Skip to main content

How to Build and Customize a High-Resolution 3D Laserscanner Using Off-the-shelf Components

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9716))

Abstract

3D laserscanners are well suited sensors for different perception tasks like navigation and object recognition. However, ready-to-use 3D laserscanners are expensive and offer a low resolution as well as a small field of view. Therefore, many groups design their own 3D laserscanner by rotating a 2D laserscanner. Since this whole process is done frequently, this paper aims at fostering other groups’ future research by offering a list of necessary hardware including an online-accessible mechanical drawing, and available software. As it is possible to align the rotation axis and the 2D laserscanner in many different ways, we present an approach to optimize these orientations. A corresponding Matlab toolbox can be found at our website. The performance of the 3D laserscanner is shown by multiple matched point clouds acquired in outdoor environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://velodynelidar.com.

  2. 2.

    https://www.tu-chemnitz.de/etit/proaut/3dls.html.

  3. 3.

    http://www.ibeo-as.com.

  4. 4.

    http://www.hokuyo-aut.jp.

  5. 5.

    http://www.sick.com.

  6. 6.

    http://wiki.ros.org/hokuyo_node.

  7. 7.

    http://wiki.ros.org/sicktoolbox.

  8. 8.

    http://www.robotis.com.

  9. 9.

    http://wiki.ros.org/dynamixel_controllers.

  10. 10.

    http://www.senring.com.

  11. 11.

    http://wiki.ros.org/laser_assembler.

References

  1. Kimoto, K., Asada, N., Mori, T., Hara, Y., Ohya, A., Yuta, S.: Development of small size 3d lidar. In: IEEE International Conference on Robotics and Automation (ICRA) (2014)

    Google Scholar 

  2. Reyes, A.L., Cervantes, J.M., Gutiérrez, N.C.: Low cost 3d scanner by means of a 1d optical distance sensor. Procedia Technol. 7, 223–230 (2013)

    Article  Google Scholar 

  3. Bosse, M., Zlot, R.: Continuous 3d scan-matching with a spinning 2d laser. In: Proceedings of the IEEE International Conference on Robotics and Automation (2009)

    Google Scholar 

  4. Lingemann, K., Surmann, H., Nüchter, A., Hertzberg, J.: Indoor and outdoor localization for fast mobile robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2004)

    Google Scholar 

  5. Pfotzer, L., Oberlaender, J., Roennau, A., Dillmann, R.: Development and calibration of karola, a compact, high-resolution 3d laser scanner. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (2014)

    Google Scholar 

  6. Schadler, M., Stuckler, J., Behnke, S.: Multi-resolution surfel mapping and real-time pose tracking using a continuously rotating 2d laser scanner. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (2013)

    Google Scholar 

  7. Schadler, M., Stückler, J., Behnke, S.: Rough terrain 3d mapping and navigation using a continuously rotating 2d laser scanner. KI 28, 93–99 (2014)

    Google Scholar 

  8. Surmann, H., Nüchter, A., Hertzberg, J.: An autonomous mobile robot with a 3d laser range finder for 3d exploration and digitalization of indoor environments. In: Robotics and Autonomous Systems (2003)

    Google Scholar 

  9. Zhang, L., Li, Q., Li, M., Mao, Q., Nüchter, A.: Multiple vehicle-like target tracking based on the velodyne lidar. In: Proceedings of the IFAC Intelligent Autonomous Vehicles (2013)

    Google Scholar 

  10. Steder, B., Rusu, R.B., Konolige, K., Burgard, W.: Point feature extraction on 3d range scans taking into account object boundaries. In: IEEE International Conference on Robotics and Automation (ICRA) (2011)

    Google Scholar 

  11. Schwarz, M., Behnke, S.: Local navigation in rough terrain using omnidirectional height. In: Proceedings of the Joint 45th International Symposium on Robotics (ISR) and 8th German Conference on Robotics (ROBOTIK), München (2014)

    Google Scholar 

  12. Wulf, O., Wagner, B.: Fast 3d scanning methods for laser measurement systems. In: International Conference on Control Systems and Computer Science (2003)

    Google Scholar 

  13. Ohno, K., Kawahara, T., Tadokoro, S.: Development of 3d laser scanner for measuring uniform and dense 3d shapes of static objects in dynamic environment. In: IEEE International Conference on Robotics and Biomimetics (ROBIO) (2009)

    Google Scholar 

  14. Kneip, L., Tache, F., Caprari, G., Siegwart, R.: Characterization of the compact hokuyo urg-04lx 2d laser range scanner. In: IEEE International Conference on Robotics and Automation (ICRA) (2009)

    Google Scholar 

  15. Demski, P., Mikulski, M., Koteras, R.: Characterization of Hokuyo UTM-30LX laser range finder for an autonomous mobile robot. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems of National Border Security. SCI, vol. 440, pp. 143–154. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Ye, C., Borenstein, J.: Characterization of a 2d laser scanner for mobile robot obstacle negotiation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2002)

    Google Scholar 

  17. Lange, S., Wunschel, D., Schubert, S., Pfeifer, T., Weissig, P., Uhlig, A., Truschzinski, M., Protzel, P.: Two autonomous robots for the dlr spacebot cup - lessons learned from 60 min on the moon. In: International Symposium on Robotics (ISR) (2016)

    Google Scholar 

  18. Muhammad, N., Lacroix, S.: Calibration of a rotating multi-beam lidar. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2010)

    Google Scholar 

  19. Sheehan, M., Harrison, A., Newman, P.: Self-calibration for a 3d laser. Int. J. Robot. Res. 31(5), 675–687 (2012)

    Article  Google Scholar 

  20. Scaramuzza, D., Harati, A., Siegwart, R.: Extrinsic self calibration of a camera and a 3d laser range finder from natural scenes. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2007)

    Google Scholar 

  21. Pandey, G., McBride, J., Savarese, S., Eustice, R.: Extrinsic calibration of a 3d laser scanner and an omnidirectional camera. In: 7th IFAC Symposium on Intelligent Autonomous Vehicles (2010)

    Google Scholar 

  22. Andreasson, H., Lilienthal, A.: Vision aided 3d laser scanner based registration. In: Proceedings of the European Conference on Mobile Robots (ECMR) (2007)

    Google Scholar 

  23. Pascoal, R., Santos, V.: Compensation of azimuthal distortions on a free spinning 2d laser range finder for 3d data set generation. In: Proceedings of the Robtica 2010 - Encontro Nacional de Robotica, Marco, Leiria (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schubert, S., Neubert, P., Protzel, P. (2016). How to Build and Customize a High-Resolution 3D Laserscanner Using Off-the-shelf Components. In: Alboul, L., Damian, D., Aitken, J. (eds) Towards Autonomous Robotic Systems. TAROS 2016. Lecture Notes in Computer Science(), vol 9716. Springer, Cham. https://doi.org/10.1007/978-3-319-40379-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40379-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40378-6

  • Online ISBN: 978-3-319-40379-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics