discussed in
[1]. At first we called pairwise completeness the Beck-Chevalley-Malcev property
of (DA, δ). Indeed, it is equivalent to saying that the functor P (D(−)) : P (A)op−−→
SL∨ mentioned above sends a pullback square (i.e., a square of inclusions with
objects X ∩Y,X, Y, Z) to a square satisfying the Beck-Chevalley condition. As the
property implies that a collection of congruences of join-semilattices commute, it is
also a sort of Malcev condition.

We show with Theorem 4 that property P1 of an OD-graph is definable by
an equation that we name (Unjp). We investigate the deductive strength of this
equation and show in particular that (RL2) is derivable from (Unjp), but not the
converse.

In presence of P1, symmetry and pairwise completeness can also be understood
as properties of an OD-graph. Symmetry is the following property: if k0⊳mC∪{k1}
with k1 not join-prime, then k1 ⊳m C ∪ {k0}. Pairwise completeness can be read as
follows: if k0 ⊳m C0 ∪ C1 ∪ {k2} with k2 not join-prime and C0, C1, {k2} pairwise
disjoint, then k0⊳mC0∪{k1} and k1⊳mC1∪{k2} for some completely join-irreducible
element k1.

We exhibit in Section 6 three equations valid on relational lattices and charac-
terize, via a set of properties of their OD-graphs, the pluperfect lattices satisfying
(Unjp) and these equations. We propose these four equations as an axiomatiza-
tion of the theory of relational lattices that we call [[AxRel]]. The main result of
this paper, Theorem 7, sounds as follows. If we restrict to finite lattices that are
atomistic—that is, lattices in which any element is the join of the atoms below it,
so the order on join-irreducible elements in the dual space is trivial—then a lattice
satisfies [[AxRel]] if and only if its OD-graph is symmetric and pairwise complete,
in the sense just explained.

We can build lattices similar to the relational lattices from P (A)-valued ultra-
metric spaces. It is tempting to look for further equations so to represent the
OD-graph of finite atomistic lattices satisfying these equations as P (A)-valued ul-
trametric space. Unfortunately this is not possible, since a key property of the
OD-graph of lattices of ultrametric spaces—the ones ensuring that the distance
function is well defined—is not definable by lattice equations. Yet Theorem 7 also
exhibits a deep connection between the OD-graph of finite atomistic lattices satis-
fying [[AxRel]] and the frames of the commutator logic [S5]A, see [10]. Considering
the complexity of the theory of combination of modal logics, Theorem 7 can be used
to foresee and shape future researches. For example, we shall discuss in Section 7
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how to derive undecidability results from the correspondent ones in multidimen-
sional modal logic. In particular, a refinement of the main result of Litak et al. [12,
Corollary 4.8] can be derived.

The paper is structured as follows. We introduce in Section 2 the notation as
well as the least lattice theoretic tools that shall allow the reader to go through
the paper. In Section 3 we describe the relational lattices, present some known
results in the literature, and give a personal twist to these results. In particular,
we shall introduce semidirect products of lattices, ultrametric spaces as a tool for
studying relational lattices, emphasize the role of the Beck-Chevalley property in
the theory. In Section 4 we characterize the OD-graphs of relational lattices. In
Section 5 we present our results on the equation (Unjp). In Section 6, we describe
our results relating equations valid on relational lattices to symmetry and pairwise
completeness. In the last Section we discuss the results presented as well as ongoing
researches, by the author and by other researchers, trace a road-map for future
work.

2. Some elementary lattice theory

A lattice is a poset L such that every finite non-empty subset X ⊆ L admits a
smallest upper bound

∨
X and a greatest lower bound

∧
X . We assume a minimal

knowledge of lattice theory—otherwise, we invite the reader to consult a standard
monograph on the subject, such as [3] or [5]. The technical tools that we use may
be found in the monograph [4], that we also invite to explore. A lattice can also
be understood as a structure A for the functional signature (∨,∧), such that the
interpretations of these two binary function symbols both give A the structure of
an idempotent commutative semigroup, the two semigroup structures being tied
up by the absorption laws x ∧ (y ∨ x) = x and x ∨ (y ∧ x) = x. Once a lattice is
presented as such structure, the order is recovered by stating that x ≤ y holds if
and only if x ∧ y = x.

A lattice L is complete if any subset X ⊆ L admits a smallest upper bound∨
X . It can be shown that this condition implies that any subset X ⊆ L admits

a greatest lower bound
∧
X . A complete lattice is bounded, since ⊥ :=

∨
∅ and

⊤ :=
∧
∅ are respectively the least and greatest elements of the lattice.

A closure operator on a complete lattice L is an order-preserving function j :
L −−→ L such that x ≤ j(x) and j2(x) = j(x), for each x ∈ L. We shall use Clop(L)
to denote the poset of closure operators on L, under the pointwise ordering. It
can be shown that Clop(L) is itself a complete lattice. If j ∈ Clop(L), then the
set L/j of fixed points of j is itself a complete lattice, with

∧
L/j X =

∧
LX

and
∨

L/jX = j(
∨

LX). For the correspondence between closure operators and

congruences in the category of complete join-semilattices, see [9].
Let L be a complete lattice. An element j ∈ L is said to be completely join-

irreducible if j =
∨
X implies j ∈ X , for each X ⊆ L; the set of completely

join-irreducible element of L is denoted here J (L). A complete lattice is spatial if
every element is the join of the completely join-irreducible elements below it. An
element j ∈ J (L) is said to be join-prime if j ≤

∨
X implies j ≤ x for some

x ∈ X , for each finite subset X of L. We say that j ∈ J (L) is non-join-prime if it
is not join-prime. An atom of a lattice L is an element of L such that ⊥ is the only
element strictly below it. A spatial lattice is atomistic if every element of J (L) is
an atom.
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For j ∈ J (L), a join-cover of j is a subset X ⊆ L such that j ≤
∨
X . For

X,Y ⊆ L, we say that X refines Y , and write X ≪ Y , if for all x ∈ X there exists
y ∈ Y such that x ≤ y. A join-cover X of j is said to be minimal if j ≤

∨
Y and

Y ≪ X implies X ⊆ Y ; we write j ⊳m X if X is a minimal join-cover of j. In a
spatial lattice, if j ⊳m X , then X ⊆ J (L). If j ⊳m X , then we say that X is a non-
trivial minimal join-cover of j if X 6= {j}. It is common to use the word perfect for
a lattice which is both spatial and dually spatial. We need here something different:

Definition 1. A complete lattice is pluperfect if it is spatial and for each j ∈ J (L)
and X ⊆ L, if j ≤

∨
X , then Y ≪ X for some Y such that j ⊳m Y . The OD-graph

of a pluperfect lattice L is the structure 〈J (L),≤,⊳m〉.

