
Systematic and Realistic Testing in Simulation of

Control Code for Robots in Collaborative

Human-Robot Interactions

Dejanira Araiza-Illan, David Western, Anthony G. Pipe and Kerstin Eder∗

Abstract

Industries such as flexible manufacturing and home care will be trans-
formed by the presence of robotic assistants. Assurance of safety and
functional soundness for these robotic systems will require rigorous verifi-
cation and validation. We propose testing in simulation using Coverage-
Driven Verification (CDV) to guide the testing process in an automatic
and systematic way. We use a two-tiered test generation approach, where
abstract test sequences are computed first and then concretized (e.g., data
and variables are instantiated), to reduce the complexity of the test gen-
eration problem. To demonstrate the effectiveness of our approach, we
developed a testbench for robotic code, running in ROS-Gazebo, that im-
plements an object handover as part of a human-robot interaction (HRI)
task. Tests are generated to stimulate the robot’s code in a realistic
manner, through stimulating the human, environment, sensors, and actu-
ators in simulation. We compare the merits of unconstrained, constrained
and model-based test generation in achieving thorough exploration of the
code under test, and interesting combinations of human-robot interac-
tions. Our results show that CDV combined with systematic test gen-
eration achieves a very high degree of automation in simulation-based
verification of control code for robots in HRI.

1 Introduction

Robotic assistants for industrial and domestic applications are designed to inter-
act and collaborate directly with humans. These close interactions have ethical
and legal implications. Consequently, the safety and functional soundness of
such technologies needs to be demonstrated, for them to become viable commer-
cial products [6]. Currently, a physical separation between robots and humans

∗Dejanira Araiza-Illan, David Western, and Kerstin Eder are with the Department of Com-
puter Science and Bristol Robotics Laboratory, University of Bristol, Bristol, UK. E-mail:
{dejanira.araizaillan,david.western,kerstin.eder}@bristol.ac.uk. Anthony Pipe is
with the Faculty of Engineering Technology and Bristol Robotics Laboratory, University of
the West of England, Bristol, UK. E-mail: tony.pipe@brl.ac.uk

1

ar
X

iv
:1

51
1.

01
35

4v
4 

 [
cs

.R
O

] 
 1

3 
Ju

l 2
01

6



is enforced for safety, besides restrictions of speed and force.1 These restrictions
limit the scope of the applications for collaborative robots. To demonstrate
that speed and force restrictions are being met, and thus safety can be as-
sured even without physical separation, the software that controls these robotic
platforms must be subjected to rigorous verification and validation (V&V) pro-
cesses. Software V&V needs to consider the robotic system as a whole entity,
i.e. the software coupled with its hardware and electronics, as well as the reality
and uncertainties of the target environments.

V&V of human-robot interactions (HRI) is challenging. The robot’s en-
vironment is dynamic and uncertain (e.g., it includes people). Current V&V
methods and tools are limited by computational resource bounds, restricting the
degree of realism, detail, and exhaustiveness of exploration. Formal methods,
e.g. model checking and theorem proving, are exhaustive and provide proof of
requirement satisfaction, at the cost of employing highly abstracted models of
the robotic systems and HRIs due to computational constraints, as in [23, 26].
Testing in simulations allows realism and detail [19, 20], at the cost of not being
exhaustive with respect to the possibilities in the system under test (SUT), nor
providing guarantees of requirement satisfaction.

Available verification methodologies from other domains, such as the mi-
croelectronics design industry, provide systematic and targeted approaches to
maximize “coverage” (i.e., the extent to which a system’s design has been ex-
plored) in testing. One of these methodologies is Coverage-Driven Verification
(CDV), where various coverage models are used to assess exploration of the SUT
and V&V completion [21]. Tests that maximize coverage –i.e., effective tests–
are generated (mostly) automatically, coupled with feedback loops (automatic
or manual) from automated coverage metrics collection, and automatic checks
of (mostly) the SUT’s response.

