
A calculus for local reversibility

Stefan Kuhn and Irek Ulidowski

Department of Computer Science, University of Leicester
Leicester, LE1 7RH, United Kingdom

{shk12,iu3}@le.ac.uk

Abstract. We introduce a process calculus with a new prefixing opera-
tor that allows us to model locally controlled reversibility. Actions can be
undone spontaneously, as in other reversible process calculi, or as pairs
of concerted actions, where performing a weak action forces undoing of
another action. The new operator in its full generality allows us to model
out-of-causal order computation, where effects are undone before their
causes are undone, which goes beyond what typical reversible calculi can
express. However, the core calculus, with a restricted form of the new op-
erator, is well behaved as it satisfied causal consistency. We demonstrate
the usefulness of the calculus by modelling the hydration of formaldehyde
in water into methanediol, an industrially important reaction, where the
creation and breaking of some bonds are examples of locally controlled
out-of-causal order computation.

Keywords: Reversible process calculi, local reversibility, modelling of
chemical reactions

1 Introduction

There are many different computation tasks which involve undoing of previously
performed steps or actions. Consider a computation where the action a causes
the action b, written a < b, and where the action c occurs independently of a
and b. There are three executions of this computation that preserve causality,
namely abc, acb and cab. We note that a always comes before b. There are
several conceptually different ways of undoing these actions [18]. Backtracking
is undoing in precisely the reverse order in which they happened. So, undo b
undo c undo a is a backtrack of the execution acb. Reversing is a more general
form of undoing: here actions can be undone in any order provided causality is
preserved (meaning that causes cannot be undone before effects). For example,
undo c undo b undo a is a reversal of acb for the events a, b and c above.

In biochemistry, however, there are networks of reactions where actions are
undone seemingly out of causal order. The creation and breaking of molecular
bonds between the proteins involved in the ERK signalling pathway is a good
example of this phenomenon [16]. Let us assume for simplicity that the creation
of molecular bonds is represented by actions a, b, c where, as above, a < b and
c is independent of a and b. In the ERK pathway, the molecular bonds are
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broken in the following order: undo a, undo b, undo c, which seems to undo
the cause a before the effect b. The first process calculus for the out-of-causal
order reversible computation was proposed in [16], where the calculus CCSK
[13] which is extended with an execution control mechanism for managing the
pattern and the direction of computation. The control mechanism is external
to the processes it controls, and it can have a global scope. Out-of-causal order
computation was also studied in [15,14]. Other reversible process calculi were
proposed in [4,5,12,13,9,8,10,3].

We introduced informally a novel and purely local in character mechanism
for undoing of computation in a short paper [7]. Here, we build a process calcu-
lus around this mechanism and give it operational semantics. We then discuss
various properties that hold in the calculus. Most importantly, we show that out-
of-causal order computation can be modelled in the calculus. Hence, in general,
the causal consistency property [4] does not hold. There are reachable states
that can only be arrived at by a mixture of forward and reverse steps. However,
we argue that causal consistency holds in a restricted version of our calculus,
thus the full calculus is in effect a “conceptual” extension of a causally consistent
reversible process calculus. The benefits of the calculus are shown by modelling
hydration of formaldehyde in water. The molecules of formaldehyde and water
are modelled as compositions of carbon, oxygen and hydrogen atoms. When
composed in parallel, the molecules react and the reactions are represented by
sequences of transitions of concerted actions. We are able to represent different
forms of reversibility, including out-of-causal-order reversibility, and computa-
tion can proceed in any directions without without external control.

The novel features of our calculus are introduced via an example of catalytic
reaction. Consider two molecules A and B that are only able to bond if assisted

by the catalyst C. We assume A
def
= (a; p).A′, B

def
= (b, p).B′ and C

def
= (a, b).C′.

We use a new prefix operator (s; p).P where s is a sequence of actions or executed
actions and p is a weak action. Initially the actions in s, p take place, and then
we compute with P . The three molecules can bond by performing synchronously
the matching actions according to the function γ(a, a) = c, γ(b, b) = d and
γ(p, p) = q, producing thus new actions c, d and q. A weak action p can be left
out resulting in the prefix (s; p).P (as in B and C above). Actions in s can take
place in any order, and p can happen if all actions in s have already taken place.
Once p takes place, one of the executed actions in smust be undone immediately:
this is our new mechanism for triggering reverse computation. We shall model
these two almost simultaneous events as a transition of concerted actions. This
is a simple but realistic representation of the mechanism of covalent bonding,
the most common type of chemical bonds between atoms, hence our calculus is
called a Calculus of Covalent Bonding.