That is, in a pluperfect lattice every cover refines to a minimal one. Notice
that every finite lattice is pluperfect. If L is a pluperfect lattice, then we say that
X ⊆ J (L) is closed if it is a downset and j ⊳m C ⊆ X implies j ∈ X . As from
standard theory, the mapping X 7→

⋂
{ Y ⊆ J (L) | X ⊆ Y, Y is closed} defines a

closure operator whose fixed points are exactly the closed subsets of J (L). The
interest of considering pluperfect lattices stems from the following representation
Theorem.

Theorem 1 (Nation [14]). Let L be a pluperfect lattice and let L(J (L),≤,⊳m) be
the lattice of closed subsets of J (L). The mapping l 7→ {j ∈ J (L) | j ≤ l} is a
lattice isomorphism from L to L(J (L),≤,⊳m).

It was shown in [16] how to extend this representation theorem to a duality
between the category of finite lattices and the category of OD-graphs. The following
Lemma shall be repeatedly used in the proofs of our statements.

Lemma 2. Let L be a pluperfect lattice, let j ⊳m C and k ∈ C. If j ≤
∨
D with

D ≪ {
∨
(C \ {k}), k}, then k ∈ D. In particular, if k′ < k, then {

∨
C \ {k}, k′} is

not a cover of j.

3. The relational lattices R(D,A)

In this Section we define relational lattices, recall some known facts, and develop
then some tools to be used later, semidirect products of lattices, generalized ultra-
metric spaces, a precise connection to the theory of combination of modal logics (as
well as multidimensional modal logic and relational algebras).

Let A be a collection of attributes (or column names) and let D be a set of cell
values. A relation (or, more informally, a table) on A and D is a pair (X,T ) where
X ⊆ A and T ⊆ DX ; X is the header of the table while T is the collection of rows.
Elements of the relational lattice R(D,A) are relations on A and D.

Before we define the natural join, the inner union operations, and the order on
R(D,A), let us recall a few key operations. If X ⊆ Y ⊆ A and f ∈ DY , then
we shall use f↾X ∈ DX for the restriction of f to X ; if T ⊆ DY , then T ↾↾X shall
denote projection to X , that is, the direct image of T along restriction, T ↾↾X :=
{f↾X | f ∈ T }; if T ⊆ DX , then iY (T ) shall denote cylindrification to Y , that is,
the inverse image of restriction, iY (T ) := {f ∈ DY | f↾X ∈ T }. Recall that iY is
right adjoint to ↾↾X . With this in mind, the natural join and the inner union of
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tables are respectively described by the following formulas:

(X1, T1) ∧ (X2, T2) := (X1 ∪X2, T )

where T = {f | f↾Xi
∈ Ti, i = 1, 2} = iX1∪X2

(T1) ∩ iX1∪X2
(T2) ,

(X1, T1) ∨ (X2, T2) := (X1 ∩X2, T )

where T = {f | ∃i ∈ {1, 2}, ∃g ∈ Ti s.t. g↾X1∩X2
= f}

= T1↾↾X1∩X2
∪T2↾↾X1∩X2

.

The order is then given by

(X1, T1) ≤ (X2, T2) iff X2 ⊆ X1 and T1↾↾X2
⊆ T2 .

It was observed in [12] that R(D,A) arises—as a category with at most one arrow
between two objects—via the Grothendieck construction for the functor sending
X ⊆ A contravariantly to DX and then DX covariantly to P (DX). Let us record
the following important property:

Lemma 3. The image of a pullback square by the functor P (D(−)) : P (A)op −−→
SL∨ satisfies the Beck-Chevalley property.

P (DX1∩X2)

iX2

++

P (DX2)
↾↾X1∩X2

oo

P (DX1 )

iX3

++

↾↾X1∩X2

OO

P (DX3)

↾↾X2

OO

↾↾X1

oo

The above statement means that if we apply the functor to inclusions of the form
X1∩X2 ⊆ Xi ⊆ X3, i = 1, 2, then the two possible diagonals in the diagram above,
↾↾X2

◦ iX3
and iX2

◦↾↾X1∩X2
, are equal. The Beck-Chevalley property is a consequence

of the glueing property of functions: if f ∈ DX2 , g ∈ DX1 and f↾X1∩X2
= g↾X1∩X2

,

then there exists h ∈ DX3 such that h↾X2
= f and h↾X1

= g.

We can recast the previous category-theoretic observations in an algebraic frame-
work. An action of a complete lattice L over a complete lattice M is a monotonic
mapping 〈 〉 : L −−→ Clop(M), thus sending X ∈ L to a closure operator 〈X〉
on M . Given such an action, if we define j(X,T ) := (X, 〈X〉T ), then j(X,T ) is
a closure operator on the product L ×M . In particular, the set of j-fixed points,
L ⋉j M := {(X,T ) ∈ L ×M | 〈X〉T = T }, is itself a complete lattice, where the
meet coincides with the one from L ×M , while the join is given by the formula
(X1, T1) ∨L⋉jM (X2, T2) := (X1 ∨ X2, 〈X1 ∨ X2〉(T1 ∨ T2)). We call L ⋉j M the
semidirect product of L and M via j. The naming is chosen here after the semidi-
rect product of groups, which is a similar instance of the Grothendieck construction.
Given such an action, the correspondence X 7→ M/〈X〉 gives rise to a covariant
functor from L to the category SL∨, so that it makes sense to ask when the Beck-
Chevalley property holds, as in Lemma 3. This happens—and then we say that an
action 〈 〉 satisfies the Beck-Chevalley property—exactly when

〈X1 ∨X2〉T = 〈X1〉〈X2〉T , for each X1, X2 ∈ L and T ∈M . (1)

Notice that the identity 〈X1〉〈X2〉T = 〈X2〉〈X1〉T is a consequence of (1). As these
closure operators correspond to congruences of complete join-semilattices, we also
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think of the Beck-Chevalley property as a form of Malcev property, stating that
a collection of congruences (thought as binary relations) pairwise commute (w.r.t
composition of relations).

Relational lattices from ultrametric spaces. Let us come back to the lattice R(D,A).
Define on the set DA the following P (A)-valued ultrametric distance:

δ(f, g) := {x ∈ A | f(x) 6= g(x)} .

Thus δ(f, f) ⊆ ∅ and δ(f, g) ⊆ δ(f, h) ∪ δ(h, g) for any f, g, h ∈ DA, making
(DA, δ) into a generalized metric space in the sense of [11].1 With respect to the
latter work—where axioms for the distance are those of a category enriched over
(P (A)op, ∅,∪)—for f, g ∈ DA we also have that δ(f, g) = ∅ implies f = g and
symmetry, δ(f, g) = δ(g, f). We can define then an action of P (A) on P (DA):

〈X〉T = {f ∈ DA | ∃g ∈ T s.t. δ(f, g) ⊆ X} . (2)

We can now restate (and refine) Lemma 2.1 from [12]—which constructs the lattice
R(D,A) via a closure operator on P (A+DA)—as follows:

Theorem 2. The correspondence sending (X,T ) to (A \X, iA(T )) is an isomor-
phism bewteen the relational lattice R(D,A) and P (A)⋉j P (D

A).