In test generation, constraints are commonly employed to bias testing to-
wards rare events for coverage closure, after applying pseudo-random approaches
to achieve exploration of the SUT [21, 7]. Model-based test generation uses
formal methods (e.g., model checking) or other techniques to explore models
in order to obtain test bias [25]. Nonetheless, computing tests that stimulate
robotic code in a realistic or human-like manner, as it would happen in a real-life
HRI scenario, makes the test generation problem quite complex.

We manage complexity via a two-tiered test generation approach. Abstract
test sequences are generated first, and then instantiated to obtain concrete
tests that stimulate the robotic code indirectly –i.e., the tests stimulate the
human, environment, sensors and actuators in simulation, these then stimulate
the robot. For example, a test requires a human to send voice commands to
activate the robot in a particular order, expressed as ‘send voice command’
actions in the abstract layer. Code that executes these ‘human’ actions is as-
sembled according to the test action sequences. The concretization of these
action sequences is the production of timed sequences from the human voice

1Standards ISO 13482:2014 for robotic assistants and ISO 10218 (parts I and II) for indus-
trial robotics.

2



model in simulation, that will stimulate simulated voice sensors, and then will
send their readings to the robot’s code to stimulate it. This two-tiered process
is employed in model-based testing [25]. In this paper we apply unconstrained,
constrained, and model-based abstract test generation, coupled with test con-
cretization via uniform sampling from classified ranges for variables and parame-
ters. We demonstrate the complementary strengths of exploratory and targeted
tests, particularly through model-based test generation, in achieving high levels
of coverage for different coverage models, including code, cross-product, and
assertions (requirements).

We tested the code for an object handover interaction between a humanoid
torso and a person, envisaged for cooperative manufacture tasks, in a simula-
tor developed in Robot Operating System2 (ROS) and Gazebo3, a 3D physics
simulator. We employed a CDV testbench prototype developed for our simula-
tor, fully compatible with ROS-Gazebo4. This paper extends our previous work
in [2], with more requirements, coverage models, generated tests and simulation
runs. Our testbench prototype is transferable and extendible to other robotic
simulators based on ROS, and other collaborative and assistive applications.

The paper is structured as follows. We present the handover scenario in
Section 2. The testbench components are presented in Section 3. A discussion
of V&V and coverage results is presented in Section 4. Related work is presented
in Section 5, and Section 6 concludes with an outlook on future work.

2 Case Study: Robot to Human Object Han-
dover Task

The object handover case study was chosen because it is critical in many HRI
tasks, such as cooperative manufacture, or home care. The robot platform,
BERT2, is a humanoid torso with two arms [15]. A handover starts with voice
activation from the person to the robot. The robot proceeds to pick up an ob-
ject, holds it out to the human, and signals for the human to take it. The human
indicates readiness to take the object through another voice command. Then,
the robot will collect three sensor readings: “pressure,” indicating whether the
human is holding the object (applying force against the robot’s hold of the ob-
ject); “location,” visually tracking that the person’s hand is close to the object;
and “gaze,” visually tracking that the person’s head is directed towards the ob-
ject. Each sensor reading is classified into G=P =L={1̄, 1}, where 1 indicates
the sensing was positive that the human is ready to receive the object, and 1̄ is
any other sensing outcome, including null. After the sensing, the robot should
decide to release the object if the human is ready, i.e. GPL = (1, 1, 1) from
the Cartesian product of the sensor readings (GPL for short), or it should de-
cide not to release the object otherwise, i.e. GPL ∈ {(1̄, ∗, ∗), (∗, 1̄, ∗), (∗, ∗, 1̄)},

2http://www.ros.org/
3http://gazebosim.org/
4Available at: https://github.com/robosafe/testbench/v3

3



where ∗ ∈ {1, 1̄}, within a time threshold. The person may disengage from the
task before the robot makes a decision. The robot can time out whilst sensing,
or while waiting for a signal.

A ROS ‘node’ contains the robot’s action control code, comprising 212 state-
ments in Python. The code was structured as a FSM using the SMACH mod-
ules [4], to facilitate computing a model of it for model-based test generation.