Returning to our example, we represent the system of molecules A,B and C
as ((a; p).A′ | (b, p).B′ | (a, b).C′)\{a, b, p}, where ‘ | ’ is the parallel composition
and ‘\’ the restriction as in CCS and ACP [11,1]. We note that A and B cannot
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interact initially since γ(a, b) is not defined. But they can both interact with C:

(a; p).A′ | (b, p).B′ | (a, b).C′ c[1]
−−→ (a[1]; p).A′ | (b, p).B′ | (a[1], b).C′ d[2]

−−→

(a[1]; p).A′ | (b[2], p).B′ | (a[1], b[2]).C′

where 1 and 2 are communication keys [13] indicating which pairs of actions
created bonds. Molecules A and B can now do p synchronously, producing action
q. This causes immediately the breaking of the bond c, which means undoing of
actions a in A and C, leaving A and B bonded. We model such pairs of events
by pairs of concerted actions:

(a[1]; p).A′ | (b[2], p).B′ | (a[1], b[2]).C′

{q[3],c[1]}
−−−−−−→ (a; p[3]).A′ | (b[2], p[3]).B′ | (a, b[2]).C′

The bond 3 on weak actions p is unstable and thus gets promoted to a stable
stronger bond on a and p. Finally, the catalyst dissolves the bond with B:

(a; p[3]).A′ | (b[2], p[3]).B′ | (a, b[2]).C′ ⇒ (a[3]; p).A′ | (b[2], p[3]).B′ | (a, b[2]).C′

d[2]
−−→ (a[3]; p).A′ | (b, p[3]).B′ | (a, b).C′

We note that A and B are now bonded although the synchronisation function
did not allow it to happen initially. The main consequence of this is that the
bond between a[3] and p[3] is irreversible, namely it cannot be undone. Looking
at the pattern of doing and undoing of bonds we obtain c[1]d[2]q[3]c[1]d[2]. Since
creation of bonds c and d causes the bond q, we have here an example of out-of-
causal order computation.

Biochemical reactions can also be modelled, for example, with the kappa
calculus [6]. Various calculi have also been employed to model biochemical pro-
cesses (e.g. [5,2]), where the focus was on the modelling the reaction rates in
complex networks and their interdependence. On the other hand, the question
of how the behaviour of a network emerges out of the behaviour of its compo-
nents has not been often addressed. An attempt at a structural modelling was
[13], where global controllers were used to drive reactions forwards and in re-
verse. In contrast the calculus introduced in this paper has no global control and
the behaviour of a biochemical network emerges from its components.

2 A Calculus of Covalent Bonding

We define the set of (forward) action labels A which is ranged over by a, b, c, d, e.
We partition A into the set of strong actions, written as SA, and the set of weak
actions WA. Reverse action labels belong to A, with typical members a, b, c, d, e,
and represent undoing of actions. The set P(A∪A) is ranged over by L.

Let K be an infinite set of communication keys (or keys for short), ranged
over by k, l,m, n. The Cartesian product A×K, denoted by AK, represents past



4 Stefan Kuhn, Irek Ulidowski

actions, which are written as a[k] for a ∈ A and k ∈ K. Correspondingly, we
have the set AK that represents undoing of past actions. We use α, β to identify
actions which are either from A or AK. It will be useful to consider sequences
of actions or past actions, namely the elements of (A∪AK)∗, which are ranged
over by s, s′ and sequences of purely past actions, namely the elements of AK∗,
which are ranged over by t, t′. The empty sequence is denoted by ǫ and α : s is
the sequence with the head α and the tail s.

We shall also use two sets of auxiliary action labels, namely the set (A) =
{(a) | a ∈ A}, and its product with the set of keys, namely (A)K.

We now define a Calculus of Covalent Bonding, or CCB for sort. The syntax
is given below, where f : A → A. We have a set of process identifiers (constants)
PI, with typical elements S, T , which contains the deadlocked process 0. The
set of CCB closed terms is denoted by Proc. We shall refer to closed terms as
processes, and let P,Q,R to range over processes. Each process identifier S has

a defining equation S
def
= P .

P ::= S | (s; b).P | P | Q | P \L | P [f ]

We have a prefixing operator (s; b).P , where s is a non-empty sequence of actions
or past actions. The actions in s, which have not happened yet, can happen in
any order. The action b is a weak action in WA and it can only happen after
all actions in s have taken place. Performing b then forces undoing one of the
past actions in s (using the concert rule in Figure 4). The action after the ; in
(s; b).P can be omitted, in which case the prefixing is simply (s).P , and is the
prefixing in [16]. In this form, one of the actions in s may be a weak action from
WA. If s is a single element sequence, then the action is a strong action in SA
and the prefixing operator is the prefixing of CCS [11]. We often omit trailing
0s so, for example, (s).0 is written as (s). All actions in s in (s; b).P are strong
actions (in SA).

