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Abstract. Sensors take measurements and provide feedback to the user via a 

calibrated system, in soft sensing the development of such systems is compli-

cated by the presence of nonlinearities, e.g. contact, material properties and 

complex geometries. When designing soft-sensors it is desirable for them to 

be inexpensive and capable of providing high resolution output. Often these 

constraints limit the complexity of the sensing components and their low reso-

lution data capture, this means that the usefulness of the sensor relies heavily 

upon the system design. This work delivers a force and topography sensing 

framework for a soft sensor. A system was designed to allow the data corre-

sponding to the deformation of the sensor to be related to outputs of force 

and topography. This system utilised Genetic Programming and Model Order 

Reduction methods to generate the required relationships. Using a range of 3D 

printed samples it was demonstrated that the system is capable of recon-

structing the outputs within an error of one order of magnitude.  

Keywords: Soft-sensing, Genetic Programming, Model Order Reduction 

1 Introduction 

Tactile sensors are an essential sense for robotics to safely explore the exter-

nal world and to precisely manipulate objects by providing force and contact 

information. Soft forms of tactile sensors offer improved interaction with 

complex environments since they can inherently conform to complex sur-

faces and deform to avoid damage. A number of soft tactile sensor systems 

have been developed, using a range of sensing technologies, with notable 

examples including TakkTile [1], GelForce [2], BioTac [3, 4], and TACTIP [5]. 

However, the inherent nonlinearities in soft sensing systems (e.g. contact 

forces, material properties and complex geometries) make it difficult to 

process and relate their output to the real world. 



The biologically inspired TACTIP system, which features a deformable 'finger-

tip' membrane upon which traceable elements are placed [6, 7], is a robust 

and economic soft sensor. The TACTIP system has previously been used for 

shape recognition [8], edge detection analysis [9] and determining surface 

texture [10]. However, obtaining quantitative force and topography informa-

tion from TACTIP is non-trivial and complicated by the presence of nonlinear 

material behaviour, larger deformations, and complex geometries. 

Computational optimisation techniques provide an efficient way to address 

these challenges. GP is a biologically inspired evolutionary based algorithm 

for defining an equation which gives the best evaluation of an output based 

on a set of inputs [11]. GP has been used to design sensors associated with 

autonomous robotics [12], vision [13], and locomotion [14]. GP has also been 

successfully applied to soft sensors associated with biochemical applications 

[15, 16]. Other methods have also been used in the design of soft sensor 

systems such as Artificial Neural Networks (ANN) [17] and Response Surface 

Methods (RSM) [18]. In conjunction, Singular Value Decomposition (SVD) 

provides a means to decompose a set of discrete data into a lower order 

model which maintains the highest possible level of accuracy [19]. This is a 

useful approach because it efficiently and accurately provides a method, 

known as Model Order Reduction (MOR), for describing a large amount of 

data with a much smaller subset. MOR has been used in the design of piezo-

electric [20], magnetic resonance [21] and soft sensing applications [18].  

Here we describe how a combination of GP and MOR techniques can be used 

for complex force and topography reconstruction in soft tactile sensors, us-

ing the TACTIP sensor system as an example. The method developed is appli-

cable to a wide range of applications beyond soft sensors, the fidelity of the 

responses generated using the method will depend upon the level of training 

of the sensor system and the intended sensing purpose. 



2 Materials & Methods 

2.1 TACTIP sensor 

The TACTIP sensor is a biologically inspired soft tactile sensor designed by 

the Bristol Robotics Laboratory [6], it uses a camera to track the movement 

of markers on a compliant skin. As shown in Fig 1(a) TACTIP consisted of a 

compliant skin with markers on the inner surface, a soft body covered by the 

compliant skin was filled with clear Gel, an IR LED is the illumination source, a 

clear Acrylic sheet separates the Gel inside the soft body with the camera 

system, and a USB HD camera captures the image of the inner surface of the 

skin. Details of the marked skin design and manufacture are described in [7]. 

A photograph of the TACTIP indenting a surface is presented in Fig. 1(b), and 

the images captured by the internal USB HD camera are given in Fig. 2. In 

order to recognize the white markers (pins) and track their movement, a 

real-time image processing programme was implemented in LabVIEW (Na-

tional Instruments, USA).  

 

Fig.1. TACTIP sensor (a) Cross-section schematic and (b) test bed. 

