
This is a repository copy of Testing, Verification and Improvements of Timeliness in ROS
Processes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/130118/

Version: Accepted Version

Proceedings Paper:
Hazim, M.Y., Qu, H. orcid.org/0000-0002-1643-8926 and Veres, S.M. (2016) Testing,
Verification and Improvements of Timeliness in ROS Processes. In: Alboul , L., Damian, D.
and Aitken, J., (eds.) Towards Autonomous Robotic Systems, TAROS 2016. Towards
Autonomous Robotic Systems 17th Annual Conference, TAROS 2016, 26 Jun - 01 Jul
2016, Sheffield, UK. Lecture Notes in Computer Science (9716). Springer Verlag , pp. 146-
157. ISBN 978-3-319-40378-6

https://doi.org/10.1007/978-3-319-40379-3_15

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1 This work was supported by the EPSRC project EP/J011894/2.

Testing, Verification and Improvements of Timeliness in ROS

processes 1

Mohammed Y. Hazim, Hongyang Qu, and Sandor M. Veres
Dept. of Automatic Control and Systems Engineering, University of Sheffield, UK

{myhazim1,h.qu,s.veres}@shef.ac.uk

Abstract. This paper addresses the problem of improving response times of robots

implemented in the Robotic Operating System (ROS) using formal verification of

computational-time feasibility. In order to verify the real time behaviour of a robot under

uncertain signal processing times, methods of formal verification of timeliness properties are

proposed for data flows in a ROS-based control system using Probabilistic Timed Programs

(PTPs). To calculate the probability of success under certain time limits, and to demonstrate

the strength of our approach, a case study is implemented for a robotic agent in terms of

operational times verification using the PRISM model checker, which points to possible

enhancements to the operation of the robotic agent.

Keywords: Verification _ROS _ PTP _ LISA

1 Introduction

The Robot Operating System (ROS [10]) is an open-source operating system used to develop

control software for robots. It has become popular due to its capabilities in perception, object

detection, navigation, etc. and the increasing demand for a uniform platform for

programmable robots. The correctness of a ROS program then attracts serious attention as

the deployment of ROS grows rapidly. An important way to guarantee correctness in software

is formal verification and several attempts have been conducted to apply it to ROS programs,

such as [9][4][11]. ROSRV in [4] is a runtime verification framework on top of ROS in order to

address safety and security issues of robots. The work in [9] considered the problem of

generating a platform-specific glue code for platform-independent controller code in ROS,

and the code generation process is amenable to formal verification. In [11], formal verification

was applied to a high-level planner/scheduler for autonomous personal robotic assistants

(Care-O-bot). However, none of the attempts addresses the performance alongside the

correctness of a ROS program via formal verification to ensure stringent constraints on

timeliness and other properties in ROS programs. This assurance is crucial to correct system

behaviour and uncertainty in their environment.

This work is concerned with methods which can improve the performance of ROS based robot

control systems. One of the difficulties in robot programming is to ensure that the robot

responds to environmental challenges in a timely manner, let it be a threat approaching, to

avoid something or the execution of a command which should not be delayed. Physical

2

actions make the robot primarily depend on suitable speed of sensor signal processing, e.g.,

recognition and interpretation of relationships of static and moving objects in the

environment, making sense of a command issued by a trusted human based on the context

the robot and the human share, or planning of an action sequence to achieve a goal in a timely

manner which does not render the goal outdated by the time the plan is ready, etc.

The above computational challenges are addressed in the computational processes of ROS

while a number of nodes are running, each in possibly several threads that communicate with

each other between nodes. Broadcast of topics often interrupts subscriber nodes, and

services requested from other nodes need to be waited for in order to be able to make use

the data returned. For instance, sensing and recognition by computer vision may require

some fixed or variable time, depending on the significant number of objects of the

environment. Discovering relationships in the environment may however take even more

variable time to compute. Clearly action taking can suffer delays as planning cannot start

before relationships are modelled. We propose that improvements to ROS-based

computational performance can be analysed and carried out in three phases:

1. Statistical modelling of computational times in various categories and complexities of

perception (including sensing and analysis), planning and execution of planned

actions.

2. Formal analysis of the statistically modelled given ROS system using probabilistic

timed programs (PTPs) [2] by answering PCTL queries on unacceptable delays in

computation in operations by model checker PRISM [7].