P | Q represents processes P and Q which can perform actions or reverse
actions on their own, or which can interact with each other according to a com-
munication function γ (much like in ACP [1]). Or, they can perform a pair of
the so-called concerted actions, which is the new feature of our calculus. We also
have the usual restriction (encapsulation) operator \L, where L is a set of labels,
and the relabelling operator [f ].

The forward and reverse SOS rules for CCB are in Figures 2-5, where the
rules in Figures 2-3 are influenced by [13]. Since we do not use the relabelling
operator in the systems modelled in this paper, we omit all SOS rules for [f ].
Note that the reverse rules in Figure 3 are simply the symmetric versions of the
corresponding forward rules.

We use two predicates, std(P ) : P(Proc) and fsh[m](P ) : P(K × Proc) in
our SOS rules. They are defined in Figure 1. Two further auxiliary functions,
k(i) : (A∪AK)∗ → P(K) and keys(P ) : Proc → P(K), are also used. The function
k() is defined as follows: k(ǫ) = ∅; k(α : s) = {l} ∪ k(s) if α = a[l], a ∈ A, l ∈ K;
and k(α : s) = k(s) if α ∈ A. The function keys() is defined as keys(0) = ∅;

keys(S) = keys(P ) if S
def
= P ; keys((s; b).P ) = k(s)∪k(b)∪keys(P ); keys(P | Q) =
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std(0)
;
std(P )

std(S)
S

def
= P

k(s) = ∅ std(P )

std((s; b).P )

std(P ) std(Q)

std(P | Q)

std(P )

std(P \ L)

fsh[m](0)

fsh[m](P )

fsh[m](S)
S

def
= P

m /∈ k(s) m 6= n fsh[m](P )

fsh[m]((s; b[n]).P )

m /∈ k(s) fsh[m](P )

fsh[m]((s; b).P )

fsh[m](P ) fsh[m](Q)

fsh[m](P | Q)

fsh[m](P )

fsh[m](P \ L)

Fig. 1. Predicates std and fsh

act1
std(X) fsh[k](s)

(s, a; b).X
a[k]
−−→ (s, a[k]; b).X

act2
X

a[k]
−−→ X ′

fsh[k](t)

(t; b).X
a[k]
−−→ (t; b).X ′

par
X

a[k]
−−→ X ′

fsh[k](Y )

X | Y
a[k]
−−→ X ′ | Y

com
X

a[k]
−−→ X ′ Y

b[k]
−−→ Y ′

X | Y
c[k]
−−→ X ′ | Y ′

γ(a, b) = c

res
X

a[k]
−−→ X ′

X\L
a[k]
−−→ X ′\L

a /∈ L con
X

a[k]
−−→ X ′

S
a[k]
−−→ X ′

S
def
= X

Fig. 2. Forward SOS rules

keys(P )∪ keys(Q); and keys(P\L) = keys(P ). Informally keys(P ) associates with
each P the set of its keys. A process P is standard, written std(P ), if it contains
no past actions. A key n is fresh in Q, written fsh[n](Q), if n is not used in Q.
We extend the notion of fresh keys to the sequences of actions and past actions
s and t via the function k().

The semantics of CCB is given by the labelled transition system (lts),

(Proc, L,→:⊆ Proc× L× Proc)

where the set of action labels L is AK∪AK ∪ (AK×AK): it contains the pairs
of concerted actions AK×AK (see Figure 4) as well as actions and past actions.
The transition relation → is the least relation defined by our SOS rules and
reduction rules in Definition 2.

Figure 4 contains the rule concert that defines when a pair of concerted
actions takes place. We also have two auxiliary rules aux1 and aux2 which define
the auxiliary transition relations needed in the concert rule. Note that aux1 and
aux2 define transitions with the auxiliary labels (b)[k] for all (b) ∈ A and k ∈ K.
Overall, transitions are labelled with a[k] ∈ AK, or with b[l] ∈ AK, or with
concerted pairs {a[k], b[l]}. Note that the concert rule uses lookahead [17].
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rev act1
std(X) fsh[k](s)

(s, a[k]; b).X
a[k]
−−→ (s, a; b).X

rev act2
X

a[k]
−−→ X ′

fsh[k](t)

(t; b).X
a[k]
−−→ (t; b).X ′

rev par
X

a[k]
−−→ X ′

fsh[k](Y )

X | Y
a[k]
−−→ X ′ | Y

rev com
X

a[k]
−−→ X ′ Y

b[k]
−−→ Y ′

X | Y
c[k]
−−→ X ′ | Y ′

γ(a, b) = c

rev res
X

a[k]
−−→ X ′

X\L
a[k]
−−→ X ′\L

a /∈ L rev con
X

a[k]
−−→ X ′

X
a[k]
−−→ S

S
def
= X ′

Fig. 3. Reverse SOS rules

aux1
std(X) fsh[k](t)