2.1 Requirements List

The following safety and functional requirements need to be verified, derived
from the standard ISO 13482:2014 and previous work on handover interaction
protocols and their testing in [8, 2]:

1. If the gaze, pressure and location are sensed as correct, then the object
shall be released.

2. If the gaze, pressure or location are sensed as incorrect, then the object
shall not be released.

3. The robot shall make a decision before a threshold of time.

4. The robot shall always either time out, decide to release the object, or
decide not to release the object.

5. The robot shall not close the gripper when the human is too close.

6. The robot shall start in restricted speed.

7. The robot shall not collide with itself at high speeds.

8. The robot shall operate within allowable maximum values to avoid danger-
ous unintentional collisions with humans and other safety-related objects.

The last requirement was implemented in four different manners, considering
a speed threshold of 250 mm/s based on standard ISO 10218-1:2011:

8a. The robot hand speed is always less than 250 mm/s.

8b. If the robot is within 10 cm of the human, the robot’s hand speed is less
than 250 mm/s.

8c. If the robot collides with anything, the robot’s hand speed is less than 250
mm/s.

8d. If the robot collides with the human, the robot’s hand speed is less than
250 mm/s.

4



Figure 1: The ROS-Gazebo simulation of a real handover.

Figure 2: Testbench and simulator elements in ROS-Gazebo

2.2 Handover Simulator

A simulator of the handover scenario was developed in ROS-Gazebo. ROS
is an open-source platform for the development and deployment of robotics
code, using C++ and/or Python. Gazebo is a 3D physics simulator, compatible
with ROS. BERT2, a cylindrical object, and the person’s head and hand were
modelled in Gazebo, as shown in Fig. 1. Models were developed in code for the
sensors and the human action enactment.

3 A CDV Testbench for a ROS-GAZEBO Sim-
ulator

In the CDV methodology, a verification plan indicates the requirements to test,
and the coverage models and metrics to use over the SUT [21, 2]. A CDV test-
bench has four components: the Test Generator, the Driver, the Checker
and the Coverage Collector. Figure 2 shows our testbench, considering the
ROS-Gazebo simulator’s components. The simulator’s design ensures the access
to internal parameters in the robot’s code and data about the physical models
from Gazebo, to facilitate checking and coverage collection. The dotted line
indicates feedback to the test generation for coverage closure and verification
completion that may require human input.

5



1 sendsignal activateRobot Send human voice A1 for 5 sec.

2 setparam time = 40 Human waits 40× 0.05 sec.

3 receivesignal informHumanOfHandoverStart Human waits for max. 60 sec.

4 sendsignal humanIsReady Send human voice A2 for 2 sec.

5 setparam time = 10 Human waits 40× 0.05 sec.

6 setparam hgazeOk = true Move human head in Gazebo to pose within ranges:

offset [0.1, 0.2], distance [0.5, 0.6] and angle [15, 40)

Figure 3: An abstract test sequence for the human to stimulate the robot’s code
(LHS), and its concretization from sampling from defined ranges (RHS).

3.1 Test Generator

The aim of the test generation process is to trigger bugs in the SUT (the robot’s
code), while exploring a wide range of scenarios. Guidance to produce effective
tests comes from coverage and verification progress feedback. The generated
tests must be valid and realistic, which makes the case for non-conventional
software test generation approaches due to the complexity of “stimulating the
robot’s code in a human-like manner”.

A test for the handover simulator is formed by an abstract test sequence for
the human, environment, sensors and actuators (the environment surrounding
the robotic code under test), which assembles code fragments to be executed
concurrently by these simulator components. A concrete test is then computed,
after parametrization, constraint solving and/or instantiation for all the indi-
vidual parameters involved in the code fragments. We propose a two-tiered
test generation approach to divide and simplify what would be a complex con-
straint solving, search or optimization problem. An abstract-to-concrete test
construction is shown in Fig. 3.