3. Revision of procedures used in the ROS system to reduce the chance of computational

delays.

In this work, we first design a ROS system in a rational agent framework LISA (Limited

Instruction Set Architecture) [5], which is based on AgentSpeak expansions such as Jason and

Jade, with more focusing on external planning process, abstraction from planning and

optimisation from decision making. The LISA model is then compiled into a PTP model for the

formal analysis.

2 The Robot Operating System

ROS is not a traditional Operating System. Rather it provides a structured communications

layer in which individual processes can interact [10]. It simplifies the task of programming

robots by providing a robust framework where the designer is provided a declarative

programming environment for parallel computational processes of a robot. A ROS

implementation of a robotic software has three typical components:

 Nodes - Nodes are basic processes that perform the sensing, computation and control

tasks. Typically, each node can contain several computational threads, although it may

3

have additional sub-threads which the programmer is responsible for designing.

Typical systems are formed from many nodes, each of which does a portion of the

overall task.

 Services - Services provide a strict communication model where there is an established

request and response message between two nodes. In a process similar to web

services, a node may subscribe and subsequently request in- formation via a service

and then be supplied back with the information on demand.

 Topics - In order to publish messages any node can establish a topic and publish

messages to it, as and when necessary. Any other node within the network may also

publish to this topic. In order to receive messages, the other nodes may subscribe,

wherein they can receive any message sent via a call back. A topic is a broadcast

messaging stream and so does not provide any synchronous message transfer.

A fundamental difference between services and topics is that services are re- quester/receiver

initiated while topics are sender/provider initiated and the receivers are immediately

notified, asynchronously. Both are however many-to-many communications as there can be

several providers and receivers of any service or topic. Topics are inefficient when a node only

needs some data from another node occasionally, when it needs it; while services are

inefficient when a node needs some data supplied on a continuous, "as soon as possible"

basis, though asynchronously. In their own way both are efficient ways to communicate for

different purposes. Care needs to be taken however that a subscriber to a topic does not

receive more data than it needs as otherwise it is wasting its computational resources on

handling redundant messages from the topic. For instance, sensor messages are to be

published to a topic only with a frequency which is needed by other nodes, thereby resulting

in less latency than if a service were doing the same job.

3 Mathematical model of a ROS Package

One way to describe a ROS based system is a tri-partite graph with vertices for nodes, topics

and services. These vertex types are not interchangeable in graph matching algorithms. New

topics and services can be easily introduced that can allow reconfiguration of the system to

provide agents with the information they required, albeit sourced from different locations.

All node communication must occur through topics or services.

Definition 3.1. A ROS-graph is 𝐺 = (𝑁, 𝑇, 𝑆, 𝐸, 𝐷, 𝐶, 𝑋, 𝜆), where 𝑁 are the set of vertices

representing ROS nodes, 𝑇 are a set of topics and 𝑆 are a set of services, 𝐶 is a partially order

set of object classes and 𝑋 is a set of labels to name all vertices. 𝐸 ⊂ (𝑁 × 𝑇) ∪ (𝑇 × 𝑁) ∪(𝑁 × 𝑆) ∪ (𝑆 × 𝑁), is a set of directed edges to represent publishing of, and subscription to,

topics and provision of, and subscription to, services, respectively. 𝐷 ∶ 𝐸− → 𝐶∗, 𝐸− = 𝑇 ∪(𝑁 × 𝑆) ∪ (𝑆 × 𝑁), is a data descriptor function where 𝐶∗ is a notation for finite sequences

of entries from the set of data object classes 𝐶, which are used in services and topics to send

4

information between nodes. Each of 𝑁, 𝑇, 𝑆 are labelled by a surjective labelling function 𝜆: 𝑁 ∪ 𝑇 ∪ 𝑆 → 𝑋.

A ROS system enables the nodes to advertise or use services, and to publish or subscribe to

topics. G represents the maximum ability of the robot when the system has all nodes, topics

and services nominally functioning. If some nodes are not available due to sensor, actuator

or computational hardware breakdown, then G needs sufficient redundancy to enable

continued functioning of the robot or at least some of its functionality. The ROS graph G

defines all the possible data flows for sensor readings, signal processing and control action in

the environment. A detailed description is not within the scope of this work and we refer the

reader to [1].

