
A Service Based Architecture for

Multidisciplinary IoT Experiments with

Crowdsourced Resources

Panagiotis Alexandrou1,2, Constantinos Marios Angelopoulos3,7, Orestis
Evangelatos3, João Fernandes5, Gabriel Filios1,2, Marios Karagiannis3,

Nikolaos Loumis6, Sotiris Nikoletseas1,2, Aleksandra Rankov4,
Theofanis P. Raptis1,2, José Rolim3, and Alexandros Souroulagkas1,2

1 Computer Engineering and Informatics Department, University of Patras, Greece
2 Computer Technology Institute and Press “Diophantus”, Patras, Greece

3 University of Geneva, Switzerland
4 DunavNET, Novi Sad, Serbia

5 Alexandra Institute, Aarhus, Denmark
6 University of Surrey, Guildford, UK

7 Bournemouth University, UK

aleksandro@ceid.upatras.gr

Abstract. Research on emerging networking paradigms, such as Mo-
bile Crowdsensing Systems, requires new types of experiments to be
conducted and an increasing spectrum of devices to be supported by
experimenting facilities. In this work, we present a service based archi-
tecture for IoT testbeds which (a) exposes the operations of a testbed
as services by following the Testbed as a Service (TBaaS) paradigm; (b)
enables diverse facilities to be federated in a scalable and standardized
way and (c) enables the seamless integration of crowdsourced resources
(e.g. smartphones and wearables) and their abstraction as regular IoT
resources. The architecture enables an experimenter to access a diverse
set of resources and orchestrate experiments via a common interface
by hiding the underlying heterogeneity and complexity. This way, the
field of IoT experimentation with real resources is further promoted and
broadened to also address researchers from other fields and disciplines.

Keywords: Internet of Things, Testbeds, Architectures, Platforms, Crowd

1 Introduction

Experimental facilities also known as testbeds, provide the controlled environ-
ment needed for implementing and testing novel technologies and architectures.
Among others things, they follow agile architectures that are easy to re-configure
in the context of experiments and provide additional services and tools for col-
lecting meta-information on the experiment execution (e.g. monitoring several
performance metrics or providing execution logs for post-experiment processing).



2 P. Alexandrou et al.

Also, their controlled environment constitutes a base reference that helps in eval-
uating and comparing different architectures and protocols. However, despite the
services and the advantages provided, testbeds also pose some limitations. By
nature, each testbed facility focuses on a specific area of interest (e.g. in IoT ap-
plications or M2M communication protocols) and therefore it’s architecture and
the services provided define the experiments supported. Other indicative limit-
ing factors include the number and type of available resources and the number
of simultaneous experiments the facility can support.

In order to overcome such limitations, experimenters have been working to-
wards federating different testbeds. Such federated meta-testbeds enable differ-
ent research groups to join forces towards diversifying and extending the existing
experimental facilities. From these efforts emerged the prevailing paradigm of
Testbed as a Service (TBaaS). According to this paradigm, the resources and
the services of an individual facility are exposed to third parties via some REST-
ful APIs, over the Internet. This virtualization while obfuscating the underlying
implementation details, enables an experimenter to utilize the facility while be-
ing agnostic of its complexity. Facilities that are virtualized by complying with
commonly understood APIs can then be federated under the umbrella of a web-
service. Hence, experimenters are provided with a single point of entry towards
several facilities. Depending on the federation architecture, experimenters are
able to provision resources for their experiment’s which are provided by differ-
ent individual facilities.

Our contribution. The existing experimental infrastructures mainly focus
on resources that are statically deployed or characterized by low dynamics. For
instance, they either refer to regular computer networks or to IoT infrastructure
deployed within a static context, such as a smart building. In this work we
present a holistic architecture for TBaaS, implemented in the context of IoT
Lab European research project. The architecture has been adopted by the IoT
Lab platform that can be accessed at http://www.iotlab.eu/. Through the
IoT Lab one can access the resources of sensor testbeds from the Universities of
Patras, Geneva, Surrey, from Mandat International and from the Ekonet mobile
testbed. In addition resources of smartphone sensors can be accessed. The IoT
Lab architecture enables us in particular to:

– Extend the range of resources by considering crowdsourced resources pro-
vided by the general public.