 

Fig.2. Captured image from TACTIP camera (a) unloaded (b) loaded (red circled region). 



2.2 Indentation test apparatus 

A test platform was built to repeatedly probe the sensor system (Fig. 3) and 

includes a micropositioning linear stage (T-LSR75B, Zaber Technologies Inc., 

Canada), the TACTIP sensor with USB camera, a 6-axis load cell (Nano 17-E, 

ATI Industrial Automation, USA), and a computer based data acquisition sys-

tem (myRio, National Instruments, USA). The linear stage has a min step of 

Ϭ͘ϱ ʅŵ͕ Ă ƚƌĂǀĞů ƌĂŶŐĞ ŽĨ ϳϱŵŵ͕ ĂŶĚ ƌĞƉĞĂƚĂďŝůŝƚǇ ŽĨ Ϯ͘ϱ ʅŵ͘ TŚĞ ůŽĂĚ ĐĞůů 
was capable of a measuring a range of ±35 N in the Z axis, with a resolution 

of 6.25 mN.  

 

Fig.3. Photograph of the indentation test apparatus. 

2.3 Topography 

In order to investigate a range of topographies a selection of samples with 

axisymmetric features were manufactured. Fig. 4(a) illustrates the cross sec-

tion of the topography, the maximum radius of the samples was 21 mm. The 

height of topography h is described by Eq. (1), 

h = A exp ቀെr2

2c2
ቁ (1) 



where r is the sample radius. A and c are parameters which differ for the 

m = 12 samples, A represents the maximum height and c the rate of decay 

with increasing radius. Parametrising the topography as according to Eq. (1) 

means that a lower order model can be used to accurately reconstruct the 

range of shapes, this is because the modal decomposition of the paramet-

rised topography will have similar properties (see Section 3.2). The values of 

the parameters relating to topography for the samples used are given in Ta-

ble 1. Each sample was manufactured by 3D printer (Objet 1000, Stratasys 

Ltd., USA) with ABS material. The material of the manufactured samples is 

rigid in comparison to the surface of the TACTIP sensor, therefore during 

indentation only the surface of the probe deforms and the topography re-

mains unchanged. Two example 3D printed samples with topography are 

shown in Fig. 4(b). 

    

Fig. 4. (a) Cross-section of the parameterised topography. (b) Photography of 3D printed Sam-

ples #3 and #9. 

Sample #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

A [mm] 5 5 5 3 3 1 -5 -5 -5 -3 -3 -1 

c [mm] 8 4 2 6 3 2 8 4 2 6 3 2 

Table 1. Topography parameters for the 3D printed samples. 

3 Theory 

3.1 Force reconstruction 

The normal forces, ۴, were recorded by the force sensor over the duration of 

indentation and range of samples. This is defined by Eq. (2), 

(b) (a) 



۴ = ൣFz
1,1 ǥ Fz

1,n ǥ Fz
m,1 ǥ Fz

m,n൧ (2) 

where Fz
i,j

 is the normal force for tŚĞ ŝΖƚŚ ƐĂŵƉůĞ Ăƚ ƚŚĞ ũ͛ƚŚ ƚŝŵĞ ƐƚĞƉ͘ As 

there are m samples and n time steps, the size of ۴ is ሾ1 × mnሿ. ۲ is the 

TACTIP pin deformations which correspond to the same time steps and sam-

ples used to construct the normal force vector as described by Eq. (3), where 

Dx,k

i,j
, Dy,k

i,j
 ĂƌĞ ƚŚĞ Ŭ͛ƚŚ ƉŝŶ ĚĞĨŽƌŵĂƚŝŽŶƐ ĨŽƌ ƚŚĞ ŝΖƚŚ ƐĂŵƉůĞ Ăƚ ƚŚĞ ũ͛ƚŚ ƚŝŵĞ 

step. As there are p samples and the size of ۲ is ሾ2p × mnሿ. 
۲ =

ێێۏ
ێێێ
Dx,1ۍ

1,1 ǥ Dx,1
1,n ǥ Dx,1

m,1 ǥ Dx,1
m,nڭ ڭ ڭ ڭ ڭ ڭ ڭ

Dx,p
1,1 ǥ Dx,p

1,n ǥ Dx,p
m,1 ǥ Dx,p

m,n

Dy,1
1,1 ǥ Dy,1

1,n ǥ Dy,1
m,1 ǥ Dy,1

m,nڭ ڭ ڭ ڭ ڭ ڭ ڭ
Dy,p

1,1 ǥ Dy,p
1,n ǥ Dy,p

m,1 ǥ Dy,p
m,nۑۑے

ۑۑۑ
ې
 (3) 