We explored three options for the abstract test generation: pseudorandom,
constrained and model-based. Pseudorandom (for repeatability purposes) is,
in principle, unconstrained with respect to any assumptions about the HRI
protocol. Thus, abstract test sequences are concatenated randomly, e.g., repre-
senting a person that disregards the handover protocol. To generate interesting
tests, e.g, to verify a particular requirement, pseudorandom test generation
can be biased using constraints. The implementation of these constraints re-
quires significant manual input to be effective. Model-based test generation
techniques [9, 14, 25] can target specific scenarios or requirements more effec-
tively. In model-based test generation, a model of the system is explored or
traversed in a systematic manner, e.g., through model checking for a require-
ment expressed as a temporal logic property [5]. A path through the model can
be considered as a set of constraints [13, 17] for test generation.

For model-based test generation, the model captures both the ideal robot’s
code functionality and the human/environment’s actions, assuming both fol-
low the handover protocol. We chose probabilistic-timed automata (PTA) [10]
models constructed manually in UPPAAL5, to capture uncertain actions such

5http://www.uppaal.org/

6



as disengaging from the task, and the important aspect of human-like response
timing in HRI. Requirements 1 to 4 (Section 2.1) were expressed as temporal
logic properties, and model checked in UPPAAL. A witness trace (or path over
the automata) is produced as a result of model checking, from which an abstract
test sequence is extracted, disregarding the robot’s actions in the trace.

3.2 Driver

The Driver distributes the resulting concrete tests into the simulator compo-
nents, to be enacted to stimulate the robot indirectly. The Driver reacts to the
responses of the SUT if necessary (a “reactive Driver”).

3.3 Checker

The Checker monitors the response of the SUT during simulation, to detect
failures and bugs. Automata-based assertion monitors were implemented man-
ually for all the requirements in Section 2.1, as in [2]. Events can be monitored
at different abstraction levels, from “the robot received the correct command”
(abstract), to “speed is less than the safe thresholds” (semi-continuous signals
or variables). For example, the assertion monitor for Req. 5 is triggered every
time the code executes the hand(close) function. The pose of the human hand
is queried from the physical models in Gazebo. If the mass centre of the hu-
man hand is within a 0.05 m distance of the robot’s hand, the monitor indicates
Failed (requirement violation), or otherwise Passed (requirement satisfaction).

3.4 Coverage Collector

The Coverage Collector records the progress achieved by each test in exploring
the SUT. We implemented three coverage models: requirements, cross-product
and code. For requirements coverage, we assessed which assertion monitors were
triggered by each test.

Cross-product coverage accounts for a complete set of conceivable scenarios.
For cross-product coverage, we computed the Cartesian product, 〈Human,Robot〉,
focusing on tuples where the robot times out, and different GPL selections by
the human element. The set of events to cover for the human comprised: failure
to activate the robot at all, sending the first activation signal but not the sec-
ond, setting any combination of GPL amongst the possible 8, and disengaging
whilst the robot is sensing; i.e. Human = {NotActive,ActivSignal,GPL =
(∗, ∗, ∗), Disengaged}. The set of events to cover for the robot comprised: tim-
ing out whilst receiving any of the two signals (voice command) from the hu-
man or whilst sensing, releasing the object, and not releasing the object; i.e.
{TimedOut,Released,NotReleased}. The total size of this cross-product is
of 33 tuples, but 13 of them should not be reached if the code is functionally
correct. Most of the tuples that should be reachable are meaningful for the
handover, since to be covered in a test, at least part of the protocol was fol-
lowed correctly by the human and the robot. The cross-product coverage was

7



computed offline from the simulation reports. Cross-product coverage (situation
coverage) has been proposed (independently) for the verification of autonomous
robots [1], including combinations of environment events only.

For code coverage, we accumulate the number of executed code statements
per test, through the ‘coverage’6 Python module.

