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Abstract. This paper describes the design of a computational vision
framework inspired by the cortices of the brain. The proposed framework
carries out visual saliency and provides pathways through which object
segmentation, learning and recognition skills can be learned and acquired
through experience.
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1 Introduction

Vision processing is the major signal processing pipeline of the human brain since
more than 70% of outside information is assimilated and understood through our
visual sense [1] thus making it the richest source of information on the imme-
diate surroundings. It is no wonder therefore that this sensory system started
very early on in the history of evolution. Fast forwarding to today we find that
this visual system is now present in most cognitive creatures not least of all in
humans who have a very complex and powerful visual system.

Thus, given that the visual system is so important to the understanding of
everyday life, much work has gone into identifying first of all the roles of the dif-
ferent visual cortices in the human brain and secondly the processing occurring
within each cortex in the hopes of implementing a computational model of the
Human Vision System (HVS). The implementation of such a model would be
very beneficial in areas such as mobile robotic navigation and machine vision to
name a few.

The layout of this paper is thus as follows. Section 2 contains the investiga-
tion of the eye and the various cortices of the human brain together with their
individual function and how they are connected together. Section 3 builds on
the information in section 2 by identifying computational equivalents to create
the final computational model. Section 4 details the work that has been carried
out so far and finally section 5 concludes with a recap followed by a description
of upcoming work.
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2 Visual Processing in the Human Brain

The research being carried out on the visual cortices of the brain in literature
takes the form of two distinct but overlapping streams. On one side psycho-
logical, neurological and physiological research aims to understand the exact
methods by which the brain carries out its day to day visual processing with
carefully structured studies based on human, monkey and rat subjects. This re-
search contributes to the understanding of the brain and has been going on since
the mid-19*" Century.

The other stream is that of Computational Vision Modelling which started
in the late 20'" Century and whose research focuses on the implementation of
visual models which are either derived from the understanding obtained in the
other stream, or a simplification thereof.

This computational implementation together with validation against respec-
tive datasets constitutes a way of not only improving the understanding derived
in the psychological studies but also a way of validating them and their under-
lying assumptions of operation. This contributes to further refining the initial
research and/or point out differences and cases which are irreconcilable with the
current model. In this section an overview is given of some of the visual cortices
in the brain and the starting point of this overview is the eye itself.

2.1 Mechanical Structure of the Eye

The eye is made up of three pairs of opposing extra-ocular muscles that provide
a one to one mapping of muscle configuration to eye gaze [2]. The eye is capable
of performing five main types of movements. The first two, related to involuntary
reflexes, called the vestibular-ocular and optokinetic reflexes, keep the point of
fixation constant in the presence of bodily motion [3].

Another two types of movement, relate to the pursuit and the vergence sys-
tems [4] of the eye that track moving objects both in terms of its planar position
(eyes moving in parallel to each other) as well as in depth (eyes converging or
diverging to focus on an object at a particular depth). The fifth and final eye
movement is the saccade which directs attention to specific areas within the sur-
rounding environment.

One can already see a central theme emerging from the movements of the eyes
demonstrating that the motion of the eyes is completely dedicated towards fo-
cusing attention in a directional manner on separate objects at a time. Moreover
as described in [5] the direction depends on the informational and behavioural
value of the particular point in space at that point in time.
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2.2 Visual Processing in the Retina

The next step in the visual hierarchy is the retina and this is where the pro-
cessing of the raw input information starts to occur. As shown by [6] the retina
is responsible for the low-level image processing within the HVS and is made
up of photoreceptors, bipolar cells, and ganglion cells amongst others which are
loosely grouped to form two cell layers called the Outer Plexiform Layer (OPL)
and the Inner Plexiform Layer (IPL).

Starting at the OPL, this layer performs log luminance equalisation of the
incoming scene and applies a non-separable spatio-temporal filter to the input.
This both increases the dynamic range of the input and also highlights areas
within the image that contain high frequencies either in the spatial or in the
temporal domain. This information is then passed to the IPL which applies two
different operations. The first operation described as the parvocellular pathway
further enhances the textures and contours of the scene. The second operation
which occurs in parallel to the first enhances the motion detection in the scene
and is carried out in the magnocellular pathway.