4 Statistics of ROS nodes

When ROS based robot control system's programming is completed, the robot is ready to be

tested in a series of scenario tests. Performance may not acceptable due to a few factors:

1. When a plan of an agent is triggered due to environmental change the computational times

of perception modelling and planning are excessive and delay action taking in some

environmental scenarios.

2. In some environmental scenarios scene interpretation and planning is several times faster

than typical response time requires. The question arises whether more complex model of the

scene could have been built to more fully grasp an environmental situation.

Overall the performance problem of the robot is to discover scenarios which are not

favourable for the robot’s computational system. These are searched and synthesised based
on sensor and perception statistics derived in practical use of the ROS system. This section

provides a formal model of statistical estimation of computation and communication times in

a given ROS system already operating on a hardware platform. Consequent application of

probabilistic model checking can guide us to introduce improvements in the choice of

computational processes involved in reasoning.

4.1 Performance evaluator node

To estimate the processing and communication time across the ROS system and additional

runtime statistics node Σ can be introduced, which collects runtime data from all the robots

functional nodes. Each of the functional nodes 𝑖 has a data array 𝐷𝑖 recording timed-

performance of services and topics in the node. Let denote 𝑠𝑘 ∈ 𝑆 a service in a ROS-graph 𝐺 = (𝑁, 𝑇, 𝑆, 𝐸, 𝐷, 𝐶, 𝑋, 𝜆). The following timed data are recorded about a service call.

1. When a request is to be made from node 𝑗 for service 𝑠𝑘, then a data entry (𝑛𝑗 →req 𝑠𝑘, 𝑡𝑗)

is added to 𝐷𝑗 just before the service command is issued from node 𝑗 to node 𝑖 with time

stamp 𝑡𝑗 in node 𝑗.

5

2. Upon request, and before any execution of service actions, a data entry (𝑛𝑗 →req 𝑠𝑘, 𝑡𝑖) is

added to 𝐷𝑖 with time stamp 𝑡𝑖 in node 𝑖.

3. Upon completion of the computational processes or physical controls performed, a data

entry (𝑛𝑗 →ans 𝑠𝑘, 𝑡𝑖) is added to 𝐷𝑖 with time stamp in node 𝑖.

4. Upon answer data received in node 𝑗 for service 𝑠𝑘, then a data entry (𝑛𝑗 →ans 𝑠𝑘, 𝑡𝑗) is

added to 𝐷𝑗 with time stamp 𝑡𝑗 in node 𝑗.

For topics recording of runtime data is slightly different:

1. When a topic is to be published by node 𝑗 for topic 𝑝𝑘, then a data entry (𝑛𝑗 →pub 𝑝𝑘, 𝑡𝑗) is

added to 𝐷𝑗 just before the topic boadcast is issued from node 𝑗 with time stamp 𝑡𝑗 in node 𝑗.

2. Upon receiving the broadcast, and before any execution of actions due to the topic

broadcast, a data entry (𝑛𝑗 →rec 𝑝𝑘, 𝑡𝑖) is added to 𝐷𝑖 with time stamp 𝑡𝑖 in node 𝑖.

3. Upon completion of the computational processes or physical controls performed, a data

entry (𝑛𝑗 →top 𝑠𝑘, 𝑡𝑖) is added to 𝐷𝑖 with time stamp in node 𝑖.

Note that there are other ways to collect statistics on execution time and latency, such as in

[3], but our method suits our need better because it does not depend on the header of

messages, which is not always available.

4.2 Estimation of operations

From each node 𝑖 the data containers 𝐷𝑖 are sent to the runtime statistics node Σ, which can

compute the following amongst others:

 Probability distribution of the request communication times 𝑡𝑖 − 𝑡𝑗 from (𝑛𝑗 →req 𝑠𝑘, 𝑡𝑗) and (𝑛𝑗 →req 𝑠𝑘, 𝑡𝑖).

 Probability distribution of the service execution times 𝑡𝑠𝑖 − 𝑡𝑒𝑖 f from (𝑛𝑗 →req 𝑠𝑘, 𝑡𝑠𝑖)

and (𝑛𝑗 →ans 𝑠𝑘, 𝑡𝑒𝑖).