4 Experiments and Results

We verified the robot’s code for the handover, with respect to the requirements
in Section 2.1. The simulator ran in ROS Indigo and Gazebo 2.2.5, on a PC
with Intel i5-3230M 2.60 GHz CPU, 8 GB of RAM, and Ubuntu 14.04. We used
UPPAAL 4.0.14 for model-based test generation.

4.1 Requirements Coverage

We first generated 100 unconstrained abstract tests from uniformly sampling the
set of all possible abstract human actions, and concretized these by uniformly
sampling from defined ranges of variables and parameters. The tests did not
cover Reqs. 1 and 8d, and other assertions were triggered less frequently (e.g.
Req. 5).

Subsequently, we generated 100 constrained abstract tests that enforced the
activation of the robot, in an attempt to increase the coverage, concretized in
the same manner as the unconstrained. We based our pseudorandom generators
on the procedure described in [3] for software testing. Finally, we generated four
model-based abstract tests targeting Reqs. 1 to 4, to target specifically Req. 1
(also concretized like the others). A test triggered the assertion for Req. 8d,
as the robot collided with the human, an important safety violation. Overall,
no assertion violations were found for Reqs. 1 to 4. These results are shown in
Table 1. If the assertion monitors were Covered (C), either they Passed (P) or
Failed (F). The colour code in the table helps to highlight the coverage level of
each assertion monitor (green for high coverage, red for no coverage).

For requirements coverage, model-based test generation is most efficient,
triggering all the monitors with just four tests. The checks for Reqs. 6 and
8a-d exposed some design flaws, as the robot violates the safety speed threshold
of 250 mm/s at the start of the handover, and when picking the object. This
could be improved by imposing speed constraints explicitly in the motion of the
robot.

4.2 Cross-Product Coverage

We began with a different set of 100 unconstrained abstract tests, concretized as
for requirements coverage. Subsequently, we employed model-based test genera-
tion to target the uncovered tuples, formulating the reachability of each tuple as
a temporal logic property and model checking it in UPPAAL. Each abstract test

6http://nedbatchelder.com/code/coverage/

8



Table 1: Requirements (assertion) coverage results

Req. Unconstrained Constrained Model-Based

C P F C P F C P F

1 0/100 0/100 0/100 0/100 0/100 0/100 2/4 2/4 0/4

2 30/100 30/100 0/100 94/100 94/100 0/100 2/4 2/4 0/4

3 30/100 30/100 0/100 94/100 94/100 0/100 4/4 4/4 0/4

4 100/100 100/100 0/100 100/100 100/100 0/100 4/4 4/4 0/4

5 46/100 44/100 2/100 100/100 100/100 0/100 4/4 4/4 0/4

6 100/100 0/100 100/100 100/100 0/100 100/100 4/4 0/4 4/4

7 14/100 14/100 0/100 22/100 22/100 0/100 2/4 2/4 0/4

8a 100/100 0/100 100/100 100/100 0/100 100/100 4/4 0/4 4/4

8b 98/100 0/100 98/100 100/100 0/100 100/100 4/4 0/4 4/4

8c 96/100 5/100 91/100 99/100 0/100 99/100 4/4 0/4 4/4

8d 0/100 0/100 0/100 0/100 0/100 0/100 1/4 0/4 1/4

sequence was concretized with 20 different sampling instances (column “MB 1”).
Finally, we added constraints in the concretization of these abstract tests, re-
ducing the maximum length of timeout thresholds, to trigger the TimedOut
event in the robot’s code, and produced another set of 20 concrete tests for each
abstract sequence (column “MB 2”).

Table 2 shows the coverage results, with a column, “TOTAL”, accumulating
the coverage after all the tests. These results highlight the effectiveness of
model-based test generation to target the possible functionalities of the robot’s
code and the expected critical human behaviours. For brevity, we omitted the
cross-product tuples that were not reached (13/33 as mentioned in Section 3.4.

4.3 Code Coverage

The coverage of the code’s 212 statements, shown in Fig. 4, was collected while
running the tests for cross-product coverage. The code has been grouped using
the SMACH FSM structure, and the percentages vary ±2% in inner decision
branches. The block of code corresponding to the object’s “release” was not
covered by the unconstrained tests, but it was reached by the model-based
tests.