– Use a novel, generic yet specialized experiment mechanism. It allows a smart
combination, composition and execution of diverse experiments to the users
of the architecture.

– Adopt abstraction mechanisms that leverage devices, such as smartphones
and smart wearables, as a distributed experimental infrastructure.

Related work. Internet of Things facilities cover a large number of topics
from purely technical issues (e.g. routing protocols, semantic queries), to a mix
of technical and societal issues (security, privacy, usability), as well as social
and business themes ([14] and [15]). Federation of such facilities can be feasible
with tools such as those introduced in [9]. The OneLab experimental facility,



A Service Based Facility Architecture for Multidisciplinary IoT Experiments 3

presented in [13], is a leading prototype for a flexible federation of testbeds that
is open to the current Internet. GENI, the Global Environment for Networking
Innovation [10], is a distributed virtual laboratory for transformative, at scale
experiments in network science, services, and security. The Fed4FIRE federation
framework [2] is gradually enabling experiments that combine facilities from the
different FIRE research communities. Last but not least, the GEANT World
Testbed Facility [12] focuses on regular computer networks.

Related crowdsourcing and crowdsensing platforms such as [1], [3] and [7]
solely focus on mobile resources as a source of sensing data. Therefore they do
not include any data annotation, or any other data coming from the knowledge of
the crowd. Other platforms like EpiCollect [5] and PhoneLab [17] introduce the
crowdsourcing concept. However they do not integrate other types of resources,
such as testbed resources nor do they include any user profiling through which
they can filter the crowd, or provide support mechanisms for incentives.

2 Resource Handling

Due to the increasing amount of electronic devices and sensors that are avail-
able, either by portable devices or through testbeds and experimental facilities,
there has emerged a need to migrate all the available resources under the same
umbrella. This migration allows an easy interaction between end-users and ex-
perimenters, on the one hand and available resources on the other. Key require-
ments in our architecture design were the federation of heterogeneous resources
(e.g. static, mobile, portable, and crowd- sourced resources), the scalability of
architecture in terms of mobile users and IoT integration and the simultane-
ous handling of a large number of resources and data during the experiment
execution

2.1 Resource Description

Our architecture is gathering heterogeneous resources provided either by testbeds
facilities, or by crowdsourcing (e.g. by the end-users of a facility or even the gen-
eral public). In order to overcome complex migration problems with the hetero-
geneity of the resources, we adopted the RSpec (resource specifications) scheme
[4]. RSpec was used for network related resources and had to be adapted for
use by IoT ones. The RSpec, is an XML schema used by the resource providers
in order to describe all the available resources in the architecture. This schema
is simple, yet powerful, and includes all the necessary information to describe
the resources adequately. The RSpec was mainly used for network resources and
for this reason we had to expand its capabilities so that they would fit in our
architecture requirements.

RSpec provides tags that describe several properties of each resource such as
an IP address, a protocol for communication, an access port, or a location. In
particular, the aforementioned tags are aligned with the types and function sets
defined by the IPSO Application Framework. For instance, a luminance sensor



4 P. Alexandrou et al.

following the IPSO Application Framework is categorized as “ipso.sen.lum”. All
resource providers generate an RSpec compliant XML file that is aggregated
to a single architecture-wide description of available resources in the Resource
Directory.

The schema provides tags that describe nodes (<node> </node>) which in-
clude properties allowing the system to directly access the resources of each node.
These properties include the IP address (ip), the protocol the node understands
(protocol) and the port (port).

Inside the <node> tag, the schema provides tags for individual resources
(<resource> </resource>) that describe in detail the relative path that must
be used by the architecture in order to request values from each resource, as well
as the type of the resource (e.g. sensor or actuator). Inside the <resource> tag,
the schema describes the resource using tags that follow the types and function
sets defined by the IPSO Application Framework.