(t; b).X
(b)[k]
−−−→ (t; b[k]).X

aux2
X

(b)[k]
−−−→ X ′

fsh[k](t)

(t;a).X
(b)[k]
−−−→ (t; a).X ′

concert
X

(a)[k]
−−−→ X ′ X ′ b[l]

−−→ X ′′ Y
α[k]
−−→ Y ′ Y ′ d[l]

−−→ Y ′′

X | Y
{e[k],f[l]}
−−−−−−→ X ′′ | Y ′′

concert act
X

{a[k],b[l]}
−−−−−−→ X ′

fsh[k](t)

(t;a).X
{a[k],b[l]}
−−−−−−→ (t; a).X ′

concert par
X

{a[k],b[l]}
−−−−−−→ X ′

fsh[k](Y )

X | Y
{a[k],b[l]}
−−−−−−→ X ′ | Y

concert res
X

{a[k],b[l]}
−−−−−−→ X ′

X\L
{a[k],b[l]}
−−−−−−→ X ′\L

Fig. 4. SOS rules for concerted transitions. Rule concert applies if 1. α is c or (c) and
γ(a, c) = e for some c ∈ A, and 2. γ(b, d) = f . Rule concert res applies if a, b /∈ L∪ (L).

We also need a reduction relation to define promotion of actions. First we
define free names of processes.

Definition 1. Function fn, with fn : Proc → P(K), is defined as follows: fn(0) =

∅, fn(S) = fn(P ) if S
def
= P , fn((α : s; b).P ) = {α} ∪ fn(s; b).P ), fn((a; b).P ) =

{a, b} ∪ fn(P ), fn(P | Q) = fn(P ) ∪ fn(Q) and fn(P \L) = fn(P )\L.

Definition 2. The reduction relation ⇒ is the smallest reflexive and transitive
binary relation that satisfies the following rules: (red1) P | Q ⇒ Q | P , (red2)
P | (Q | R) ⇒ (P | Q) | R, (red3) (P | Q) | R ⇒ P | (Q | R), (red4) P | 0 ⇒ P ,
(red5) (P | Q)\L ⇒ P\L | Q if fn(Q) ∩ L = ∅, (red6) P\L | Q ⇒ (P | Q)\L
if fn(Q) ∩ L = ∅, (red7) (s; b).P\(s′; b).P if s′ is a permutation of s, (prom)
(a : t; b[k]) ⇒ (a[k] : t; b) if a ∈ SA, b ∈ WA, (move) (a : b[k] : s) ⇒ (a[k] : b : s)
if a ∈ SA, b ∈ WA, where t ∈ AK∗ and s ∈ (A ∪AK)∗.
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sc
X ⇒∗ Y Y

µ
→ Y ′ Y ′ ⇒∗ X ′

X
µ
→ X ′

rev sc
X ⇒∗ Y Y

µ

→ Y ′ Y ′ ⇒∗ X ′

X
µ

→ X ′

Fig. 5. Structural congruence rules

We have two promotion rules in Definition 2. The rule prom promotes a weak
bond to a strong bond. Since weak bonds are only temporary they get replaced
by bonds on strong actions as soon as these become available. In more detail,
after a bond is created on the weak action b another bond is broken at the
same location involving a strong action, here a. This pair of concerted actions
{b[k], a[l]}, for some l, results in (a : t; b[k]), which is subjected immediately to
bond promotion from a weak b to a strong a, giving us (a[k] : t; b). Now weak b
can bond again. We have another rule move which promotes correspondingly a
weak bond b to a strong a. In order to model what happens in chemical reactions
more faithfully, we assume that prom and move are used as soon as they becomes
applicable. We also have the usual structural congruence rules (sc and rev sc) in
Figure 5, where µ ∈ AK ∪AK ∪ (AK×AK), which combine potentially several
reductions (including prom reductions) with transitions.

Definition 3. A process P is consistent if std(P ) or Q →∗ P for some process
Q such that std(Q).

Example 1. Consider the process (a; b) | a | b with γ(a, a) = c and γ(b, b) = d.
After the initial synchronisation of actions a, which produces the transition c[1],
we have a transition with a pair of concerted actions by rule concert in Figure 4

(a[1]; b) | a[1] | b
{d[2],c[1]}
−−−−−−→ (a; b[2]) | a | b[2]

since (a[1]; b)
(b[2])
−−−→ (a[1]; b[2])

a[1]
−−→ (a; b[2]) and a[1] | b

b[2]
−−→ a[1] | b[2]

a[1]
−−→

a | b[2].