 Probability distribution answer communications times 𝑡𝑗 − 𝑡𝑖 from (𝑛𝑗 →ans 𝑠𝑘, 𝑡𝑗) and (𝑛𝑗 →ans 𝑠𝑘, 𝑡𝑖).

 Probability distribution of communication broadcast times 𝑡𝑖 − 𝑡𝑗 from of (𝑛𝑗 →pub 𝑝𝑘, 𝑡𝑗) and (𝑛𝑗 →rec 𝑝𝑘, 𝑡𝑖).

6

 Probability distribution of topic interruption times , 𝑡𝑠𝑖 − 𝑡𝑒𝑖 from (𝑛𝑗 →rec 𝑝𝑘, 𝑡𝑠𝑖) and (𝑛𝑗 →top 𝑠𝑘, 𝑡𝑒𝑖).

Performance tuning of a ROS based computational system is carried out iteratively through a

series of trial runs, during which the average runtime probabilities (or conditional runtime

probabilities of the duration events are evaluated), followed by a ROS system. This is followed

by algorithmic adjustments made to the ROS system and the iteration continues by another

trial run. The series of iterations consisting of (1) trial-run (2) compilation to PRISM model (3)

running of PCTL queries (4) algorithmic amendments are cyclically repeated on the ROS

system until satisfactory computational performance is achieved.

5 A rational agent framework LISA

Comparing with Jason in terms of plan selection function, LISA [5] proved to enhance the

architecture with a runtime probabilistic model checking by predicting the outcomes of

applicable plan and selections. The LISA structure is simpler than its predecessors and can

easily lend itself to design time and run-time verification. Now we give the detail about LISA.

By analogy to previous definitions [8, 12] of AgentSpeak-like architectures, we define our

agents as a tuple:),,,,(= ALB FR , where:

 },,,{= 21
p

nppp F is the set of all predicates.

 FB is the total set of belief predicates. The current belief base at time t is defined

as BBt  . Beliefs that are added, deleted or modified can be either called internal or

external depending on whether they are generated from an internal action, in which

case are referred to as "mental notes", or from an external input, in which case they

are called "percepts".

 },,{= 21
l

nlllL  is a set of logic-based implication rules.

 },,,{= 21 
 n is the set of executable plans or plans library.

Current applicable plans at time t are part of the subset applicable plan t or

"desire set".

 BaaaA
a

n \},,,{= 21 F is a set of all available actions. Actions can be either

internal, when they modify the belief base or data in memory objects, or external,

when they are linked to external functions that operate in the environment.

AgentSpeak like languages, including LISA, can be fully defined and implemented by specifying

initial beliefs and actions, and reasoning cycles:

 Initial Beliefs. The initial beliefs and goals FB 0 are a set of literals that are

automatically copied into the belief base tB (that is the set of current beliefs) when

the agent mind is first run.

7

 Initial Actions. The initial actions AA 0 are a set of actions that are executed when

the agent mind is first run. The actions are generally goals that activate specific plans.

The following operations are repeated for each reasoning cycle in AgentSpeak.

 Maintenance of Percepts. This means generation of perception predicates for tB and

data objects such as the world model used here W .

 Logic rules. A set of logic based implication rules L describes theoretical reasoning to

improve the agent current knowledge about the world.

 Executable plans. A set of executable plans or plan library  . Each plan j is

described in the form:
j

njj aaacp ,,,: 21  , where Bp j  is a triggering predicate,

which allows the plan to be retrieved from the plan library whenever it comes true,

Bc j  is a logic formula of a context, which allows the agent to check the state of the

world, described by the current belief set tB , before applying a particular plan

sequence Aaaa
j

n ,,, 21  with a list of actions. Each ja can be one of (1) predicate

of an external action with arguments of names of data objects, (2) internal (mental

note) with a preceding + or - sign to indicate whether the predicate needs to be added

or taken away from the belief set tB (3) conditional set of items from (1)-(2). The set

of all triggers jp in a program is denoted by trE

LISA enhanced the above reasoning cycle to allow multiple actions to be executed in parallel.

The enhanced reasoning cycle consists of the following steps:

1. Belief base update. The agent updates the belief base by retrieving information about

the world through perception and communication. Adding and removing beliefs from

the belief base is carried out by the function Belief Update Function (BUF).