The action defined in (2) satisfies the identity (1). As a matter of fact, (1)
is equivalent to pairwise completeness of (DA, δ) as an ultrametric space, see [1],
namely the following property:

if δ(f, g) ⊆ X1 ∪X2,

then there exists h such that δ(f, h) ⊆ X1 and δ(h, g) ⊆ X2 . (3)

It is easily verified that (3) is yet another spelling of the glueing property of func-
tions.

Observe that, given any generalized ultrametric space (F, δ) whose distance takes
values in P (A), equation (2)—with DA replaced by F—defines an action of P (A)
on P (F ). The lattice P (A) ⋉j P (F ) shall have similar properties to those of the
lattices R(D,A) and will be useful when studying the variety generated by the
relational lattices. As an example, we construct typed relational lattices, i.e. lattices
of relations where each column has a fixed type. To this goal, fix a surjective
mapping π : D −−→ A. For each a ∈ A, we think of the set Da = π−1(a) as the
type of the attribute a. Let S(π) be the set of sections of π, that is, s ∈ S(π) if
and only if s(a) ∈ Da, for each a ∈ A. Notice that (S(π), δ) is a pairwise complete
sub-metric space of (DA, δ). The lattice R(π) := P (A) ⋉j P (S(π)) is the typed
relational lattice. It can be shown that relational lattices and typed relational
lattices generate the same variety.
Relational lattices from multidimensional modal logics. In order to illustrate and
stress the value of identity (1), i.e. of the Beck-Chevalley-Malcev property, we
derive next a useful formula for computing the join of two tables under the P (A)⋉j

1This is a lifting of the Hamming distance to subsets. Yet, in view of [15] and of their work on
generalized ultrametric spaces, such a distance might reasonably tributed to Priess-Crampe and
Ribenboim.
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P (DA) representation.

(X1, T1) ∨ (X2, T2) = (X1 ∪X2, 〈X1 ∪X2〉(T1 ∪ T2))

= (X1 ∪X2, 〈X1 ∪X2〉T1 ∪ 〈X1 ∪X2〉T2)
since the modal operators 〈X〉 are normal, in the usual sense of modal logic,

= (X1 ∪X2, 〈X2〉〈X1〉T1 ∪ 〈X1〉〈X2〉T2) by (1)

= (X1 ∪X2, 〈X2〉T1 ∪ 〈X1〉T2)
since 〈X1〉T1 = T1 and 〈X2〉T2 = T2.

Theorem 2 suggests that a possible way to study the equational theory of the lattices
R(D,A) is to interpret the lattice operations in a two sorted modal logic, where the
modal operators are indexed by the first sort and act on the second. It is easily
recongnized that each modal operator satisfies the S5 axioms, while equation (1)
implies that, when A is finite, each modal operator 〈X〉 is determined by the modal
operators of the form 〈a〉 with a an atom below X . That is, the kind of modal logic
we need to interpret the lattice theory is the commutator logic [S5]n = [S5, . . . , S5︸ ︷︷ ︸

n-times

],

with n = cardA, see [10, Definition 18].

4. Minimal join-covers in R(D,A)

The lattices R(D,A) are pluperfect, even when A or D is an infinite set. The
completely join-irreducible elements were characterized in [12] together with the
meet-irreducible elements and the canonical context (see [3, Chapter 3] for the
definition of canonical context). If we stick to the representation given in Theo-
rem 2, the completely join-irreducible elements are of the form â = ({a}, ∅) and

f̂ = (∅, {f}). We can think of â as an empty named column, while f̂ is an ev-
erywhere defined row. They are all atoms, so that, in particular, we shall not be
concerned with the restriction of the order to J (R(D,A)) (since this order coincides
with the equality). In order to characterize the OD-graph of the lattice R(D,A),
we only need to characterize the minimal join-covers. Taking into account that if
an element j ∈ J (L) is join-prime, then it has just one minimal join-cover, the
singleton {j}, the following Theorem achieves this goal.

Theorem 3. The lattices R(D,A) are atomistic pluperfect lattices. As a matter of
fact, every element â, a ∈ A, is join-prime; for f ∈ DA, the minimal join-covers

of f̂ are of the form

f̂ ≤
∨

a∈δ(f,g) â ∨ ĝ , for g ∈ DA.

The proof of this statement is almost straightforward, given the characterization
of R(D,A) as the semidirect product P (A) ⋉j P (D

A) and the definition of the
closure operators given with equation (2). For this reason, we skip it.

In particular, every minimal join-cover contains at most one non-join-prime
element. In view of Theorem 1, we obtain a more precise description of the closure
operator described in [12, Lemma 2.1] that gives rise to relational lattices.

Corollary 4. The relational lattice R(D,A) is isomorphic to the lattice of closed
subsets of A ⊔DA, where a subset X is closed if δ(f, g) ∪ {g} ⊆ X implies f ∈ X.

In order to ease the reading, we shall use in the rest of this paper the same
notation for a completely join-irreducible element of R(D,A) and an element of
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A⊔DA. This is consistent with the above Corollary, as under the isomorphism we

have â = {a} and f̂ = {f}. Thus a shall stand for â, and f for f̂ .
In a spatial lattice L (thus in a relational lattice), an inequation s ≤ t holds if

and only if j ≤ s implies j ≤ t, for each j ∈ J (L)—thus we shall often consider
inequations of the form j ≤ s with j ∈ J (L). When L = R(D,A), the characteriza-
tion of minimal join-cover leads to the following principle that we shall repeatedly
use:

f ≤ x1 ∨ . . . ∨ xn iff δ(f, g) ∪ {g} ≪ {x1, . . . , xn}, for some g ∈ DA. (4)

5. Uniqueness of non-join-prime elements

For an inclusion we mean a pair (s, t) of terms (in the signature of lattice theory)
such that the equation t ∨ s = s (i.e. the inequality t ≤ s) is derivable from the
usual axioms of lattices. Thus, the equality s = t reduces to the inequality s ≤ t.
We write s ≤ t for a lattice inclusion and say it holds in a lattice if the identity
s = t holds in that lattice. Next, let us set

dℓ(~u) := u0 ∧ (u1 ∨ u2) , dρ(~u) := (u0 ∧ u1) ∨ (u0 ∧ u2) ,

so dℓ(~u) ≤ dρ(~u) is (an inclusion equivalent to) the usual distributive law. Consider
the following inclusion:

x ∧ (dℓ(~y) ∨ dℓ(~z) ∨ w) (Unjp)

≤ (x ∧ (dρ(~y) ∨ dℓ(~z) ∨w)) ∨ (x ∧ (dℓ(~y) ∨ dρ(~z) ∨w)) .

Theorem 4. The inclusion (Unjp) holds on relational lattices. As a matter of fact,
(Unjp) holds in a pluperfect lattice if and only if every minimal join-cover contains
at most one non-join-prime element.