Other information that is contained inside the <node> tag includes an
<interface> tag that provides more information about the component ID and
a <location> tag that provides information about the physical location of the
node. In the link below, we provide a snippet from an indicative RSpec XML
file that describes some nodes in the Geneva’s testbed. 8

Through RSpec we can also describe RESTful web services that add func-
tionalities to testbed resources. For example, we can convert a pulse meter to
an energy one, make a temperature IoT resource from a weather API, or even
provide alarm and notification services. For example, the resources available in
the architecture are described by each resource provider using RSpec and can in-
clude all the necessary information to describe the resources needed to compose
an experiment.

2.2 Diverse Resource Types

Static IoT resources. Each testbed which may be comprised of actuator motes,
and either wireless, fixed or mobile sensors, provides them as resources to the
platform. Each resource has a specific URL which invokes an API call. The
resources of our testbeds follow a RESTful implementation via which GET,
PUT or POST methods can be used to access them. Typical examples of such
resources are the TelosB [11], Z1 [19] and Arduino IoT [8] devices.

Mobile/portable IoT resources. In addition to static IoT resources, mo-
bile and portable testbeds can also be integrated. By doing so, we create net-
works of moving resources with multiple sensors that are capable of providing
data and properties of temporal, technological, and spatial diversity. Existence of
this type of testbeds provides the users of the architecture with more control over
the choice of environment within which they want to deploy their experiments.

Virtual/modelled resources. Virtual resources are simulated nodes that
act identically to the IoT resources and are running the same executable. The

8 http://129.194.70.52:8111/ero2proxy/service/type/xml_rspec



A Service Based Facility Architecture for Multidisciplinary IoT Experiments 5

difference to the physical ones comes from the way the reported values are gen-
erated. Those values are estimated by either taking into account other resources
in the virtual environment only, or they can be interpolated by the physical
resources of the same provider. The number of virtual resources that are de-
ployed in each testbed side is fixed and set by the owner of the testbed. The
functionality to add and integrate additional (virtual) modelled resources is also
provided.

Crowdsourced Resources - Opportunistic/Participatory sensing. As
presented in [16], each embedded sensor of a smart electronic device (e.g. smart-
phones), can be categorized as inertial, positioning, or ambient. Combining these
categories, we can identify and measure the acceleration and rotational forces of
a solid object, as well as measure the physical position of a device and various
environmental parameters. The collection of measurement can be opportunistic
or participatory. Opportunistic sensing takes place in the background, without
needing the users to interact and have an active participation. Alternatively, par-
ticipatory sensing urges users to be involved and provide the needed information,
or data (such as scanning a QR code for localization purposes or answering a
questionaire).

3 Experiment Composition and Execution

The experimenter is provided with a list of available resources that can view and
reserve for their experiment. After the experimenter chooses and reserves the de-
sired resources, he/she is prompted to the experiment composition module. In
the background, the same RSpec XML schema is used to transfer the information
regarding the resources reserved between the reservation module and the experi-
ment composition module along with some meta-information on the experiment
itself; e.g. duration and period of execution, human readable description of the
experiment, etc. This information is incorporated in the RSpec document via
tags such as the <research id> tag, that provides the id of the parent research
of the experiment to be composed, the <experiment title> tag which provides
the title the experimenter has given to the experiment to be composed and the
<experiment desc> which provides a short description of the experiment.

3.1 Experiment Composition

The experiment composition module receives this information and provides a
simple but powerful mechanism with which the experimenter can define the
details of how resources will be used in the context of “If This Then That”
(IFTTT) scenarios. The final experiment consists of a set of these scenarios.
The experiment composition module allows the experimenter to set the following
actions:

Get a value from specified resources. The frequency of the reading re-
quest is set in minutes or hours and include one or more resources. The resources
must be of type “sensor” and must be included in the experiment before the ex-
perimenter enters the main composition module. This action is called “reading”.



6 P. Alexandrou et al.

As an example, a reading can be “Get a value from sensor 1 every 5 minutes
between these 2 dates and times”.

Set a condition. A condition can be the average, absolute, minimum or
maximum value of one or more resources being greater, equal or lesser than a set
value. In the case of multiple resources a logical operator can be set. An example
of a condition can be “The maximum value of sensor 1 OR the maximum value
of sensor 2 to be greater than 5”.