Example 2. Consider (a[1]; b) | (a[1]; b) | e with γ(a, a) = c and γ(b, b) = d. We
clearly have the following pair of concerted actions

(a[1]; b) | (a[1]; b) | e
{d[2],c[1]}
−−−−−−→ (a; b[2]) | (a; b[2]) | e.

There are processes with weak actions that can potentially communicate but
there are no concerted actions due to our SOS rules:

Example 3. Consider (a[1]; b) | (e[2]; b) | (a[1], e[2]) with γ(a, a) = c and γ(b, b) =

d. It cannot perform any concerted actions: Although (a[1]; b)
(b)[l]
−−−→

a[1]
−−→ (a; b[l]),

for any l different from 1 and 2, but (e[2]; b) | (a[1], e[2]) cannot perform the (b[l])
transition since there are no SOS rules for parallel composition and auxiliary
actions (b). This forces us to treat (a[1]; b) and (e[2]; b) as X and Y in the
concert rule, respectively, and we notice that we cannot undo a communication
on a or e.
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Example 4. The transition (a[1]; b) | a[1] | b
{d[2],c[1]}
−−−−−−→ (a; b[2]) | a | b[2] from

Example 1 is followed by the application of the reduction rule prom that moves
the bond 2 from the weak b to the strong a:

(a; b[2]) | a | b[2] ⇒ (a[2]; b) | a | b[2]

As a result, we can bond on the weak b again and, importantly, the a[2] to
b[2] bond is irreversible as γ(a, b) is undefined. Note that reaching this bond by
computing forwards alone is not possible.

3 Properties of CCB

In this section we establish some properties of the lts for CCB. We start by
showing the expected properties of keys, namely that when an action takes place
it uses a fresh key, and when a past action is undone its key is removed from the
resulting process. We also show that the reverse part of the transition relation
inverts the forward part.

Proposition 1. Let P be consistent. Then

1. If P
a[k]
−−→ Q then k /∈ keys(P ) and keys(Q) = keys(P ) ∪ {k} for all Q.

2. If P
a[k]
−−→ Q then k ∈ keys(P ) and keys(Q) = keys(P ) \ {k} for all Q.

3. P
a[k]
−−→ P ′ if and only if P ′ a[k]

−−→ P for all P ′.

Next, we introduce some notation. We define a new transition relation 7−→

by P
a[k]
7−→ Q if P

a[k]
−−→ Q or P

a[k]
−−→ Q. Process P is called the source and Q

the target of P
a[k]
7−→ Q. We will use t, t′, t1, . . . to denote transitions, for example

t : P
a[k]
7−→ Q. Two 7−→ transitions are coinitial if they have the same source, and

they are cofinal if their targets are identical.
We define when two transitions are concurrent.

Definition 4. Two coinitial transitions P
a[k]
7−→ P ′ and P

b[l]
7−→ P ′′ are concurrent

if and only if there exists M 6= P such that P ′ b[l]
7−→ M and P ′′ a[k]

7−→ M .

Note that two concurrent transitions are coinitial and, together with the two
transitions (with the target M) required by Definition 4, they form a “diamond”
structure with the nodes P, P ′, P ′′ and M .

When transitions in Definition 4 are forward, we may not be able to complete
the diamond as the following example shows. In such case, we say that the

transitions are in conflict. Consider P
def
= (a).0 | (b).0 | (b).0 with γ(a, b) = c.

The two coinitial transitions below are in conflict:

(a).0 | (b).0 | (b).0
c[1]
−−→ (a[1]).0 | (b[1]).0 | (b).0

(a).0 | (b).0 | (b).0
c[2]
−−→ (a[2]).0 | (b).0 | (b[2]).0

However, coinitial reverse transitions are concurrent:
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actf
(a : s).X

a
−→f (s).X

parf
X

a
−→f X ′

X | Y
a
−→f X ′ | Y

comf

X
a
−→f X ′ Y

b
−→f Y ′

X | Y
c
−→f X ′ | Y ′

γ(a, b) = c esf
X

a
−→f X ′

X\L
a
−→f X ′\L

a /∈ L

conf
X

a
−→f X ′

S
a
−→f X ′

S
def
= X sc

X ⇒∗ Y Y
a
→f Y ′ Y ′ ⇒∗ X ′

X
a
→f X ′

Fig. 6. Syntax and SOS rules for CCBf .

Proposition 2 (Reverse Diamond). Let P be a consistent process and let

t′ : P
a[k]
−−→ P ′ and t′′ : P

b[l]
−−→ P ′′ with l 6= k. Then t′ and t′′ are concurrent.

Coinitial forward transitions are concurrent if they result in cofinal compu-
tations:

Proposition 3 (Forward Diamond). If P is a consistent process and t1 ≡

P
a[k]
−−→ P ′, t2 ≡ P

b[l]
−−→ P ′′, with l 6= k, and P ′ →∗ T and P ′′ →∗ T , for some

T , then there is M such that P ′ b[l]
−−→ M , P ′′ a[k]

−−→ M and M →∗ T .

3.1 CCB without weak actions

We now discuss the main properties of the sub-calculus of CCB that uses the
simplified form of prefixing (s).P : namely without a weak action b following ; in
(s; b).P . We call this calculus CCBs. Its SOS rules are as for CCB except that
the rules in Figure 4 do not apply as there are no weak actions. We shall also
consider the forward-only version of CCBs called CCBf . The syntax of CCBf

is P ::= S | (s).P | P | Q | P \L and the SOS rules are given in Figure 6
(relabelling is not included); we also have the reduction rules from Definition 2
which, together with rules in Figure 6, generate the transition relation −→f for
CCBf . Note that we do not record past actions (actf rule); hence CCBf is
similar to the core of ACP. We note that CCBs is different from CCSK [12,13]
as it uses multiset prefixing and ACP-like communication.

We show firstly that → for CCBs is essentially conservative over −→f . A
process of CCBs is converted to a CCBf process by “pruning” past actions:

Definition 5. The pruning map π : ProcCCBs
→ ProcCCBf

is defined as follows,
where t ∈ AK∗ and s ∈ A∗:

π(0) = 0 π((s, t).P ) = (s).π(P ) π((t).P ) = π(P )

π(P | Q) = π(P ) | π(Q) π(P \ L) = π(P ) \ L π(S) = π(P ) if S
def
= P
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Theorem 1 (Conservation). Let P ∈ ProcCCBs
.

1. If P
µ[k]
−−→ Q then π(P )

µ
−→f π(Q).

2. If π(P )
µ
−→f Q, then for any k ∈ K\keys(P ) there is Q′ such that P

µ[k]
−−→ Q′

and π(Q′) = Q.

We now consider the causal consistency property [4] in CCBs. We define when
a set of keys is a cause for another key:

Definition 6. The set of causes of a key k in P is defined as follows:

cau(0, k) = ∅ cau(P | Q, k) = cau(P, k) ∪ cau(Q, k)
cau((s).P, k) = k(s) ∪ cau(P, k) if k ∈ keys(P ) cau((µ[k] : s).P, k) = ∅

cau((s).P, k) = ∅ if k /∈ keys(P ) cau(S) = cau(P ) if S
def
= P

cau(P \L, k) = cau(P, k)

If one of two coinitial transitions is forward and the other reverse, either they
are concurrent or the forward transition depends causally on the reverse one.
The following result holds in the full calculus CCB:

Proposition 4. If t1 ≡ P
µ[k]
−−→ P ′ and t2 ≡ P

ν[l]
−−→ P ′′, then either t1 and t2

are concurrent or k ∈ cau(P ′′, l).

We introduce a trace: a sequence of pairwise composable forward and reverse
transitions over CCBs. Traces are ranged over by σ, σ′, σ1, . . .. Two transitions
are composable if the target of the first transition is the source of the second
transition. The composition of transitions is denoted by ‘;’. We denote the reverse
transition corresponding to a forward transition t (and the forward transition
corresponding to a reverse transition t) as t•. Similarly to denoting reverse tran-
sitions by •, we denote the reverse trace of σ as σ•. The empty trace with the
source P is written as ǫP . We can now define causal equivalence between traces.

Definition 7. Causally equivalent traces are defined by the least equivalence
relation ≍ which is closed under composition and obeys the following rules,

where t1 is P
a[k]
7−→ Q, t2 is P

b[l]
7−→ R, d1 is Q

b[l]
7−→ S and d2 is R

a[k]
7−→ S:

t1; d1 ≍ t2; d2 t; t• ≍ ǫsource(t) t•; t ≍ ǫtarget(t)

The first rule in Definition 7 states that the concurrent transitions t1 and t2
are causally independent, hence they can happen in any order. The trace t1; d1
forms a diamond with t2; d2, so the traces are causally equivalent. The remaining
rules state that doing a transition and its reverse version is the same as doing
nothing.

The next two results are needed to prove causal consistency for CCBs; they
follow closely [4]. The first states that any computation has a causally equivalent
version in which we first compute in reverse for a while and then we only compute
forwards. The second result says that a trace which has a forward-only coinitial
and cofinal and causally equivalent trace can always be shortened to a forward-
only trace. Then, we have the second important result for CCBs.
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Proposition 5 (Rearrangement). If σ is a trace then there exist forward

traces σ1 and σ2 such that σ ≍ σ•
1 ;σ2.