Once this processing has been carried out the information is then passed to
the rest of the brain via the optic nerve which branches and enters both the
Lateral Geniculate Nucleus and the Superior Colliculus. [7]

2.3 The Lateral Geniculate Nucleus (LGN) and the Superior
Colliculus (SC)

The LGN and the SC are both situated in the mid-brain and each cortex exe-
cutes a different processing function. The LGN on one hand is responsible for
extracting features such as colour and contrast [8] from the information extracted
by the parvocellular pathway and it is thought to do so through the extraction
of colour-antagonists [9]. This compresses the information from the 3 colours
detected by 3 separate cone types [10] in the retina to 2 streams of antagonistic
colours, namely red-green and blue-yellow.

The SC on the other hand is subdivided into 7 cellular layers which are di-
vided into the superficial and the deep layers. The latter receives sensory input
from multiple senses including vision and sound but the former exclusively re-
ceives visual input directly from the retina. This retinal input has been shown
by Sabes et al [11] to form retinotopic maps on the surface of this cortex which
preserve the link to the spatial location of each input region.

This input to the superficial layers is then processed to extract visually tran-
sient information such as flicker (temporal changes in light intensity) as well as
motion stimuli [12]. The output of the SC has been demonstrated in primates to
stimulate the generation of spatially averaged saccades through the combination
of multi-sensory information in the deep layers [13] but it also performs saccadic
suppression [14] resulting in the inhibition of saccades towards uninteresting re-
gions of the visual field.
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2.4 Visual Processing Streams in Biology

From the LGN and SC onwards, the information flow splits into two main
streams which are the Dorsal Stream and the Ventral Stream. These streams
have been advocated and refined since their initial proposition by Mishkin et al
[15] in 1983 and can be seen in Figure 1. The dorsal and ventral streams are
also colloquially called the ‘where’ and ‘what’ streams respectively. As described
by [16], the dorsal stream is concerned with processing the spatial features of
an image and is the main driver of saccadic movements and thus visual attention.

On the other hand the ventral stream is tasked with identifying objects in
the scene through the high level representation of said objects in the subject’s
memory. This stream drives saccades in a more indirect manner and often only in
the availability of task specific demands. The following paragraphs will describe
in more detail the functionality and role of the cortices for the dorsal and ventral
stream which are relevant to the scope of this project.

Dorsal Stream

As stated above, the Dorsal stream is the 'where’ stream and thus its main
role is in the redirection of gaze as part of the oculomotor system. The structure
of this stream developed in [18] depicts the connections between the different
cortical regions in the human brain for the dorsal stream, of which the Frontal
Eye Fields (FEF) and Supplementary Eye Fields (SEF) are of particular interest
with relevance to visual saliency, which although not the sole function of these
cortices, is a principal component.

N Dorsal Visual
——  Stream

\— Occipital Lobe

Frontal Lobe - Parietal Lobe
P o
p
(

Ventral Visual
Stream

Temporal Lobe /

Fig. 1: Diagram of the position of visual cortices in the brain [17].
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Frontal Eye Fields (FEF)

The FEF are described by literature as the “principle saccadic decision struc-
ture together with the SC” [16] and just like the SC, this cortex keeps a retino-
topic map of the field of vision. Furthermore the work in [19] has shown that
this cortex combines not only the information from both the dorsal and ventral
stream to decide on a saccade target but has also been shown to accept input
biases from areas in the Pre-Frontal Cortex (PFC) cortex that modify the selec-
tiveness of certain properties providing a path where a high-level cortical process
can tweak the functionality or priority of lower-level cortical operation such as
saliency.

Supplementary Eye Fields (SEF)

The SEF are linked heavily with the FEF but while the latter generates
saccadic targets, the former’s task is in keeping a craniotopic [20] (relative to the
head) mapping of the environment around the subject and thus hints towards a
region of the brain that keeps track of the environment and provides the required
data to fill in gaps in instantaneous knowledge with historic data.