Proof. Let us prove the first statement. To this goal, it will be enough to argue
that any join-irreducible element below the left-hand side of the inclusion is below
its right-hand side. Let k be such a join-irreducible element. It is not difficult to
see that if k is join-prime, then k is also below the right-hand side of the inclusion.
Suppose then that k is non-join-prime, whence k = f for some f ∈ DA. From
f ≤ dℓ(~y)∨dℓ(~z)∨w and (4), it follows that there exists g ∈ DA such that δ(f, g)∪
{g} ≪ {dℓ(~y), dℓ(~z), w}. In particular, {g} ≪ {dℓ(~y), w} or {g} ≪ {dℓ(~z), w}. We
firstly suppose that the last case holds. If a ∈ δ(f, g) and a ≤ dℓ(~y) = y0∧ (y1∨y2),
then a ≤ (y0 ∧ y1) ∨ (y0 ∧ y2) = dρ(~y), since a is join-prime. It follows that
δ(f, g) ∪ {g} ≪ {dρ(~y), dℓ(~z), w}, whence f ≤ x ∧ (dℓ(~y) ∨ dℓ(~z) ∨ w). If {g} ≪
{dℓ(~y), w}, then we conclude similarly that f ≤ x ∧ (dℓ(~y) ∨ dρ(~z) ∨w). Whence k
is below the right-hand side of this inclusion, and the inclusion holds since k was
arbitrary.

We leave the reader to generalize the argument above so to prove that if a
pluperfect lattice is such that every minimal join-cover has at most one non-join-
prime element, then (Unjp) holds. For the converse we argue as follows.

Let L be a pluperfect lattice, let kx ∈ J (L), Cx ⊆ J (L) with kx ⊳m Cx, and
suppose that ky, kz ∈ Cx are distinct and non-join-prime. For u ∈ {y, z}, since ku
is non-join-prime, there is a non-trivial minimal join-cover ku ⊳m Cu; as every non-
trivial minimal join-cover has at least two elements, let Cu,1, Cu,2 be a partition of
Cu such that Cu,i 6= ∅ for each i = 1, 2.



10 LUIGI SANTOCANALE

We construct a valuation which fails (Unjp). Let x := kx, y0 := ky, z0 := kz,
w :=

∨
(Cx \ {ky, kz}) and, for u ∈ {y, z} and i = 1, 2, let ui :=

∨
Cu,i. The left-

hand side of the (Unjp) evaluates to kx. Assume, by the way of contradiction, that
(Unjp) holds, so kx is below the right-hand side of the inclusion. Since the only
minimal join-coverD of kx such that D ≪ {kx} is {kx}, either kx ≤ dρ(~y)∨dℓ(~z)∨w
or kx ≤ dℓ(~y) ∨ dρ(~z) ∨ w; let us assume that the first case holds. We have then
kx ≤ dρ(~y) ∨ kz ∨

∨
(Cx \ {ky, kz}) = dρ(~y) ∨

∨
(Cx \ {ky}). Considering that

dρ(~y) ≤ ky , Lemma 2 implies that ky = dρ(~y) = (y0 ∧ y1) ∨ (y0 ∧ y2). Since
ky is join-irreducible ky = y0 ∧ yi for some i ∈ {1, 2}. Yet this is not possible,
as such relation implies that Cy,i is a join-cover of ky; considering that Cy,i is a
proper subset of the minimal join-cover Cy, this contradicts the minimality of Cy.
If kx ≤ dℓ(~y)∨ dρ(~z)∨w, then we get to a similar contradiction. Whence, kx is not
below the right-hand side of (Unjp), which therefore fails. �

It is worth noticing that the statement “every minimal join-cover contains ex-
actly one non-join-prime element” is not definable by equations: for A = D =
{0, 1}, there is a sublattice of R(D,A) which fails this property.

While Theorem 4 gives a semantic characterization of (Unjp), we might also wish
to measure its power at the syntactic level. Theorem 5 and Corollary 5 illustrate
the deductive strength of (Unjp), by pinpointing an infinite set of its consequences.

Theorem 5. If sℓ = sρ and tℓ = tρ are equations valid on distributive lattices, then
the equation

(x ∧ (sℓ ∨ tℓ ∨ w)) ∨ (x ∧ (sρ ∨ tρ ∨ w))

= (x ∧ (sρ ∨ tℓ ∨w)) ∨ (x ∧ (sℓ ∨ tρ ∨ w))

is derivable from (Unjp) and general lattice axioms.

Proof. For a lattice term s, let dnf(s) be its disjunctive normal form. Recall that we
can obtain dnf(s) from s by means of a sequence s = s0, . . . , sn = dnf(s) where, for
each i = 0, . . . , n− 1, si+1 is obtained from si by one application of the distributive
law at the toplevel of the term, and by general lattice axioms. Thus, for two lattice
terms s1, s2, let s1i , i = 0, . . . , n, and s2j , j = 0, . . . ,m be the sequences leading to
the respective normal forms.

For i = 0, . . . , n and j = 0, . . . ,m, let now ti,j = x ∧ (s1i ∨ s
2
j ∨w). Using (Unjp)

and general lattice axioms, we can compute as follows:

t0,0 = t1,0 ∨ t0,1 = t2,0 ∨ t1,1 ∨ t0,2 = . . .

=
∨

j=0,...,m

tn,j ∨
∨

i=0,...,n

ti,m
?
= tn,0 ∨ t0,m ,

where only the last equality needs to be justified. Notice that the relation ski+1 ≤ ski
holds in every lattice. Whence we have ski′ ≤ ski when i < i′, and both tn,j ≤ tn,0
and ti,m ≤ ti,0. It follows that the indexed join at the last line evaluates to tn,0∨t0,m.
We have derived, up to now, the identity

x ∧ (s1 ∨ s2 ∨ w) = (x ∧ (dnf(s1) ∨ s2 ∨w)) ∨ (x ∧ (s1 ∨ dnf(s2) ∨ w))

for every pair of lattice terms s1 and s2.
Let us call co-clause a conjunction of variables. By using lattice axioms only, we

can suppose that, within dnf(t), there are no repeated literals in co-clauses and that
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no co-clause subsumes another. Under this assumption, we have that an identity
sℓ = sρ holds in all distributive lattices if and only if dnf(sℓ) is equal to dnf(sρ).
Whence, to derive the statement of the Theorem, we can compute as follows:

(x ∧ (sℓ ∨ tρ ∨ w)) ∨ (x ∧ (sρ ∨ tℓ ∨ w))

= (x ∧ (dnf(sℓ) ∨ tρ ∨ w)) ∨ (x ∧ (sℓ ∨ dnf(tρ) ∨ w))

∨ (x ∧ (dnf(sρ) ∨ tℓ ∨w)) ∨ (x ∧ (sρ ∨ dnf(tℓ) ∨w))

= (x ∧ (dnf(sρ) ∨ tρ) ∨ w) ∨ (x ∧ (sℓ ∨ dnf(tℓ) ∨ w))

∨ (x ∧ (dnf(sℓ) ∨ tℓ ∨ w)) ∨ (x ∧ (sρ ∨ dnf(tρ) ∨w))

= (x ∧ (dnf(sℓ) ∨ tℓ ∨ w)) ∨ (x ∧ (sℓ ∨ dnf(tℓ) ∨w))

∨ (x ∧ (dnf(sρ) ∨ tρ ∨ w)) ∨ (x ∧ (sρ ∨ dnf(tρ) ∨ w))
—where we have permuted the order of the four joinands

= (x ∧ (sℓ ∨ tℓ ∨ w)) ∨ (x ∧ (sρ ∨ tρ ∨ w)) . �

In [12] two equations were shown to hold on relational lattices. One of them is
(RL2) that we describe next. Set

doℓ(~u) := (u0 ∨ u1) ∧ (u0 ∨ u2) , doρ(~u) := u0 ∨ (u1 ∧ u2) ,

the equation is

x ∧ (doℓ(~y) ∨ doℓ(~z)) ≤ (x ∧ (doρ(~y) ∨ doℓ(~z))) ∨ (x ∧ (doℓ(~y) ∨ doρ(~z))) (RL2)

Corollary 5. If sℓ = sρ and tℓ = tρ are equations valid on distributive lattices,
then the inequation

(x ∧ (sℓ ∨ tℓ ∨ w)) ≤ (x ∧ (sρ ∨ tℓ ∨ w)) ∨ (x ∧ (sℓ ∨ tρ ∨ w)) (5)

is derivable from (Unjp). In particular (RL2) is derivable from (Unjp).

The Corollary follows from the Theorem and from the fact that x ≤ x ∨ y. In
order to derive (RL2) from (5) (if we do not include the bottom constant ⊥ as
part of the signature of lattice theory), we instantiate sℓ := doℓ(~y), sρ := doρ(~y),
tℓ := doℓ(~z), tρ := doρ(~z), and w := doρ(~z).

It can be shown that (Unjp) is not derivable from (RL2)—mainly due to the role
of the variable w in the (Unjp). The construction of a lattice L satisfying (RL2) but
failing (Unjp) proceeds via the construction of its OD-graph 〈J(L),≤,⊳m〉. Due to
the consistent number of variables in the two equations, an automated tool such
as Mace4 [13] could not help finding a countermodel. Similarly, automated tools
such as Prover9 and Waldmeister [13, 6] were of no help to show that (RL2) is a
consequence of (Unjp).

Natural questions—e.g. decidability—may be raised concerning the equational
theory of (Unjp). Since we can give an easy semantic proof that an equation of
the form (5) holds on finite lattices (or pluperfect) satisfying (Unjp), a reasonable
conjecture is that this theory has some sort of finite model property. Yet, proving
this might not be immediate, since the variety of lattices satisfying (Unjp) is not
locally finite (i.e., not every finitely generated lattice satisfying (Unjp) is finite).
The construction used in [16, Proposition 7.5] may be used to argue that the lattice
freely generated in this variety by three generators is infinite.
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6. Symmetry and pairwise completeness

Due to its syntactic shape (Unjp) falls in a class of inclusions described in [16,
Section 8] that admit a correspondent property in the OD-graph. Here, the mean-
ing of the word correspondent is analogous to its use in modal logic, where some
formulas might be uniformly valid in a frame if and only if the frame satisfies a
correspondent first order property. Thus Theorem 4 is not completely unexpected.
A more surprising result comes from considering the three equations below, that
fall outside the syntactic fragment described in [16]; a strengthening of Lemma 2
(Lemma 10 to follow) allows to characterize the OD-graphs of pluperfect lattices
satisfying (Unjp) and these equations, see Theorem 8.

x ∧ (y ∨ z) ≤ (SymPC)

(x ∧ (y ∨ (z ∧ (x ∨ y)))) ∨ (x ∧ (z ∨ (y ∧ (x ∨ z))))

x ∧ ((y ∧ z) ∨ (y ∧ x) ∨ (z ∧ x)) ≤ (x ∧ y) ∨ (x ∧ z) (VarRL1)

x ∧ ((x ∧ y) ∨ dℓ(~z)) ≤ (x ∧ ((x ∧ y) ∨ dρ(~z))) ∨ (x ∧ dℓ(~z)) (RMod)

Let us first illustrate the way in which these equations hold in relational lattices.
In particular, the proof shall illustrate the crucial role played by symmetry and
pairwise completeness—i.e., condition (3)—of the ultrametric space (DA, δ).

Theorem 6. The inclusions (SymPC), (VarRL1), (RMod) hold in relational lat-
tices.

Proof. (SymPC). Let k be a join-irreducible element below x∧ (y ∨ z). If k is join-
prime, then k is also below (x∧ y)∨ (x∧ z), whence it is below the right-hand side
of this inclusion. Therefore, let k be non-join-prime, so k = f for some f ∈ DA;
by (4), let g ∈ DA be such that δ(f, g) ∪ {g} ≪ {y, z}. Let us suppose first that
g ≤ z. Since δ(f, g) ≪ {y, z}, using pairwise completeness we can find h such that
δ(f, h) ≪ {y} and δ(h, g) ≪ {z}. It follows that h ≤

∨
δ(h, g) ∨ g ≤ z; moreover,

since f ≤ x, δ(h, f) = δ(f, h), and δ(f, h) ≪ {y}, then h ≤ δ(h, f) ∨ f ≤ x ∨ y.
Consequently, we have h ≤ z ∧ (x ∨ y) and, considering that δ(f, h) ≪ {y}, we
have f ≤ x ∧ (y ∨ (z ∧ (x ∨ y))). If g ≤ y, then we similarly deduce that f ≤
x∧ (z∨ (y∧ (x∨z))). In both cases, f is below the right-hand side of this inclusion.

(VarRL1). Let k be below the left-hand side of this inclusion. If k is join-prime,
then it is below the right-hand side of this inclusion as well. Otherwise k = f is
non-join-prime and δ(f, g) ∪ {g} ≪ {y ∧ z, y ∧ x, z ∧ x} for some g ∈ DA.

Since g ≤ r for some r ∈ {y∧z, y∧x, z∧x}, we consider three cases; by pairwise
completeness we can also assume that g is the only element of δ(f, g) ∪ {g} below
r—since if δ(f, g′) ≪ {y∧z, y∧x, z∧x}\{r} and δ(g′, g) ≪ {r}, then g′ ≤ r. Also,
the last two cases, g ≤ y ∧ x and g ≤ z ∧ x, are symmetric in y and z, so that we
consider among them the second-to-last only.

Suppose firstly that g ≤ y∧z. Then, from δ(g, f) = δ(f, g) ≪ {x∧y, x∧z} ≪ {x}
and f ≤ x, we deduce g ≤ x; whence g ≤ x ∧ y and f ≤ (x ∧ z) ∨ (x ∧ y).