In summary, while model-based test generation ensures that the require-
ments and the cross-product model are covered, unconstrained test generation
can construct scenarios that the verification engineer has not foreseen, particu-
larly from the environment stimulating a robot in the HRI domain.

5 Related Work

Although robotic code can be directly model checked, the focus of verification is
on runtime errors, such as arrays out of bounds or unbounded loop executions,
rather than functional requirements about the whole system interacting with
its environment. Furthermore, formal tools are available only for selected sets

9



Table 2: Reachable Cross-Product Coverage

〈Human× Robot〉 Unconstr. MB 1 MB 2 TOTAL

〈NotActive, T imedOut〉 55/100 0/160 0/180 55/440

〈ActivSignal, T imedOut〉 11/100 0/160 0/180 11/440

〈GPL = (1, 1, 1), T imedOut〉 0/100 3/160 18/180 21/440

〈GPL = (1, 1, 1), Released〉 0/100 17/160 2/180 19/440

〈GPL = (1̄, 1̄, 1̄), T imedOut〉 1/100 0/160 19/180 20/440

〈GPL = (1̄, 1̄, 1̄), NotReleased〉 25/100 0/160 1/180 26/440

〈GPL = (1̄, 1̄, 1), T imedOut〉 0/100 2/160 18/180 20/440

〈GPL = (1̄, 1̄, 1), NotReleased〉 2/100 18/160 2/180 22/440

〈GPL = (1̄, 1, 1̄), T imedOut〉 0/100 0/160 16/180 16/440

〈GPL = (1̄, 1, 1̄), NotReleased〉 2/100 20/160 4/180 24/440

〈GPL = (1̄, 1, 1), T imedOut〉 0/100 0/160 17/180 17/440

〈GPL = (1̄, 1, 1), NotReleased〉 0/100 20/160 3/180 23/440

〈GPL = (1, 1̄, 1̄), T imedOut〉 0/100 2/160 18/180 20/440

〈GPL = (1, 1̄, 1̄), NotReleased〉 4/100 18/160 2/180 24/440

〈GPL = (1, 1̄, 1), T imedOut〉 0/100 0/160 18/180 18/440

〈GPL = (1, 1̄, 1), NotReleased〉 0/100 20/160 2/180 22/440

〈GPL = (1, 1, 1̄), T imedOut〉 0/100 0/160 19/180 19/440

〈GPL = (1, 1, 1̄), NotReleased〉 0/100 20/160 1/180 21/440

〈Disengaged,NotReleased〉 0/100 20/160 3/180 23/440

〈Disengaged, T imedOut〉 0/100 0/160 17/180 17/440

of languages such as FRAMA-C or Ada-SPARK [24]. None of these tools are
transferable to our robotic code in Python in a straight forward manner.

In generic software testing, research has focused on generating correct and
valid data inputs, while exploring their state space through intelligent sam-
pling [7], search [12], or constraint solving [16]. In robots for HRIs, however,
the test generation problem goes beyond correct and valid data. The challenge
is to include realistic, human-like, environment-like, timed streams of orches-
trated stimulus, which interacts concurrently with the robotic code. Robotic
control code has been tested systematically in real-life experiments [16], in hy-
brid combinations of real-life and simulations [12], and in simulation [2]. Al-
though hybrid systems methods might seem applicable, reducing our entire test
generation problem to decidable hybrid automata for model checking, or hybrid
models for search or sampling [11, 22], is not straightforward.

Model-based test generation has been applied to software [25], either directly
or modelled (e.g., timed automata in [18]). To be effective, such models must
comprise enough details to be meaningful, yet must also be simple to traverse,
modify and maintain [25]. Consequently, we propose to employ a two-tiered test
generation approach, complementing model-based with unconstrained (pseudo-
random) and constrained methods.