Set an outcome. An outcome is an action that can be taken. This action is
either to take more measurements from sensors or to actuate an actuator. Out-
comes also include a logical operator in case there is more than one conditions.
An example of an outcome could be “Actuate actuator 1, if all conditions are
met (with logical AND)”.

Define an action. Actions are combinations of conditions and outcomes.
Actions are set in an ”IF-THEN” form in order to clarify their meaning. An
example of an action can be “IF condition 1 AND condition 2 are true THEN
perform outcome 1”. The logical operator AND is actually defined in the outcome
and not in the conditions, as specified above.

After the experiment scenario has been defined, it is dispatched to the exe-
cution module. The scenario is described in an XML schema called Experiment
Description XML schema (ED XML). The Experiment Description XML defines
a parent tag <experiment> </experiment> that encloses all other elements.
The <measurements> tag defines the measurements database server informa-
tion along with the <ip> and <port> sub-tags inside it. The next tag is a
random identifier tag. This is generated during the ED creation randomly and
is used to uniquely identify the experiment description. The tag that provides
this identifier is the <identifier> tag.

Readings are included in the <reading> tag. Inside this tag, a <frequency>
tag with a ”unit” property defines the frequency of the reading while <start>
and <end> tags define the start and end of the readings period for the specified
reading. The <resources> tag then defines which resources have to be probed for
a reading every time it’s needed. These are defined using <id> tags that include
properties ”component”, ”resource id”, ”port”, ”ip”, ”protocol” and ”path”. The
combination of these properties allow the execution engine to identify and reach
the resources directly.

Actions are defined using the <action> tag. These include <conditions> and
<outcome> tags. The <conditions> tag include the aggregation and logical
operations as a tag and property respectively (e.g. <average logic=”and”>).
Inside this tag, the resources are defined using an<id> tag and also the threshold
is defined using a <threshold> tag. The <outcome> tag includes a property for
the logical operator and inside the tag, resources are defined (either sensors or
actuators) using <id> tags as above. An example of an ED XML is shown in
Listing 1.1 in the Appendix.



A Service Based Facility Architecture for Multidisciplinary IoT Experiments 7

3.2 Experiment Execution

When an experimenter finalizes the definition of an experiment at the Experi-
ment Composition module, an Experiment Description XML document is cre-
ated which is transferred to the Experiment Execution module which proceeds
in parsing it and finding all necessary information in order to start running the
experiment.

At first, the research ID, the experiment title and the experiment description
are identified and posted as a new ‘research’ entity in the Resource Directory
database. As already described, the Experiment Description XML document
contains a number of readings and action tags. Each of these tags will spawn
a thread to handle their tasks. A queue and two objects are used to handle
communication between the readings and the actions. The readingObject notifies
that a new measurement was taken. The finishedObject denotes that a reading
thread was terminated.

Each reading tag has several resources with their contact information and a
frequency with which they are to be read. Every one of those readings, spawns
a new getMeasurements() thread tasked with obtaining the measurements from
the resources in the time and with the frequency specified by the experimenter.
The thread sleeps until it is time to take a measurement. When the measure-
ment comes, the thread will wake up and call each resource associated with it
for a measurement. After the measurements are taken the thread puts a readin-

gObject to the queue and proceeds to sleep until the time comes to take a new
measurement. When the time to finish the readings comes, the thread puts a
finishedObject in the queue and then terminates.

Inside the actions tag there are a number of tied conditions and outcomes.
Their information is parsed and summarized in two lists: one for the condi-
tions called conditionsList and one for the outcomes called outcomeList. Then
a thread for a function called conditionChecker(), with the two aforementioned
lists as parameters is spawned. This thread reads the queue responsible for the
communication between readings and actions. When a readingObject is read,
it will evaluate the logic of conditionsList as specified in the Experiment De-
scription XML. If it is evaluated to ‘True’, then the outcomes from outcomeList

will be executed. When a finishedObject is seen, the number of the aforemen-
tioned threads will decrease by one. The thread will run as long as there are any
getMeasurements() threads active.

3.3 Crowd Interactions

Crowd interactions require inputs from the smartphone users through surveys
and questionnaires (Figure 1). The process of filtering and selecting the user in
order to engage him/her in the specific research includes the following mech-
anisms available through the architecture: survey queries, survey lists and ge-
ofencing.