Ventral Stream

The Ventral or 'what’ stream starts off at the Primary Visual Cortex (V1)
and was one of the first cortices to be investigated in the seminal work of Hubel
[21] which describes the functionality of V1 as a hierarchical arrangement of
neurons capable of extracting local features from an image such as bars or edges
[22] with higher levels of the hierarchy displaying wider receptive fields as well
as an insensitivity to orientation and scale.

The path of this stream starts in the primary visual cortex and then proceeds,
mainly sequentially [23], from V1 through V2 up to V5 in a retinotopic manner
[24, 25]. Finally, it passes through the Posterior Inferior Temporal Cortex (PIT)
followed by the Anterior Inferior Temporal Cortex (AIT) which is where this
visual stream ends. From here on, it branches into the medial temporal lobe and
PFC cortex whose feature biasing role has been described initially. Two interest-
ing features of the Inferior Temporal Cortex (IT) include highly specialised cells
that respond to very specific stimulus along with a response that is invariant
to the number of objects present called Cardinality Blindness which is an effect
of the trend for wider receptive fields and rotation invariance displayed by the
ventral stream.

As such, instead of having a retinotopic map like the dorsal stream, the ven-
tral stream at the level of the IT is described as having a sparse representation
of all current recognisable and behaviourally relevant objects in the visual field
with more of an emphasis on the classification rather than the location of said
object.
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In view of this basic introduction to some of the cortical regions relevant to
the HVS, the next section presents a computational framework that encompasses
the functionality of all the different regions.

3 Human Visual System Computational Framework

The consolidation of facts from the previous section points towards the 6 low-
level features of importance to the HVS: Intensity, Red-Green Antagonist and
Blue-Yellow Antagonist attributed to the LGN, Flicker and Motion attributed
to the SC and Orientation of edges attributed to the Primary Visual Cortex
V1. These 6 features form the basis upon which the HVS carries out the rest
of its functions. As such the proposed Computational Framework looks at the
extraction of these features followed by their possible application specifically to
visual saliency, object learning and object recognition from a robotic viewpoint.

3.1 Visual Saliency

According to [16], visual attention is defined as the “process of enhancing the
responses of neurons that relate a subset of the visual field with the purpose of
overcoming the computational limitations of the visual system” and its impor-
tance as mentioned before lies in the reduction of the computational burden on
the human brain.

Building on this, the book Selective Visual Attention : Computational Models
and Applications [1], through the use of various experiments and observations,
identifies two important aspects of visual attention. The first aspect is that
visual attention is divided temporally into pre-attention followed by attention.
The second aspect is that the attention phase has two operating modes which
are Top-Down and Bottom-Up.

Pre-Attention and Attention

This aspect of visual attention consisting of two sequential processes is de-
scribed by [26], [27] and [28]. The first process, pre-attention, performs the ex-
traction of the low level features. This is performed very quickly, in parallel and
on the whole visual field imitating the functionality of the LGN, V1 and part
of the SC. Subsequently, once all the features have been explicitly extracted,
the second process, attention, takes over. In this stage, the low level features
are combined together through a process called feature integration which is pro-
posed in [28].

However according to [28], feature integration in the HVS is only carried out
through visual attention. Therefore, this means that although the visual system
could perceive the presence of multiple objects with a particular combination of



A Bioinspired Approach to Vision 7

features, it does not explicitly know their location due to the cardinality of the
ventral stream. Thus the HVS has to resort to a serial search over the visual
field in order to locate objects with a combination of features.

Top-Down and Bottom-Up Drives

Secondly, according to [29-31], a subject’s gaze is drawn to a particular point
due to a combination of bottom-up stimuli that arise solely from changes within
the scene and top-down stimuli that modulate the attention depending on the
task at hand. This separation of function provides a powerful scheme for object
recognition mimicking the feedback loop of the FEF and PFC. Furthermore it
has led to the development of two classes of saliency algorithms in literature
which are either unguided (bottom-up) or guided (top-down effects).

In the unguided scenario, also known as ‘free-roaming’, the weights for all
feature maps are identical and the final saliency map is generated through the
summation of all equally weighted feature maps like Itti et al’s Baseline Saliency
Model [32]. On the other hand the guided scenario modifies the feature weight-
ings independently depending on the task at hand, examples of which are [33,
34] which demonstrate limited top-down effects due to the complexity of factors
contributing to this mode.