6 Conclusions

We presented an approach to verify and validate robotic code for HRI tasks
in simulation-based testing, coupled with an automated CDV methodology to

10



(a) (b) (c)

Figure 4: Code coverage (percent values) from (a) unconstrained (100 tests),
(b) MB1 (160 tests), and (c) MB2 (180 tests) test generation

systematically explore the code under test, and reduce the likelihood that im-
portant scenarios will be overlooked. In simulation, a robot and its environment
can be modelled with higher or lower levels of detail and realism, as necessary
to guarantee safety and functional correctness, within the limits of testing re-
garding coverage exhaustiveness. Methodologies from other domains, such as
microelectronics design verification and software testing, are transferable to the
HRI domain, allowing more efficient and effective V&V for systems that are
meant to work in uncertain and dynamic environments (e.g., robotic assistants).

Our automated CDV testbench, comprising of a test generator, a driver,
a checker and a coverage collector, accelerates and guides the testing process,
via feedback from coverage models and V&V results. We proposed the combi-
nation of different test generation methods such as unconstrained, constrained
and model-based, towards coverage of the SUT from different angles, from re-
spective coverage models. This reduces the need for hand-crafted directed tests.
Additionally, a two-tiered test generation approach, from abstract to concrete,
facilitates the efforts by dividing what otherwise would be a single complex
constraint solving, search or optimization problem. Furthermore, we propose
stimulating the robotic code through human, environment, sensor and actuator
models –i.e., indirect stimulation–, to provide a greater level of realism in the
V&V process.

Our approach is scalable not only in HRI, but for autonomous systems in
general, as more complex systems can be verified using the same approach, for
the actual system’s code. The prototypes we have developed can be used for
robot-in-the-loop and human-in-the-loop V&V, and can be adapted to work
with other open-source or proprietary V&V software.

The handover example in this paper demonstrated the feasibility of imple-
menting a systematic testing methodology, such as CDV, for a ROS-Gazebo
based simulator. The experimental results demonstrate how feedback loops in
the testbench can be exploited to seek covering the unexplored aspects of the

11



code under test, or the environment’s possibilities. Unconstrained test genera-
tion allows a degree of unpredictability in the human and/or environment, so
that unexpected behaviours of the SUT may be exposed. Model-based test gen-
eration usefully complements the generation by systematically directing tests
according to the requirements of the SUT, or towards combinations of simulta-
neous events in the environment and the robot.

In the future, we will apply systematic simulation-based testing to robots
that learn, or that adapt to new situations. Additionally, we will explore dif-
ferent modelling formalisms for model-based test generation, seeking to include
uncertainty, rationality and choice in different manners.

Acknowledgement: This work is part of the EPSRC-funded project “Trust-
worthy Robotic Assistants” (refs. EP/K006320/1 and EP/K006223/1).

References

[1] R. Alexander, H. Hawkins, and D. Rae. Situation coverage – a coverage
criterion for testing autonomous robots. Technical report, Department of
Computer Science, University of York, 2015.

[2] D. Araiza-Illan, D. Western, K. Eder, and A. Pipe. Coverage-driven verifi-
cation — an approach to verify code for robots that directly interact with
humans. In Proc. HVC, pages 1–16, 2015.

[3] D.L. Bird and C.U. Munoz. Automatic generation of random self-checking
test cases. IBM Systems Journal, 22(3):229–245, 1983.

[4] J. Boren and S. Cousins. The SMACH high-level executive. IEEE Robotics
& Automation Magazine, 17(4):18–20, 2010.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
1999.

[6] K.I. Eder, C. Harper, and U.B. Leonards. Towards the safety of human-
in-the-loop robotics: Challenges and opportunities for safety assurance of
robotic co-workers. In Proc. ROMAN, pages 660–665, 2014.

[7] M. Gaudel. Counting for random testing. In Proc. ICTSS, pages 1–8, 2011.

[8] E.C. Grigore, K. Eder, A. Lenz, S. Skachek, A.G. Pipe, and C. Melhuish.
Towards safe human-robot interaction. In Proc. TAROS, pages 323–335,
2011.