Survey Queries: A query is a mechanism that allows the experimenter
to filter crowd users in a meaningful way in order to select the users needed



8 P. Alexandrou et al.

Fig. 1. Crowd participation in TBaaS architecture.

for the post of a mobile query. The filtering function is based on the socio-
economic profile of the user which they voluntarily include during anonymous
registration through the mobile app. The query is defined and then saved in the
experimenter’s profile so that it can be easily reused in the future, which makes it
a very powerful tool as the crowd users constantly change in number throughout
the architecture’s lifetime. Queries, although static themselves, provide dynamic
results in the form of sets of users that fit the set criteria.

Survey Lists: Every time a query is used, an up-to-date list of crowd users
that meet the query’s criteria is presented. The experimenter then has the op-
portunity to select individual recipients to form a survey list. A survey list is a
static list of survey recipients that is used to send a survey to the mobile devices
recipients. The content of the user list is anonymous and only social and eco-
nomic data are associated with each entry. When the final survey list is compiled,
it is saved under the experimenter’s profile and can be used as the destination
list in which to post a survey. A special case of a survey recipient list is the “all
users” static list which includes all available users of the architecture.

Geofencing: Geofencing refers to the experimentation activity in which it is
possible to setup a virtual perimeter on a real world geographic area and utilize
this perimeter for determining if a mobile resource enters the area defined by
the perimeter, exits such an area or is located inside or outside this area. This
could be achieved, for example through the use of the GPS sensors, which are
usually available on modern smartphones.

4 Engaging the Crowd

Contrary to traditional sensing systems that are designed specifically to monitor
and collect data from fixed positions in their immediate environment and whose
behavior can thus be engineered, in mobile crowdsensing systems each sensing



A Service Based Facility Architecture for Multidisciplinary IoT Experiments 9

point is controlled by a person that needs to give his/her consent in order for its
device to participate in the system. This consequently introduces a high degree
of unpredictability and unreliability to the system and thus raises demands for
incentive and reputation mechanisms to engage the device owners by taking into
account their individual preferences and behavior.

4.1 Incentives framework

To support the envisioned incentive models, apart from the experimenters and
the regular users, new types of users were introduced:

– Sponsors can be individuals, companies or institutions following experiments
and backing up the ones they find interesting.

– Charities are organizations or causes that the crowd can support through
the allocation of their incentives.

A list of functionalities for the incentives and reputation framework has been
specified to support the model as the most applicable to the architecture. In-
dicatively, the functionalities of this framework need to enable:

– Sponsors to back a specific research, specifying the amount of their contribu-
tion, which is transferred to the architecture and allocated to the research.

– Triggering of payments either periodically or when the research is completed,
notifying users of the credits they have accumulated during their participa-
tion period.

– The user to have up-to-date information regarding their contribution(s), and
the overall accumulated information about the credits for each research par-
ticipation.

4.2 Reputation mechanisms

Another mechanism to motivate the crowd to participate in the research process
is a reputation scoring scheme that provide users with information and statistics
about the whole architecture as well as their part in it. The reputation mecha-
nisms monitor user activities and calculate the their rating in a semi-automatic
way.

The core module of the reputation mechanisms is a set of ranking functions
that calculate the rank and the reputation of the experimenters, the experiments,
the users, the devices and the platform itself. There are different types of ranking
functions that adjust the rates with negative/positive contributions, i.e. with a
five star rating scale or with a flag functionality that characterizes a user or
an experiment (e.g. blocking a user). These functions run automatically in the
back-end of the architecture and calculate the rates taking into account some
statistics about the usage of the architecture, on one hand, and the rate that the
users give through the mobile crowdsourcing tool and the experimenters through
the website portal, on the other.



10 P. Alexandrou et al.

The ranking functions that calculate automatically the rates for experi-
menters take into account the statistics of each experimenter (e.g. the number
of his completed experiments, if he provides reports with results from experi-
ments, etc.), the evaluation of users for the experimenter’s experiments and the
rank of his ideas for proposed experiments. The rate of users that participate in
experiments via the mobile crowdsourcing tool is calculated by functions based
on the participation of each user (e.g. since when he is using the architecture,
his response rate to experiments, the resources he provides for experiments, etc.)
and the rate of their devices.

5 Architecture Scalability

In order to evaluate the performance, an extensive analysis of different non-
functional properties of the architecture has been conducted (scalability, reliabil-
ity and availability). This section describes an extensive scalability study, where
we have identified three scenarios with different demands in terms of network
bandwidth and analyzed the overall performance of the system. Figure 2 depicts
the architecture’s network architecture with all of its components (application,
testbeds and TBaaS server).

We evaluate our architecture on the IoT Lab platform that is running on a
server hosted in a Swiss data center providing a bandwidth of 100 Mbps (sym-
metrical, no SLA). For this study three scenarios with different demands in terms
of both sensing and sourcing data were identified, as follows:

– Use Case 1: High-end scenario: sensing every 10 seconds and sourcing every
minute.

– Use Case 2: Average scenario: sensing every 1 minute and sourcing every 30
minutes

– Use Case 3: Low-end scenario: sensing every 5 minutes and sourcing once
daily

In regards to bandwidth requirements, use cases one and two can be char-
acterized as high-end and average scenarios since they require constant envi-
ronmental monitoring as to not disrupt the buildings usage whereas the third

Fig. 2. architecture’s network setting.



A Service Based Facility Architecture for Multidisciplinary IoT Experiments 11

use case can be characterized as a low scenario since it doesn’t require online
responsiveness. For each of the scenarios, the following packages and sizes are
considered:

– Sensing package: The sensing package is related to the message sent by the
smartphone containing sensing observations (accelerometer, GPS, luminos-
ity, humidity, temperature, etc.) or sensed values coming from a testbed
resource (thermometer, humidity sensor, light sensor, noise sensor, etc.). In
the mobiles case, we use 5 Kb as packet size having measured on the phone
messages averaging 1,15Kbs of size, whereas for the testbed part, we consider
the message size of 1 Kb, having measured an average size of 400 bytes for
this type of messages;

– Sourcing package: The sourcing package is related typically to answering a
questionnaire. Each question’s package size is measured around 20 Kbs and
each questionnaire consists of around 5 questions or 100 Kbs in total.

Table 1 shows the required bandwidth for each of the scenarios and the
number of connections with the server at 100% and 50% of its capacity. For
the mobile part, two bandwidths are calculated: the first using 3G/LTE for
communication (1 to 1 communication) and the second using Wi-Fi with 20
connections to the same hotspot as a plausible and “safe” number. The 3G and
4G/LTE average bandwidths are around 0,5 Mbps and 2 Mbps to 12 Mbps.

Table 2 shows that for the high-end scenario the server can handle 8M or 4M
connections at 100% or 50% of its capacity respectively. For the average scenario
48M or 24M connections and finally 240M or 120M connections for the low-end
scenario. Considering the average scenario with the server with capacity at 50%,
we can have up to 24M testbed resources connected and communicating their
values to the architecture.

6 Practical Applications

Testbed as a Service offers the capability to conduct researches involving both
crowd and IoT interactions. The following three scenarios showcase the capabil-
ities and range of scenarios feasible by the architecture.

Table 1. Mobile Side - Bandwidth requirements, number of connections with server.

Mobile Side BW (3G/LTE Kbps) BW (Wi-Fi) Capacity 100% Capacity 50%

High-end scenario 0,271 5,417 369.231 184.615
Average scenario 0,017 0,347 5.760.000 2.880.000
Low-end scenario 0,002 0,045 44.883.117 22.441.558

Table 2. Testbed Side - Bandwidth requirements, number of connections with server

Testbed Side Bandwidth (Kbps) Capacity at 100% Capacity at 50%

High-end scenario 0,013 8.000.000 4.000.000

Average scenario 0,002 48.000.000 24.000.000

Low-end scenario 0,0004 240.000.000 120.000.000



12 P. Alexandrou et al.

Light control scenario for a building management system [6]. The
end goals are to monitor the energy consumption, to automate the lighting and
to save energy. It uses static and crowd lent IoT devices together with surveys
as a way to learn the crowd’s opinion. The first step is to monitor the energy
consumption. Then a group of crowd users based on their geolocation is created
and a message is sent, informing them about the experiment and their role
in it. The research requires passive light measurements from their sensors as
well as opportunistic ones for their location within the building. These values
determine whether or not the lights will be turned on. Questionnaires forwarded
via the architecture determine the user’s satisfaction and the need to readjust
the parameters of the experiment.

Environmental monitoring scenario [18]. It’s a cross disciplinary sce-
nario which involves monitoring indoor and outdoor environmental data and
correlating them with the crowd happiness. It uses both the crowd’s opinion as
well as IoT resources. Interaction with the crowd is realized through surveys.
A collection of the crowd geolocation data at the time of posting the survey is
necessary, in order to relate the survey responses with the geolocalized environ-
mental data obtained from testbeds like ekoNET [18]. ekoNET is a network of
mobile IoT sensor devices capable of monitoring temperature, humidity, pressure
and air quality. These sensing data are also tied with a location measurement.
Over a period of time some correlation between the gathered sensor data and
the crowd’s opinion may appear. To keep user participation high, proper incen-
tivization is essential.

Virtual and modelled resources scenario. The objective as with first
research is to run an energy efficiency scenario. The traditional way of doing
so is by deploying static IoT devices tasked with measuring the luminance level
and based upon their readings actuating the lights. With the help of virtual
resources these measurement points can be augmented with virtual sensors. To
do so the values produced by the sensors in the outer boundary of the building
are used to create a dataset of external light data along with timestamps in order
to identify patterns of external light coming into the rooms. In this fashion the
number of physical resources is decreased. To run this scenario prior knowledge
of the position of the static sensors in the building is required.

7 Conclusions

In this paper we presented a service based architecture for IoT testbeds which
exposes the operations of a testbed as services, enables diverse facilities to be fed-
erated in a scalable and standardized way and enables the seamless integration
of crowdsourced resources. The architecture enables an experimenter to access
a diverse set of resources and orchestrate experiments via a common interface.
Moving forward we plan to increase the control and capabilities of the experi-
menters and integrate additional devices and functionalities to the experiment
composition module and present real world applications of the platform.



A Service Based Facility Architecture for Multidisciplinary IoT Experiments 13

Acknowledgments. This work was supported by the EU/FIRE IoT Lab project
- STREP ICT-610477

References

1. APISENSE - Crowd-sensing made easy! www.apisense.com/. retrieved April 2016.
2. Fed4FIRE project. http://www.fed4fire.eu/. retrieved April 2016.
3. funf - Open sensing framework. http://funf.org/. retrieved April 2016.
4. Rspec, fed4fire project. http://fed4fire-testbeds.ilabt.iminds.be/

asciidoc/rspec.html. retrieved April 2016.
5. D. M. Aanensen, D. M. Huntley, E. J. Feil, F. al Own, and B. G. Spratt. EpiCollect:

Linking smartphones to web applications for epidemiology, ecology and community
data collection. PLoS ONE, 4(9):e6968, 09 2009.

6. C. Angelopoulos, O. Evangelatos, S. Nikoletseas, T. Raptis, J. Rolim, and K. Ver-
outis. A user-enabled testbed architecture with mobile crowdsensing support for
smart, green buildings. In Communications (ICC), 2015 IEEE International Con-
ference on, pages 573–578, June 2015.

7. C. M. Angelopoulos, S. Nikoletseas, T. P. Raptis, and J. Rolim. Design and evalu-
ation of characteristic incentive mechanisms in mobile crowdsensing systems. Sim-
ulation Modelling Practice and Theory, 55:95 – 106, 2015.

8. Arduino. Arduino motes. https://www.arduino.cc/. retrieved April 2016.
9. J. Aug, T. Parmentelat, N. Turro, S. Avakian, L. Baron, M. A. Larabi, M. Y.

Rahman, T. Friedman, and S. Fdida. Tools to foster a global federation of testbeds.
Computer Networks, 2014. Special issue on Future Internet Testbeds.

10. M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri,
R. Ricci, and I. Seskar. GENI: A federated testbed for innovative network exper-
iments. Computer Networks, 61:5 – 23, 2014. Special issue on Future Internet
Testbeds Part I.