2. Application of logic rules. The logic rules in L are applied in a round-robin fashion

(restarting at the beginning of the list) until there are no new predicates generated for

tB . This means that rules need to be verified not to lead to infinite loops.

3. Trigger Event Selection. For every reasoning cycle a function called Belief Review

Function)()(: ttt EBS  selects the current event set tE , where)( is the so

called power operator and represents the set of all possible subset of a particular set.

We call the current selected trigger event tt TBS =)(and the associated plans the

Intention Set.

4. Plan Selection. All the plans in tT are checked for their context to form the Applicable

Plans set t by function)(: ttO SES  . We will call the current selected plan

ttOS =)( .

8

5. Plan Executions. All plans in tO ES : are started to be executed concurrently by going

through the plan items
j

naaa ,,, 21  one-by-one sequentially.

6 Modelling of agent operational times in PRISM

In this section we assume that the response of the physical environment of the agent is

modelled as a probabilistic timed program (PTP) 𝐸 in terms of the predicates feed back to the

belief base of the agent under various environmental states. 𝐸 is composed of environmental

states, and transitions which under each state through the conditional probabilities of the

environment corresponds to triggering of predicates through the sensor system of the robotic

agent. Given that the agent has well defined decision structures as described in the previous

section, the environment-agent model will also be a PTP. This section describes how the

combination of probability distributions, which were estimated in the previous section, when

combined with the environmental PTP and the logic based decision making of the agent, can

be modelled in PRISM.

6.1 Probabilistic timed programs (PTP)

Probabilistic timed programs [6] are an extension of Markov Decision Processes (MDPs) with

state variables and real-time clocks.

Given a set 𝒱 of variables, let (𝒱), 𝑉𝑎𝑙(𝒱) and (𝒱) be a set of assertions, valuations and

assignments over 𝒱 respectively. Given a set 𝑆, let 𝑆 be the set of subsets of 𝑆 and 𝑆 the set

of discrete probability distributions over 𝑆. A set 𝒳 of clock variables represents the time

elapsed since the occurrence of various events. The set of clock valuations is ℝ≥0𝒳 = {𝑡: →ℝ≥0}. For any clock valuation 𝑡 and any 𝛿 ≥ 0, the delayed valuation 𝑡 + 𝛿 is defined by (𝑡 +𝛿)(𝑥) = 𝑡(𝑥) + 𝛿 for all 𝑥 ∈ 𝒳. For a subset 𝑌 ⊆ 𝒳, the valuation 𝑡[𝑌: = 0] is obtained by

setting all clocks in 𝑌 to 0: 𝑡[𝑌: = 0](𝑥) is 0 if 𝑥 ∈ 𝑌 and 𝑡(𝑥) otherwise. A (convex) zone is

the set of clock valuations satisfying a number of clock difference constraints, i.e. a set of the

form: 𝜌 = {𝑡 ∈ ℝ≥0 𝒳0 | 𝑡𝑖 − 𝑡𝑗 ≲ 𝑏𝑖𝑗}. The set of all zones is 𝑍𝑜𝑛𝑒𝑠(𝒳).

Definition 1 (PTP). A PTP is a tuple 𝑃 = (𝐿, 𝑙0, 𝒳, 𝒱, 𝑣𝑖 , ℐ, 𝒯) where:

 𝐿 is a finite set of locations and 𝑙0 ∈ 𝐿 is the initial location;

 𝒳 is a finite set of clocks and ℐ: 𝑆 → 𝑍𝑜𝑛𝑒𝑠(𝒳) is the invariant condition;

 𝒱 is a finite set of state variables and 𝑣𝑖 ∈ 𝑉𝑎𝑙(𝒱) is the initial valuation;

 𝒯: 𝑆 → 𝑇𝑟𝑎𝑛𝑠(𝐿, 𝒱, 𝒳) is the probabilistic transition function, where 𝑇𝑟𝑎𝑛𝑠(𝐿, 𝒱, 𝒳) = Asrt(𝒱) × 𝑍𝑜𝑛𝑒𝑠(𝒳) × D(Assn(𝒱) × P(𝒳) × 𝐿).