In order to correlate the force as a function of time and sample selection to 

the pin deformations, ۴ is related to the matrix ۲ using GP. GP was used to 

create an equation linking the pin deformations to normal force by generat-

ing a range of possible algebraic descriptions from combinations of the input 

variables. These descriptions can contain any set of prescribed expressions 

and as such can describe complex non-linear trends which are not obtained 

through simple data fitting analyses. The general statement of the expres-

sion obtained from GP in this case is given by Eq. (4), ۴ = f൫Dx,q , Dy,q൯   q א Ժp
+ (4) 

This equation does not necessarily contain all input variables as their useful-

ness is evaluated in determining the output, hence q describes a subset of all 

p pins. Each time GP was run a different result was produced because of the 

complexity associated with the number of possible combinations of expres-

sions and input variables associated in determining the relationship. Running 

the solver for longer improves the likelihood that the fit achieved is more 

accurate. The best fit is determined by an evolutionary algorithm which 

learns by assessment of a fitness function the best selection and combination 

of input variables in minimising the error in the output [11]. 



3.2 Topography reconstruction 

The topography heights for the samples are arranged into a matrix ۯ which is 

defined by Eq. (5), 

ۯ = ቎h1
1 ǥ h1

mڭ ڭ ڭ
hs

1 ǥ hs
m
቏ (5) 

where hj
i  ŝƐ ƚŚĞ ũ͛ƚŚ location ĨŽƌ ƚŚĞ ŝ͛ƚŚ ƐĂŵƉůĞ͘ IŶ ƚŽƚĂů ƚŚĞƌĞ ĂƌĞ s heights 

per sample and the size of ۯ is ሾs × mሿ. Importantly the definition of topog-

raphy is discrete such that any numerical description of topography can be 

included and does not rely on the analytical description of Eq. (1) for the 3D 

printed topography. The SVD of ۯ allows the matrix to be written as the 

product of three component matrices ܃, ઱, and ܄T . The SVD of ۯ can be 

truncated by defining a rank K which determines the amount of information 

kept by the approximation. This leads to Eq. (6) which gives the MOD of ۯ ,ۯ ؆ K܄K઱K܃
T    ,   K ൑ minሺm, sሻ (6) 

where ܃K  is the first K columns of ܃ ሾs × Kሿ, ઱K  is the first K columns and 

rows of ઱ ሾK × Kሿ, and ܄K  is the first K columns of ܄ ሾm × Kሿ. The matrix ܄K  

are known as the modes of the SVD of ܌ .ۯ is defined as a matrix of pin de-

formations at a specific instance in time. In order to correlate the modes of 

topography to the pin deformations each component in ܄K
T ሾK × mሿ were 

related to the matrix ܌ ሾ2p × mሿ by using GP in a similar way to that de-

scribed in Section 3.1. The relationships which are generated describe the 

correlation between the pin deformations and modes of the reduced order 

model for topography as given by Eq. (7), 

Vl
T = f൫dx,q , dy,q൯    l = 1,ǥ , K    q א Ժp

+ (7) 

4 Results & Discussion 

4.1 Force reconstruction 

Indentation was undertaken at the centre of the samples and data was re-

corded for n = 61 time steps over a period of 16 seconds. The depth was 



linearly increased over time to the maximum 6 mm at the halfway point and 

then back to zero, in total p = 134 pins were recorded during the indenta-

tion. Analysing the data produced using the multi-gene GP toolbox in Matlab 

gptips [22] produced expressions for the normal force as a function of a sub-

set of pin deformations. The GP solver was run 10 times and the result which 

produced the lowest root-mean-squared-error over the complete set was 

selected as the overall best fit. The number of generations used was 500, the 

population size was 300, the number of genes was 6, and the number of 

terms each gene could have was 12. The total time to compute was ~120 

minutes using a 2.8 GHz 4-core CPU running with 3GB of RAM for the process, 

the minimum RMS error over all samples and time steps achieved was 

0.0532 N with a mean of 0.0344 N and variance of 0.0098 N. 

The equation generated by GP indicates how the normal force can be recon-

structed from the pin deformations, not all of the pins are included in the 

terms and as such only those pins with a significant influence are used. Fig. 5 

shows the normal force reconstruction for two of the manufactured samples, 

in these plots blue represents the reconstructed and red represents the re-

corded data. The accuracy of the reconstructed points compared to the re-

corded is reasonable for each of the forces investigated, with the error found 

to be an order of magnitude smaller than the recorded forces themselves. 