Suppose next that g ≤ x ∧ y. By pairwise completeness, let h be such that
δ(f, h) ≪ {x∧ z} and δ(h, g) ≪ {y∧ z}. We deduce then h ≤ y from δ(h, g) ≪ {y}
and g ≤ y, and h ≤ x, from δ(h, f) = δ(f, h) ≪ {x} and f ≤ x. Thus h ≤ x ∧ y
and f ≤ (x ∧ z) ∨ (x ∧ y).

(RMod). Let k be a join-irreducible below the left-hand side of this inclusion. If
k is join-prime, then k is below x∧ ((x∧y)∨dρ(~z)). Otherwise k = f and, for some
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g ∈ DA, δ(f, g)∪{g} ≪ {x∧y, dℓ(~z)}. If g ≤ x∧y, then all the elements that are not
below x∧y are below dℓ(~z) and join-prime, whence they are below dρ(~z). It follows
that f ≤ x ∧ ((x ∧ y) ∨ dρ(~z)). Otherwise g ≤ dℓ(~z) and, by pairwise completeness,
we can also assume that g is the only element below dℓ(~z), so δ(f, g) ≪ {x∧ y}. It
follows then that δ(g, f)∪ {f} = δ(f, g)∪ {f} ≪ {x}, g ≤ x, whence g ≤ x∧ dℓ(~z).
Consequently, f ≤ (x ∧ y) ∨ (x ∧ dℓ(~z)) ≤ (x ∧ ((x ∧ y) ∨ dρ(~z))) ∨ (x ∧ dℓ(~z)). �

In [12] a second inclusion was shown to hold on relational lattices:

x ∧ ((y ∧ (z ∨ x)) ∨ (z ∧ (y ∨ x))) ≤ (x ∧ y) ∨ (x ∧ z) (RL1)

The same kind of tools used in the proof of Theorem 6 can be used to argue that this
inclusion holds on relational lattices. The reader will have noticed the similarity of
(VarRL1) with (RL1). As a matter of fact, (VarRL1) was suggested when trying to
derive (RL1) from (Unjp) and the other equations as in the following Proposition.

Proposition 6. (RL1) is a consequence of (Unjp), (RMod) and (VarRL1).

Proof. Using (Unjp) and considering that y ∧ z ≤ z ∧ (y ∨ x), we have:

x ∧ ((y ∧ (z ∨ x)) ∨ (z ∧ (y ∨ x)))

= (x ∧ ((y ∧ x) ∨ (z ∧ (y ∨ x)))) ∨ (x ∧ ((y ∧ (z ∨ x)) ∨ (z ∧ x)))) .

Using now (RMod) and considering that x ∧ z ≤ y ∨ x, we compute as follows:

x ∧ ((y ∧ x) ∨ (z ∧ (y ∨ x)))

= (x ∧ ((y ∧ x) ∨ (z ∧ y) ∨ (z ∧ x))) ∨ (x ∧ z ∧ (y ∨ x))

= (x ∧ ((y ∧ x) ∨ (z ∧ y) ∨ (z ∧ x))) ∨ (x ∧ z)

= x ∧ ((y ∧ z) ∨ (y ∧ x) ∨ (z ∧ x)) .

Considering the symmetric role of y and z, we obtain:

x ∧ ((y ∧ (z ∨ x)) ∨ (z ∧ (y ∨ x))) = x ∧ ((y ∧ z) ∨ (y ∧ x) ∨ (z ∧ x))

= (x ∧ y) ∨ (x ∧ z) , by (VarRL1). �

We present now what we consider our strongest result in the study of the equa-
tional theory of relational lattices. To this end, let us denote by [[AxRel]] the (set
composed of the) four equations (Unjp), (VarRL1), (RMod) and (SymPC). Also,
given that we restrict to lattices satisfying (Unjp), and considering the character-
ization given with Theorem 4, it is convenient to introduce the notation k0 ⊳

C
m k1

for the statement k0, k1 ∈ J(L), k1 is non-join-prime, k1 6∈ C, and k0 ⊳m C ∪ {k1}.

Theorem 7. Let L be a finite atomistic lattice. Then L |= [[AxRel]] if and only
if every nontrivial minimal join-cover contains exactly one non-join-prime element
and, moreover, the following properties hold in the OD-graph:

• If k0 ⊳
C
m k1, then k1 ⊳

C
m k0. (6)

• If k0 ⊳
C0⊔C1

m k2, then k0 ⊳
C0

m k1 and k1 ⊳
C1

m k2, for some k1 ∈ J (L).

Given Theorem 7, it becomes tempting to look for a representation Theorem.
Given a pluperfect atomistic lattice satisfying the above four equations, we would
like to define an ultrametric space on the set of non-join-prime elements with dis-
tance valued on the powerset of the join-prime ones, and then argue that the lattice
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constructed via the standard action, defined in (2), is isomorphic to the given lat-
tice. Unfortunately, this idea does not work, since if we try to set δ(k0, k1) = C
whenever k0 ⊳

C
m k1, this might be ill defined since the implication “k0 ⊳

C
m k1 and

k0⊳
D
m k1 implies C = D” might fail. Moreover, there is no equation nor quasiequa-

tion enforcing this, as an immediate consequence of the next Proposition.

Proposition 7. There is an atomistic sublattice of R({0, 1}, {0, 1}) which does not
arise from an ultrametric space.

Theorem 7 is a consequence of a more general Theorem, to be stated next,
characterizing the OD-graphs of pluperfect lattices in the variety axiomatized by
[[AxRel]]. While the conditions stated next may appear quite complex, they are
the ones to retain if we aim at studying further the theories of relational lattices
by duality—e.g., a sublattice of a relational lattice need not be atomistic.

Theorem 8. A pluperfect lattice belongs to the variety axiomatized by [[AxRel]] if
and only if every minimal join-cover contains at most one non-join-prime element
and, moreover, the following properties hold in its OD-graph:

• If k0 ⊳m C, then there exists at most one c ∈ C with c ≤ k0. (π-VarRL1)

• If k0 ⊳
C
m k1, then no element of C is below k0. (π-RMod)

• if k ⊳m C0 ⊔ C1 with C0, C1 non-empty, then for some k′ ∈ J (L),

either k ⊳m {k
′} ⊔C1, k

′ ⊳m C0, and k
′ ≤

∨
C1 ∨ k,

or k ⊳m C0 ⊔ {k′}, k′ ⊳m C1, and k
′ ≤

∨
C0 ∨ k. (π-StrongSymPC)

Let us notice that the conditions

• If k0 ⊳
C0⊔C1

m k2 then, for some k1 ∈ J (L),

k0 ⊳
C0

m k1, k1 ⊳
C1

m k2, and k1 ≤
∨
C0 ∨ k0. (π-SymPC)

• If k0 ⊳
C
m k1, then k1 ≤

∨
C ∨ k0 (π-Sym)

follow from the above properties. On atomistic pluperfect lattices the last condition
is equivalent to (6).

Lemma 8. If L is a pluperfect lattice with L |= (Unjp) and whose OD-graph
satisfies (π-StrongSymPC) and (π-RMod), then (π-SymPC) holds as well.