A step from a state (𝑙, 𝑣, 𝑡) consists of the elapse of a certain amount of time 𝛿 ∈ ℝ≥0

followed by a transition 𝜏 = (𝒢, ℰ, Δ) ∈ 𝒯(𝑙). The transition comprises a guard 𝒢 ∈ Asrt(𝒱),

enabling condition ℰ ∈ 𝑍𝑜𝑛𝑒𝑠(𝒳) and probability distribution Δ = 𝜆1(𝑓1, 𝑟1, 𝑙1) + ⋯ +

9

𝜆𝑘(𝑓𝑘, 𝑟𝑘, 𝑙𝑘)) over triples containing an update 𝑓𝑗 ∈ Asrt(𝒱), clock resets 𝑟𝑗 ⊆ 𝒳 and target

location 𝑙𝑗 ∈ 𝐿.

The delay 𝛿 must be chosen such that the invariant ℐ(𝑙) remains continuously satisfied; since ℐ(𝑙) is a (convex) zone, this is equivalent to requiring that both 𝑡 and 𝑡 + 𝛿 satisfy ℐ(𝑙). The

chosen transition 𝜏 must be enabled, i.e., the guard 𝒢 and the enabling condition ℰ in 𝜏 must

be satisfied by 𝑣 and 𝑡 + 𝛿, respectively. Once 𝜏 is chosen, an assignment, set of clocks to

reset, and successor location are selected at random, according to the distribution Δ in 𝜏.

6.2 Performance queries

Given a PTP, we can use the following PCTL queries to check its properties:

• P⋈=?[F 𝑎],

• P⋈=?[F≤𝑇 𝑎],

where ⋈∈ {𝑚𝑎𝑥, 𝑚𝑖𝑛}, 𝑎 is Boolean expression that does not refer to any clocks and 𝑇 is an

integer expression. The first query asks what is the maximum/minimum probability that 𝑎 is

satisfied, and the second one inquires the probability that 𝑎 can be satisfied within time

bound 𝑇. Based on these queries, we can compute the maximum/minimum probability of all

target states that satisfy 𝑎 without time limit or within a bound 𝑇. For example, we can ask

what is the minimum probability for a robot moving to a specific location within certain time.

A concrete example will be shown in the next section.

6.3 Verification process

Figure 1 illustrates the whole process in our method. A system is first written in LISA and then

translated into ROS. A performance evaluator node is generated for this system. After the

evaluator node collects sufficient statistics on the time delay, it computes the probability

distribution. A PTP model is then constructed using this information and the LISA program,

although it is feasible to build the PTP model from the ROS program directly. The reason that

we build the PTP model from the LISA program is that it provides a high level abstraction of

the system, which can make the PTP model compact. The PTP model is fed to PRISM for

verification. The result is then used as a reference when improving the design of the ROS

program.

10

Figure 1: The verification process.

7 Case study

In this section we demonstrate the strength of our approach using the following scenario. An

autonomous ground vehicle (AGV) is exploring a remote area with a vision system consisting

two cameras (primary and secondary camera). The system merges two images, one from each

camera, to look for an object in the area. Here we are mainly interested in two ROS nodes:

one for receiving images from the cameras and the other for processing these images. The

statistics shows that time for receiving one image respect the following probability

distribution:

• With probability 0.3, it take less than 4 units of time, but more than 3 units to receive one

image;

• With probability 0.6, the receiving time locates in the interval (4,6);

• With probability 0.1, the receiving time locates in (6,8).

It takes less than 16 units of time but more than 12 units to process two images, and the

probability of successfully finding the object in the images is 0.91. When the system fails to

find the object, it will take two new images from the cameras and repeat the process.

Figure 2: The PTP for the system.

11

Figure 2 illustrates the PTP model for the system, where 𝑥 is a clock, which is used to count

the time elapse for each step. The timing constraints in a node (which represents a state),

such as 𝑥 < 4, is the upper bound and the constraints on an edge (which represents a

transition), such as 𝑥 > 3, is the lower bound. This figure shows that the system receives the

image from the primary camera first (states 𝑠1, 𝑠2 and 𝑠3), and then receives the one from

the secondary camera (states 𝑠4, 𝑠5 and 𝑠6). In state 𝑠7, the system processes the images. We

can ask a query that at what probability the system successfully find the object within 35 units

of time, which can formulated in PCTL as follows: P𝑚𝑎𝑥=?[F≤35 ``𝑆𝑢𝑐𝑐𝑒𝑠𝑠′′] (1)

Figure 3: The PTP for the new system.