[9] F. Haedicke, H.M. Le, D. Grosse, and R. Drechsler. CRAVE: An advanced
constrained random verification environment for SystemC. In Proc. SoC,
pages 1–7, 2012.

[10] A. Hartmanns and H. Hermanns. A modest approach to checking proba-
bilistic timed automata. In Proc. QEST, pages 187–196, 2009.

12



[11] A. A. Julius, G. E. Fainekos, M. Anand, and G. J. Pappas I. Lee. Robust
test generation and coverage for hybrid systems. In Proc. HSCC, pages
329–342, 2007.

[12] J. Kim, J. M. Esposito, and R.V. Kumar. Sampling-based algorithm for
testing and validating robot controllers. International Journal of Robotics
Research, 25(12):1257–1272, 2006.

[13] Hartmut Lackner and BerndHolger Schlingloff. Modeling for automated
test generation a comparison. In Proc. MBEES Workshop, 2012.

[14] Kiran Lakhotia, Phil McMinn, and Mark Harman. Automated Test Data
Generation for Coverage: Havent We Solved This Problem Yet? In Proc.
TAIC, 2009.

[15] A. Lenz, S. Skachek, K. Hamann, J. Steinwender, A.G. Pipe, and C. Mel-
huish. The BERT2 infrastructure: An integrated system for the study of
human-robot interaction. In Proc. IEEE-RAS Humanoids, pages 346–351,
2010.

[16] M. Mossige, A. Gotlieb, and H. Meling. Testing robot controllers using con-
straint programming and continuous integration. Information and Software
Technology, 57:169–185, 2014.

[17] B. Nielsen and A. Skou. Automated test generation from timed automata.
Int. J. Softw. Tools Technol. Transfer., (5):59–77, 2003.

[18] Brian Nielsen. Towards a method for combined model-based testing and
analysis. In Proc. MODELSWARD, pages 609–618, 2014.

[19] S. Petters, D. Thomas, M. Friedmann, and O. von Stryk. Multilevel test-
ing of control software for teams of autonomous mobile robots. In Proc.
SIMPAR, 2008.

[20] T. Pinho, A. P. Moreira, and J. Boaventura-Cunha. Framework using ROS
and SimTwo simulator for realistic test of mobile robot controllers. In Proc.
CONTROLO, pages 751–759, 2014.

[21] Andrew Piziali. Functional verification coverage measurement and analysis.
Kluwer Academic, 2004.

[22] S. Sankaranarayanan and G. E. Fainekos. Falsification of temporal prop-
erties of hybrid systems using the cross-entropy method. In Proc. HSCC,
pages 125–134, 2012.

[23] Richard Stocker, Louise A. Dennis, Clare Dixon, and Michael Fisher. Veri-
fication of Brahms human–robot teamwork models. In Proc. JELIA, pages
385–397, 2012.

13



[24] Piotr Trojanek and Kerstin Eder. Verification and testing of mobile robot
navigation algorithms: A case study in SPARK. In Proc. IROS, pages
1489–1494, 2014.

[25] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based
testing approaches. Software Testing, Verification and Reliability, 22:297–
312, 2012.

[26] Matt Webster, Clare Dixon, Michael Fisher, Maha Salem, Joe Saunders,
Kheng Lee Koay, and Kerstin Dautenhahn. Formal verification of an au-
tonomous personal robotic assistant. In Proc. AAAI FVHMS, pages 74–79,
2014.

14


	1 Introduction
	2 Case Study: Robot to Human Object Handover Task
	2.1 Requirements List
	2.2 Handover Simulator

	3 A CDV Testbench for a ROS-GAZEBO Simulator
	3.1 Test Generator
	3.2 Driver
	3.3 Checker
	3.4 Coverage Collector

	4 Experiments and Results
	4.1 Requirements Coverage
	4.2 Cross-Product Coverage
	4.3 Code Coverage

	5 Related Work
	6 Conclusions