11. Crossbow. Telosb. www.willow.co.uk/TelosB_Datasheet.pdf. retr. April 2016.
12. F. Farina, P. Szegedi, and J. Sobieski. GEANT world testbed facility: Federated

and distributed testbeds as a service facility of GEANT. In Teletraffic Congress
(ITC), 2014 26th International, pages 1–6, Sept 2014.

13. S. Fdida, T. Friedman, and T. Parmentelat. New Network Architectures: The
Path to the Future Internet, chapter OneLab: An Open Federated Facility for Ex-
perimentally Driven Future Internet Research, pages 141–152. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

14. A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T. Razafindralambo. A
survey on facilities for experimental internet of things research. Communications
Magazine, IEEE, 49(11):58–67, November 2011.

15. J. Horneber and A. Hergenroder. A survey on testbeds and experimentation envi-
ronments for wireless sensor networks. Communications Surveys Tutorials, IEEE,
16(4):1820–1838, Fourthquarter 2014.

16. S. A. Hoseini-Tabatabaei, A. Gluhak, and R. Tafazolli. A survey on smartphone-
based systems for opportunistic user context recognition. ACM Comput. Surv.,
45(3):27:1–27:51, July 2013.

17. A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar, C. Qiao, S. Y.
Ko, and G. Challen. PhoneLab: A large programmable smartphone testbed. In
Proceedings of First International Workshop on Sensing and Big Data Mining,
SENSEMINE’13, pages 4:1–4:6, New York, NY, USA, 2013. ACM.



14 P. Alexandrou et al.

18. B. Pokric, S. Krco, D. Drajic, M. Pokric, I. Jokic, and M. Stojanovic. ekoNET -
Environmental monitoring using low-cost sensors for detecting gases, particulate
matter, and meteorological parameters. In Innovative Mobile and Internet Services
in Ubiquitous Computing (IMIS), 2014 Eighth International Conference on, 2014.

19. Zolertia. Zolertia motes. http://zolertia.io/. retrieved April 2016.

Appendix A

In the following Listing 1.1 it is shown an Experiment Description XML example.
In this example, a reading is requested between two specified date-times to be
taken every 1 minute from a resource. The experiment also defines that if the
average value of one of these resources is less than 1 the light control defined
must be actuated. All measurements recorded through experiments are stored
in the MongoDB measurements database. This means that experiments can also
be conducted without even defining conditions and actions, if what is needed is
only data from specific sensors to be taken.

Listing 1.1. Experiment Description XML

<?xml version=’1.0’ encoding=’utf-8’?>

<experiment>

<measurements><ip>129.194.70.52</ip><port>9000</port></measurements>

<identifier>IemNuXCQTGasLMo5mMjkqxPYKewJYhkh</identifier>

<reading>

<frequency unit=’minutes’>1</frequency>

<start>2015-06-19 14:54</start>

<end>2015-06-19 14:54</end>

<resources>

<id component=urn:publicid:IDN+iotlab:mitestbed:mitestbed+node+

node7.mitestbed’ resource_id=’undefined’ port=’61616’

ip=’2001:620:607:5800:0:0:0:1c’ protocol=’coap’

type=’sensor’ path=’/co2’ unit=’ppm’></id>

</resources>

</reading>

<action>

<conditions>

<average logic=’and’>

<id component=’urn:publicid:IDN+iotlab:unigetestbed:unigetestbed+node+

C3S7A1-LightLevel’ resource_id=’undefined’ port=’8111’ ip=’129.194.70.52’

protocol=’http’ type=’sensor’ path=’/lum’ unit=’lx’></id>

<threshold type=’less’ value=’100’></threshold>

</average>

</conditions>

<outcome logic=’and’>

<id component=’urn:publicid:IDN+iotlab:ctitestbed:ctitestbed+node+

node_light_control’ port=’568’ unit=’none’ resource_id=’undefined’

ip=’2001:620:607:5f00::15’ protocol=’coap’ type=’actuator’ path=’PUT-dev0-1’></id>

</outcome>

</action>

</experiment>