Proposition 6 (Shortening). If σ1 and σ2 are coinitial and cofinal traces,

with σ2 forward, then there exists a forward trace σ′
1 of length at most that of σ1

such that σ′
1 ≍ σ2.

Theorem 2 (Causal consistency). Let σ1 and σ2 be traces. Then σ1 ≍ σ2 if

and only if σ1 and σ2 are coinitial and cofinal.

One of the consequences of causal consistency for sub-calculus CCBs concerns
reachability: any state that can be reached from a standard process during an ar-
bitrary computation can be reached by computing forwards alone. This property
is not valid in the full calculus CCB as can be seen in the Introduction and in
Example 4. The next section explores some properties of concerted transitions.

3.2 Concerted transitions

The properties of keys corresponding to those in parts 1 and 2 of Proposition 1
hold also for the concerted transitions in CCB.

Proposition 7. Let P be consistent. If P
{µ[k],ν[l]}
−−−−−−→ Q then k /∈ keys(P ),

l ∈ keys(P ) and keys(Q) = keys(P ) ∪ {k} \ {l} for all Q.

The property corresponding to part 3 of Proposition 1, namely P
{µ[k],ν[l]}
−−−−−−→

P ′ if and only if P ′
{ν[l],µ[k]}
−−−−−−→ P does not hold in general but only in certain

circumstances. Consider (a[k]; b).Q | R and c, d such that γ(a, c) = d = γ(b, c)

with R
c[l]
−−→ R′ and R′ c[k]

−−→ R′′. We obtain, by concert and prom rules,

(a[k]; b).Q | R
{d[l],d[k]}
−−−−−−→ (a; b[l]).Q | R′′ ⇒ (a[l]; b).Q | R′′

Since R′′ c[k]
−−→ R′ c[l]

−−→ R, we get, again by concert and prom rules

(a[l]; b).Q | R′′ {d[k],d[l]}
−−−−−−→ (a; b[l]).Q | R ⇒ (a[k]; b).Q | R

This gives us the following result:

Proposition 8. Consider (a[k]; b).Q for any Q and c, d such that γ(a, c) = d =

γ(b, c). There exist R,S and l such that (a[k]; b).Q | R
{d[l],d[k]}
−−−−−−→ S if and only

if S
{d[k],d[l]}
−−−−−−→ (a[k]; b).Q | R.
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4 The hydration of formaldehyde in water

In this section we model the hydration of formaldehyde in an aqueous solution.
Formaldehyde is a good preservative and is well known for its use in preserv-
ing specimen samples. It also serves as an important building block in many
industrial processes and is therefore produced in large quantities. The reaction
is shown in Figure 7: two water molecules and formaldehyde are on the left and
the resulting compound, methanediol, and one molecule of water is on the right.
Note that the carbon atom is not shown in line with a common convention. It
resides at the point where the lines from the oxygen and the hydrogens meet.

O

H

H H

H

O

HH

O H

HH

O
+

O
–

H H

O
–

H

O

H

H
H

H

H

H

H

O
+

O

H

H

+ + + + +

4321

OHOH HO

Fig. 7. The most common path through hydration of formaldehyde

The carbon in the formaldehyde has a positive charge and the oxygen in the
water is attracted by the carbon and forms a bond to the carbon. This bond
is formed out of the electrons of one of the lone pairs of the oxygen. Since the
carbon cannot have more than four bonds this reaction is compensated by the
double bond in the formaldehyde becoming a single bond and the electrons from
the double bond forming a lone pair on the oxygen (which now has three lone
pairs). These movements are concerted, namely they happen together without
a stable intermediate state and cannot be separated. The resulting intermediate
(denoted by 2 in Figure 7) has one oxygen which is negatively charged, whereas
the other oxygen is positively charged. The intermediate 2 abstracts one of the
hydrogens to the positively charged oxygen. This leads to the intermediate 3 and
a H3O molecule, a water with and additional hydrogen and a positively charged
oxygen. One of these hydrogens can be re-donated to the negatively charged
oxygen. We then get the final products: methanediol and a molecule of water.