Of important note is that humans start out life with unguided saliency [35]
and later start paying guided attention to specific objects signifying an accumu-
lation of knowledge before the application of top-down effects: knowledge which
arises from object learning.

3.2 Proposed Model and its Implementation

Figure 2 provides a visualisation of the information flow within the model incor-
porating all the processes which have been mentioned so far while extending the
application to object recognition and including a path for top-down modulation
of saliency. The main contribution of this model is the use of a memory model
that is very similar in functionality to that of the a human memory system and
the use of this memory model for the purpose of object learning, recognition and
searching. The process starts with the eyes where image capture is followed by
the extraction of the corresponding parvo and magno images using the algorithm
developed in [6].
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Subsequently, the overlapping area of both parvo images is extracted in order
to be processed for R-G, B-Y and Orientation while both images are stitched
together for the extraction of Intensity and Flicker. This is analogous to human
vision where the central region of focus is processed to identify details and has
a high presence of cones attributed to colour perception while changes in light
intensity are computed over the whole field of view due to the uniform density
of rods in the retina. [36]. Similairly, motion is described as the temporal change
of light intensity on an array of detectors by [37] thus the extraction of motion
is also carried out over the whole image which is why magno images are stitched
together.

From this point, base feature map extraction at the capture resolution for
the LGN and V1 block follows the process of visual saliency extraction by Itti et
al [32]. In the case of the SC block, flicker base map is computed as described in
[38] while the extraction of motion requires no further computation to extract
the base feature map. Subsequently a Gaussian pyramid with 8 levels is created
for each base feature image imitating the effect of center-on surround-off effects
of the retina. The 8 levels are then normalised and collapsed to a level of choice
into a conspicuity map. The lower the level, the higher the spatial resolution of
the saliency map but the lower the noise to signal ratio.

From here on, the conspicuity maps are combined and averaged depending
on the weights from the PFC block which are initially set as equal. The rest of
the blocks then carry out object learning and recognition based on the extracted
features.

In this framework, object learning is focused and directed by saliency much
like infants. [39]. Thus once a salient point has been identified, a feature vector
describing the point is created which, in turn, is used to find all areas within
the image that correspond to this vector thus creating blobs of common regions.
The blob which contains the salient point is subsequently chosen and a super-
vector is created from the feature vectors of all the pixels in the blob. This
feature vector is then passed to the PFC which carries out statistical learning
on the super-vector with the use of SAM [40]. Thus given multiple inputs over
the course of multiple frames, SAM creates a latent feature model of the input
data which condenses the data into its most important features and also allows
for the labelling of blobs. This then allows for one of two processes to take place.

The first, given an input blob, one could carry out object recognition and
return the label of the currently salient object. The second, given a label to look
for, SAM returns a feature vector best describing the object with a mean and
variance, which is applied as weighting to the saliency map. This results in the
extraction of multiple blobs which can then be sequentially tested through the
object recognition route thus imitating the effect of cardinality blindness.
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Furthermore, given the embodiment of such a system within a robot such
as the iCub [41], would allow for a great refinement in the process through in-
teraction just like infants [42]. Thus when an object becomes salient, the robot
can interact with the object causing its motion. This would then provide an
excellent trigger for the extraction of precise object boundaries by weighting the
motion saliency more heavily and thus a better and more accurate super-vector
is created given this boundary.

Finally, after the current salient point has been processed, an inhibition is
required to be applied to the saliency map in order for the observer to choose a
new location for processing to which there are two possible approaches. The first
approach, which is depicted within the block diagram, requires the tracking of
the current salient point within an internal 3D map that is accumulated through
disparity maps obtained from multiple sources for reasons of data density.

Another possible approach would be to keep the past feature vector, invert its
direction and apply a modified weighting to the saliency map thus encouraging
a new location. In this manner, multiple past vectors could be subsequently
accumulated into a single vector with a temporal diminishing factor applied
recursively such that inhibition fades with time.