Proof. Let k1 ⊳m C0 ⊔ C1 ⊔ {k2} with k2 ∈ J (L) and non-join-prime, and use
(π-StrongSymPC) to find k1 such that either (i) k0 ⊳m {k1} ⊔ C1 ⊔ {k2} and k1 ≤
k0 ∨

∨
C1 ∨ k2, or (ii) k0 ⊳m C0 ⊔ {k1} and k1 ≤ k0 ∨

∨
C0. Let us argue, by

contradiction, that (i) cannot arise. By (Unjp), k1 is join-prime, whence the relation
k1 ≤ k0 ∨

∨
C1 yields k1 ≤ k0. This, however, contradicts (π-RMod). �

We close this section by proving Theorem 8. To this end, we need a generalization
of Lemma 2. As the refinement relation is an extension to subsets of the order
relation, the relation ⊳⊳m, defined next, can be considered as an extension to subsets
of the minimal join-covering relation.

Definition 9. Let L be a pluperfect lattice and let X,Y ⊆ J (L) be antichains.
Put X⊳⊳mY if X ≪ {

∨
Y } and y ∈ Cxy

for some xy ∈ X , for each y ∈ Y and
whenever {Cx | x ∈ X} is a family of coverings of the form x⊳m Cx ≪ Y .
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Lemma 10. Let L be a pluperfect lattice and let j ⊳m C0 ⊔ C1. Suppose that∨
X ≤

∨
C0 and j ≤

∨
X ∨

∨
C1. Then there exists a minimal join-cover of the

form j ⊳m D0 ⊔ C1 with D0 ≪ X and D0⊳⊳mC0.

While the proof that a pluperfect lattice whose OD-graphs satisfies those prop-
erties essentially mimics the proof of Theorem 6, we prove instead the converse
direction through a series of Lemmas.

Lemma 11. If (VarRL1) holds on a pluperfect lattice, then its OD-graph satisfies
(π-VarRL1).

Proof. Suppose C = {k1} ⊔ {k2} ⊔ D with k0 ⊳m C and k1, k2 ≤ k0. Let x := k0,
y := k1 ∨

∨
D, z := k2 ∨

∨
D. Then k1 ≤ x ∧ y, k2 ≤ x ∧ z and

∨
D ≤ y ∧ z,

whence the left-hand side of (VarRL1) evaluates to k0, which is therefore below the
right-hand side of this inclusion. It follows that either k0 ≤ y, or k0 ≤ z, in both
cases contradicting the fact that C is a minimal join-cover. �

The inclusion

x ∧ (y ∨ dℓ(~z)) ≤ (x ∧ (y ∨ dρ(~z))) ∨ (x ∧ (y ∨ (dℓ(~z) ∧ (y ∨ x))) , (Sym)

is derivable from (Unjp), (SymPC) and (RMod). It can also be shown that (RMod)
is a consequence of (Sym).

Lemma 12. If (Sym) holds in a pluperfect lattice, then its OD-graph satisfies
(π-Sym).

Proof. Suppose that the inclusion holds and let k0⊳
C
m k1. Since k1 is non-join-prime,

there exists a minimal join-cover k1⊳mD which we can partition into two non empty
subsets D1 and D2. Let now x := k0, y :=

∨
C, z0 := k1, z1 =

∨
D1, z2 =

∨
D2.

Then, the left-hand side of the inclusion evaluates to k0, which therefore is below
the right-hand side. Considering that x is k0 and that the unique minimal join-cover
of k0 whose elements are all below k0 is {k0}, it follows that either k0 ≤ y ∨ dρ(~z)
or k0 ≤ y ∨ (dℓ(~z) ∧ (y ∨ x)).

Argue that dρ(~z) < dℓ(~z), since k1 is join-irreducible, whence by Lemma 2,
{y, dρ(~z)} is not a cover of k0, excluding the first case. Therefore {y, dℓ(~z)∧(y∨x)}
is a cover of k0, whence, by Lemma 2, k1 = dℓ(~z) ∧ (y ∨ x), showing that k1 ≤
y ∨ x =

∨
C ∨ k0 and proving the statement. �

Lemma 13. If L is a pluperfect lattice such that L |= [[AxRel]], then (π-RMod)
holds in its OD-graph.

Proof. Let k0 ⊳C
m k1 and put C = C0 ⊔ C1 with C0 ≪ {k0} and c 6≤ k0 for each

element c ∈ C1. As (Sym) whence (π-Sym) hold, we have k1 ≤
∨
C1 ∨

∨
C0 ∨ k0.

We consider next equation (RMod). Put x := k0, y :=
∨
C0, z0 :=

∨
C1 ∨ k1,

z1 :=
∨
C1∨

∨
C0, z2 := k0. From k1 ≤

∨
C1∨

∨
C0∨k0, we get z0∧ (z1∨z2) = z0.

Whence, the left-hand side of (RMod) evaluates to k0 so k0 is below the right-
hand side of (RMod). Considering that {k0} is the unique minimal join-cover of
k0 whose elements are all below k0, it follows that either k0 ≤ z0 ∧ (z1 ∨ z2) or
k0 ≤ y ∨ (z0 ∧ z1) ∨ (z0 ∧ z2).

As k0 6≤
∨
C1 ∨ k1 = z0, it follows that k0 ≤ y ∨ (z0 ∧ z1) ∨ (z0 ∧ z2). We

can use then Lemma 10 to deduce that k0 has a minimal join-cover of the form
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k0 ⊳m C0 ⊔D, with D ≪ {z0 ∧ z1, z0 ∧ z2} ≪ {z1, z2}. If all the elements of D are
below z1 =

∨
C0 ∨

∨
C1, then

k0 ≤
∨
C0 ∨

∨
D ≤

∨
C0 ∨

∨
C1 ,

contradicting the minimality of k0⊳mC0⊔C1⊔{k1}. Therefore, at least one element
of D is below z2 = k0. If C0 6= ∅, then in the minimal join-cover C0 ⊔D there are
at least two elements that are below k0. This however contradicts (π-VarRL1),
whence (VarRL1). We have, therefore, C0 = ∅. �

Lemma 14. If L is a pluperfect lattice with L |= [[AxRel]], then (π-StrongSymPC)
holds in is OD-graph.

Proof. By Lemmas 11 and 13, (π-RMod) and (π-VarRL1) hold in the OD-graph.
Let x := k0, y :=

∨
C0, z :=

∨
C1. Then the left-hand side of (SymPC)

evaluates to k0 which is therefore below the right-hand side. Thus, by Lemma 10,
there is a minimal join-cover of the form k0 ⊳m D0 ⊔ D1 with either (i) D0⊳⊳mC0,
D0 ≪ {y∧(x∨z)}, and D1 = C1, or (ii) D0 = C0, D1⊳⊳mC1, and D1 ≪ {z∧(x∨y)}.