Generally the shape of the force responses is well represented and the peak 

value is obtained to within an order of magnitude. The low resolution of the 

pin deformations can be seen to influence the types of responses generated 

by using them, whereby a higher resolution result is generated but is still 

subjected to certain regions of pixilation. Sub-pixel tracking of pin deforma-

tions would allow a continuous expression to be generated in this way. 

Further investigation the GP solver tolerances and number of terms in the 

resulting equation would be explored to potentially improve the force recon-

struction. Another point to consider is the types of expressions which can be 

used to create the GP solution, which can be any set of mathematical expres-

sions. Changing the types of expressions which the GP explores will change 

the types of response which can be generated and may improve the resul-

tant fit for a given data set. 



 

 

 

 

 

Fig. 5. Normal force reconstruction for (a) Sample #3, (b) Sample #9. 

4.2 Topography reconstruction 

Topography coordinates were generated for the samples and arranged into 

the matrix ۯ as outlined in Section 3.2, the SVD of ۯ was undertaken using 

Matlab (TheMathsWork Inc., USA) and the reduced order model for topogra-

phy was then chosen by setting the rank K = 3, this represents 25% of the 

total number of modes. Using the same procedure as described in Section 

4.1 the modes of topography were correlated to the maximum pin deforma-

tions using GP. The equations generated indicate how the modes of the to-

pography can be reconstructed from the pin deformations at the maximum 

indentation as a function of the sample selection.  

Fig. 6 shows two of the three mode reconstructions using the equations gen-

erated by GP. This is because m = 12 points need to be considered for to-

pography reconstruction in comparison to mn = 732 for the force recon-

struction. Increasing the number of samples tested increases the likelihood 

that the reconstruction will be of a lower accuracy. It is interesting to note 

that each of the modes has a very different type of response and that GP is 

able to find a relationship that accurately correlates them all to the pin de-

formations, which themselves have similar trends. Using the modes deter-

mined from GP the topography was subsequently reconstructed. Fig. 7 

shows the topography reconstructions for two samples #3 and #8, chosen as 

an example. In this figure blue represents the reconstructed and red repre-

sents the recorded data, the reconstructed topography can be seen to be 

accurate to within an order of magnitude using MOR and GP.  

(a) (b) 



The minimum RMS error in the topography reconstruction was 0.0512 mm 

with a mean of 0.0813 mm and variance of 0.00578 mm. The error in the 

reconstructed points is at least two orders of magnitude smaller than the 

range of recorded topography data. The rank of K = 3 was chosen to dem-

onstrate that the topographies can be accurately reconstructed from a lim-

ited number of modes. As the number of modes is increased the accuracy of 

the reconstruction increases however so does the computational expense. 

 

Fig. 6. Reconstruction of topography modes, (a) 1
st

 mode, (b) 2
nd

 mode. 

 

 

 

 

 

Fig. 7. Topography reconstruction for (a) Sample #3 (b) Sample #9. 

5 Conclusion 

A method for soft-sensor force and topography reconstruction using the 

TACTIP sensor as an example is presented. Physical testing was undertaken 

to evaluate a novel method in which GP derived equations were obtained to 

link the sensor pin deformations and force/topography. In the case of topog-

raphy MOR was used to decompose the response into modes which simpli-

fied the reconstruction process. Both force and topography were recon-
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structed to within an order of magnitude of the known values using GP. It 

was shown for the force reconstruction that low resolution pin deformations 

can be used to give a high resolution result via the GP procedure and that 

inaccuracies in the resulting relationships could be improved by sub-pixel 

resolution imaging. While this work focuses on the TACTIP soft sensor, the 

method provides a more general approach to reconstructing physical quanti-

ties with high fidelity from non-linear inputs ʹ a process which is non-trivial 

or impossible with analytical approaches. The method is a promising ap-

proach to be further explored in soft sensing applications such as grasping 

and edge detection, for real-time sensing ANN or RSM may be used in place 

of GP to develop the relationships required. 
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