4 Preliminary Results

The implementation of the proposed visual model is currently being carried out
on the iCub robotic platform. Due to the complexity of the model, a networking
platform is required in order to be able to split the computation between sev-
eral interconnected computers and for this purpose YARP [43] is used since it is
also the networking interface used by the iCub. For the image processing aspect,
OpenCYV 3.0.0 [44] is being used compiled with Compute Unified Device Archi-
tecture (CUDA) 6.5 [45] to leverage the acceleration of NVIDIA GPUs with the
aim of delivering a realtime system (30fps).

) | : €4
. Ij_& _ h!‘.:.f = _Z\j i
(a) Enhanced Texure and Contours (b) Motion map

Fig. 3: Parvo and Magno output for the Retina Model with their corresponding
frame rates for CPU computation at an input resolution of 640x480
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The realisation of this model has so far achieved execution of five out of
eight blocks. The first two being the retina models which utilise the bioinspired
module that is available as part of the contrib modules for OpenCV3 submitted
by the same authors of [6], the output of which can be seen in Figure 3

The resulting images are then passed to the third and fourth blocks currently
implemented that are the LGN and V1 block and the SC block which carry out
Itti’s Baseline Saliency Model [32] for the generation of a saliency map as shown
in Figure 4 at a resolution of 40x32 for input images at 640x480 resolution.

From this Saliency Map, the most salient pixel is chosen and passed to the
oculomotor controller that directs the gaze of the iCub towards that location.
Furthermore, a primitive inhibition of return has also been applied as a substi-
tute for the inhibition of return that will be implemented after object learning
has been achieved. The current method retains a 40x32 map in memory with
saliency inhibition values applied to the respective pixel that is currently the fo-
cus of attention. This primitive implementation does not take into consideration
that the iCub head changes orientation as it looks towards a salient point but
still, the result, which can be seen in [46], displays promising behaviour.

Furthermore there are two main avenues for future improvement. The first
is the implementation of a computationally fast stitching process that takes ad-
vantage of the known camera orientations which would allow for the application
of separate regions for colour processing and motion processing because so far,
all stages beyond the retina use the overlapped region thus mimicking a retina
that has a constant distribution of both cones and rods.

The second improvement deals with the effect of camera motion on the magno
and parvo images. Currently, the embodiment of the system results in blurry
magno and parvo images whenever a saccade or head motion is executed. It just
happens that the HVS also encounters this problem which it solves through the

Fig.4: Saliency Map at a resolution of 40x32
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application of a process called saccadic masking [47]. Thus blur will be miti-
gated in the future through a communication loop that blocks image input to
the model whenever an oculomotor command is sent.

The model’s computation is divided between 2 computers. The first carries
out both retina models on a Xenon 6 Core CPU at 2.8GHz which is a purely
CPU based implementation running at an average of 25fps. The second carries
out the saliency computation and robot control on a Core i7-3630QM CPU
running at 2.4GHz with NVIDIA GTX 675MX GPU having 4GB of VRAM
at an average rate of 15fps. Thus assuming negligible transfer delays due to low
resolution images being transferred on high bandwidth local networks, the whole
system runs at a throughput of 15fps with an end-to-end delay of approximately
a 100ms.

5 Conclusion

In conclusion, [28] states that “without attention, general purpose vision is not
possible” thus this work has reviewed the different cortices in the human brain
that process the visual input of the eyes and identified the key functionalities of
each. Subsequently, these key functions were summed into an extraction of six
important low-level features and their role within visual saliency.

Following this, bioinspired computational implementations for visual saliency
were investigated to establish the computation of these features as well as that of
the saliency map. A method for object learning, object recognition and possible
interactive object segmentation are then proposed, together with two possibili-
ties for the application of inhibition of return which leads to dynamic behaviour.
Finally a description of the work that has been carried out is provided with per-
formance results for the currently implemented blocks as well as some pitfalls
that have been encountered along the way.

As one can see the implications of the model are very powerful and allow
for a range of possibilities in behaviour. Currently the implementation of this
model is in development and future work will look into documenting the efficacy
of learning using the process state above as well as the level of fidelity with
datasets of human visual saliency.
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