W.l.o.g. we can suppose that (i) holds. From D0 ≪ {y ∧ (x ∨ z)} ≪ {x ∨ z} =
{k0 ∨

∨
C1}, we can argue as follows. We notice first that if an element of D0 is

join-prime, then it is either below k0 or below some c ∈ C1; since D0 ⊔ C1 is an
antichain, this element is below k0. Therefore, if all the elements of D0 are join-
prime, then, by (π-VarRL1), D0 = {k′}. Otherwise, there exists a non-join-prime
element k′ in D0 and, by (Unjp), this is the only non-join-prime in D0. Write
D0 = {k′} ⊔E, then every element of E is join-prime and, as seen before, we need
to have E ≪ {k0}. Then (π-RMod) enforces E0 = ∅ and D0 = {k′}. In both cases,
the relation {k′} = D0⊳⊳mC0 yields k′ ⊳m C0. �

Finally, in order to understand the structure of finite lattices in the variety of
axiomatized by [[AxRel]], let Jp(L) denote the set of join-prime elements of L and
consider the following property:

• If k0 ⊳m C and C ⊆ Jp(L), then c0 ≤ k0 for some c0 ∈ C (π-JP)

The next Lemma ensures the existence of a non-join-prime element in a cover in
finite atomistic lattices, as stated in Theorem 7.

Lemma 15. If a finite lattice L satisfies [[AxRel]], then (π-JP) holds in its OD-
graph. In particular, if L is atomistic, then k0 ⊳m C implies that k1 ∈ C for some
non-join-prime k1.

It can be shown that the finiteness assumption in Lemma 15 is necessary.

7. Conclusions and further directions

7.0.1. Some undecidable problems. Our main result, Theorem 7, characterizes the
OD-graphs of finite atomistic lattices satisfying [[AxRel]] as structures similar to
frames for the commutator logic [S5]n, the multimodal logic with n distinct pairwise
commuting S5 modal operators, see [10]. We exemplify next how to take advantage
of such similarity and of the existing theory on combination of modal logics, to
deduce undecidability results. As this is not the main goal of the paper, we delay
a full exposition of these ideas to an upcoming set of notes.
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An [S5]n frame is a structure F = (F,R1, . . . , Rn) where each Ri is an equivalence
relation on F and, moreover, the confluence property holds: if i 6= j, xRiy and
xRjz, then yRjw and zRiw for some w ∈ F . A particular class of [S5]n frames
are the universal S5n-products, those of the form U = (F,R1, . . . , Rn) with F =
X1 × . . .×Xn and (x1, . . . , xn)Ri(y1, . . . , yn) if and only if xj = yj for each j 6= i.

For a frame F = (W,R1, . . . , Rn) and X ⊆ {1, . . . , n}, let us say that Y ⊆
W is X-closed if w0 ∈ Y , whenever there is a path w0Ri0w1 . . . wk−1Rikwk with
{i0, . . . , ik} ⊆ X and wk ∈ Y . Then X-closed subsets are closed under intersections,
so subsets of {1, . . . , n} give rise to closure operators 〈X〉 and to an action as defined
in Section 3. Let L(F) = P ({1, . . . , n})⋉j P (W ) and notice that L(F) is atomistic.
A frame F is initial if there is f0 ∈ F such every other f ∈ F is reachable from f0;
it is full if, for each i = 1, . . . , n, Ri is not included in the identity. If F is initial and
full, then L(F) is subdirectly irreducible. A p-morphism is defined as usual in modal
logic. The key observation leading to undecidability is the following statement.

Theorem 9. There is a surjective p-morphism from a universal S5n-product frame
U to a full initial frame F if and only if L(F) embeds in a relational lattice.

Proof. [Sketch] The construction L is extended to a contravariant functor, so if
ψ : U −−→ F is a p-morpshim, then we have an embedding L(ψ) of L(F) into L(U).
We can assume that all the components X1, . . . , Xn of U are equal, so Xi = X for
each i = 1, . . . , n; if this is the case, then L(U) is isomorphic to the relational lattice
R({1, . . . , n}, X).

The converse direction is subtler. Let χ : L(F) −−→ R(A,D) be a lattice em-
bedding; since L(F) is subdirectly-irreducible, we can suppose that χ preserves
bounds; its left adjoint µ : R(A,D) −−→ L(F) is then surjective. Since both L(F)
and R(D,A) are generated (under possibly infinite joins) by their atoms, each
atom x ∈ L(F) has a preimage y ∈ R(D,A) which is an atom. Consider now
S0 = {f ∈ DA | µ(f) is a non-join-prime atom} and make it into a P ({1, . . . , n})-
valued ultrametric space by letting δS0

(f, g) = µ(δ(f, g)) ⊆ {1, . . . , n}—we use here
the fact that µ sends join-prime elements to join-prime elements. S0 is shown to
be a pairwise complete ultrametric space over {1, . . . , n}. We prove that pairwise
complete ultrametric spaces over a finite set B are in bijection with universal S5n-
product frames, with n = cardB. Then the restriction of µ to S0 is a surjective
p-morphism from S0 to (a frame isomorphic to) F. �

In view of the following statement, which relies on [8] and can be inferred from
[7]: “ for n ≥ 3, it is undecidable whether, given a finite full initial frame F, there
is a surjective p-morphism from a universal S5n-product U to F” , we deduce the
following undecidability results, which partially answer Problem 4.10 in [12].

Corollary 16. It is undecidable whether a finite subdirectly irreducible atomistic
lattice embeds into a relational lattice. Consequently, the quasiequational theory of
relational lattices in the pure lattice signature is also undecidable.

7.0.2. Comparison with Litak et al. [12]. We have presented our first contribution
to the study of the equational theory of relational lattices. In [12] two equations
in the larger signature with the header constant are presented as a base for the
equational theory of relational lattices. As mentioned there, the four equations of
[[AxRel]] are derivable from these two equations. Therefore, we can also think of
the present work as a contribution towards assessing or disproving completeness of
these two axiomatizations. Yet, we wish to mention here and emphasize some of
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our original motivations. Lattice theoretic equations are quite difficult to grasp, in
particular if considered on the purely syntactic side, as done for example in [12].
Duality theory attaches a meaning to equations via the combinatorial properties of
the dual spaces. This process is nowadays customary in modal and intuitionistic
logic and gives rise to a well defined area of research, correspondence theory. Our
aim was to attach meaning to the equations of relational lattices. The answer we
provide is, at the present state of research, via the relevant combinatorial prop-
erties, symmetry and pairwise completeness. From this perspective, the results
presented in Section 6 undoubtedly need further understanding. In particular it is
worth trying to modularize them, so as to discover equations exactly corresponding
to symmetry or, respectively, to pairwise completeness; alternatively, argue that
these equations do not exist. Finally, the present work opens new directions and
challenges for the duality theory developed in [16]—of which, we hope we have
illustrated the fruitfulness—including a better understanding of how to generalize
it to the infinite case, new mechanisms by which to devise correspondence results,
natural conjectures concerning equations having correspondents in finite lattices.
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