The result returned by PRISM is 0.91. One problem in this system is that it has to wait for two

images before it can start to look for the object. If the image processing and receiving can be

performed in parallel by different hardware, we may be able to increase the performance of

the system, which is possible if the object can be found from one image, even if at a lower

probability, e.g., 0.7. One way to achieve it as follows. The system starts to process the first

image immediately after it arrives. Here we assume that processing one image is between 8

and 10 units. As the processing time exceeds the time required for receiving an image, the

system does not need to wait once it finishes processing the first image. Instead, it can

immediately process the second images. Although it is slightly slower to process the images

separately than processing them altogether, eliminating the waiting time for the second

image makes the system able to receive more images within the time limit and thus, find the

object at higher probability. Figure 3 illustrates the improved system design. The result for

the query in Equation (1) is 0.9724, which shows a big improvement from the previous design.

Figure 4 shows the PRISM program for this improved system.

12

Figure 4: The Prism program for the new system.

8 Conclusions

This paper presented a method for formal verification of timeliness properties of robots

implemented in ROS. The LISA framework was used to design a robotic agent as LISA provides

a solution for the verification of robotic agents through the PRISM model checker. Statistical

estimation was applied to robot operations under the ROS system to detect and collect

information about the latency in the system. The LISA model was then associated with

runtime probabilities and translated into a PTP model and verified in PRISM. It has been

illustrated how to apply the methods to improve the design of a ROS system in a case study.

In the future we intend to bring the methods nearer to industrial applicability by improving

their timing performance analysis, which might require the development of more efficient

model checking algorithms for PTPs in the case of very large models. Another direction of

future work is to search for other modelling formalisms, which can handle continuous

probability distributions on timing variances, as PTP can only deal with discrete probability

distributions.

References

1. J. M Aitken, S. M. Veres, and M. Judge. Adaptation of system configuration under the robot

operating system. In Proc. of the 19th world congress of the international federation of

automatic control, 2014.

2. K. Drager, M. Z. Kwiatkowska, D. Parker, and H. Qu. Local abstraction refinement for

probabilistic timed programs. Theor. Comput. Sci., 538:37-53, 2014.

3. D. Forouher, J. Hartmann, and E. Maehle. Data ow analysis in ROS. In Proc. Of the 41st

International Symposium on Robotics, pages 1{6. VDE, 2014.

4. J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan, and G. Rosu. ROSRV:

Runtime verification for robots. In Proc. of the 14th International Conference on Runtime

Verification, LNCS 8734, pages 247{254. Springer, 2014.

13

5. P. Izzo, H. Qu, and S. M. Veres. Reducing complexity of autonomous control agents for

verifiability. arXiv:1603.01202[cs.SY], March 2016.

6. M. Kwiatkowska, G. Norman, and D. Parker. A framework for verification of software with

time and probabilities. In Proc. of the 8th International Conference on Formal Modelling and

Analysis of Timed Systems, LNCS 6246, pages 25-45. Springer, 2010.

7. M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic real-time

systems. In Computer aided verification, pages 585{591. Springer, 2011.

8. N. K. Lincoln and S. M. Veres. Natural language programming of complex robotic BDI agents.

Intelligent and Robotic Systems, 71(2):211-230, 2013.

9. W. Meng, J. Park, O. Sokolsky, S. Weirich, and I. Lee. Verified ROS-based deployment of

platform-independent control systems. In Proc. of NASA Formal Methods, LNCS 9058, pages

248-262. Springer, 2015.

10. M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng.

ROS: an open-source Robot Operating System. In ICRA Workshop on Open Source Software,

volume 3, 2009.

11. M. Webster, C. Dixon, M. Fisher, M. Salem, J. Saunders, K. Koay, and K. Dautenhahn.

Formal verification of an autonomous personal robotic assistant, pages 74{79. AAAI, 2014.

12. M. Wooldridge. An Introduction to MultiAgent Systems. Wiley, Chichester, 2002.