4.1 The most common path through the reaction

We shall represent the formaldehyde molecule and the two water molecules as
appropriate compositions of hydrogen, oxygen and carbon. We use our general
prefixing operator, noting that O has no weak action:

H
def
= (h; p).H ′ O

def
= (o, o, n).O′ C

def
= (c, c, c, c; p).C′

Carbon has four strong actions c, representing the potential for four covalent
bonds, and a weak action p, standing for a positive partial charge. The oxygen is
modelled as a flexible element with up to 3 bonds. The action n represents the
potential for a negative partial charge. The hydrogen has one strong bond h and
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one weak bond p. We employ subscripts to denote individual copies of actions
and atoms. The synchronisation function is defined as follows: γ(ci, hj) = cihj for
i ∈ {1, . . . , 4} and j ∈ {1, . . . , 6}; γ(ci, n) = cin for i ∈ {1, . . . , 4}; γ(hi, n) = hin
and γ(hi, oj) = hioj for i, j ∈ {1, . . . , 6}; and γ(n, p) = np.

The three molecules of the reaction are placed in parallel: CH2O | H2O | H2O.
Each molecule is a parallel composition of its atoms, and we use restriction to
force the atoms to bond together (and in some cases to stay bonded). We also
restrict actions n, p so that they can only happen together. The reaction starts
from the following initial configuration, where keys 1, . . . , 8 specify the bonds
existing initially among the atoms of formaldehyde and the two waters.

(

(c1[1], c2[2], c3[3], c4[4]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 | (o1[3], o2[4], n).O

′
1

| (h3[5]; p).H
′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3

)

\ L

We have grouped all restricted actions at the outer-most level and L is {c1, c2, c3,
c4, h1, h2, h3, h4, h5, h6, o1, o2, o3, o4, o5, o6, n, p, c1h1, c2h2}. Apart from the re-
strictions of the appropriate versions of the ci, oj and hk actions, we also restrict
cihi for i ∈ {1, 2}. It prevents breaking any of the bonds between C1 and its
hydrogens H1, H2. This serves two purposes. Firstly, it makes sure that once we
have done the p action of the carbon, we will break one of the bonds between the
carbon and the oxygen. This is justified since in reality it is one of the oxygen
bonds which is broken. Secondly, it also prevents O2 or O3 from abstracting H1

or H2 from the carbon.
We now model the reactions in Figure 7. The first step is the n, p reaction

between C1 and O2 or O3. There are other n, p reactions that are allowed by our
model: we describe them in Section 4.2. We assume that O2 bonds with C1 with
key 9, followed immediately by breaking of the bond 3 or 4. Note that breaking
of 1 or 2 is not possible because of the restriction on breaking c1h1 and c2h2.
Without a loss of generality we break bond 4. These two partial reactions give
us a concerted transition: we create the bond np[9] and break the bond c4o2[4]:

{np[9],c4o2[4]}
−−−−−−−−−→

(

(c1[1], c2[2], c3[3], c4; p[9]).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 |

(o1[3], o2, n).O
′
1 | (h3[5]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n[9]).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3

)

\ L

Next, we promote the bond 9 of the carbon on a weak p to a stronger bond on
c4, which has become available. Using prom in Definition 2 we obtain

⇒
(

(c1[1], c2[2], c3[3], c4[9]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 | (o1[3], o2, n).O

′
1

| (h3[5]; p).H
′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n[9]).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3

)

\ L

We note that O1 is now negatively charged (it has only one bond), but we do
not need to consider it to get our desired result. The next step is to form a bond
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between O3 and either H3 or H4. We bond with H3 with key 10 and break the
bond 5, producing a pair of concerted actions. We then promote a weak bond 9
on n in O2 using rule move from Definition 2 to a strong bond on o3 which has
become available. Also, we promote a weak bond 10 in H3 to a strong bond on
h3, and, by the structural congruence rule in Figure 5, we derive the transition

{np[10],h3o3[5]}
−−−−−−−−−−→

(

(c1[1], c2[2], c3[3], c4[9]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 |

(o1[3], o2, n).O
′
1 | (h3[10]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[9], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n[10]).O

′
3

)

\ L.

The next step is a proton transfer from O3 to O1. We transfer H5, but we could
have usedH6 orH3 since they all have the p action ready. Performing the transfer
of H5 from O3 to O1 (and breaking the bond 7), we obtain

{np[11],h5o5[7]}
−−−−−−−−−−→

(

(c1[1], c2[2], c3[3], c4[9]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 |

(o1[3], o2, n[11]).O
′
1 | (h3[10]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[9], o4[6], n).O

′
2

| (h5; p[11]).H
′
5 | (h6[8]; p).H

′
6 | (o5, o6[8], n[10]).O

′
3

)

\ L

and promoting the bond 10 in O3 by the rule move and the bond 11 in H5 by
rule prom we obtain the final products of the reaction:

(

(c1[1], c2[2], c3[3], c4[9]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 | (o1[3], o2[11], n).O

′
1

| (h3[10]; p).H
′
3 | (h4[6]; p).H

′
4 | (o3[9], o4[6], n).O

′
2

| (h5[11]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[10], o6[8], n).O

′
3

)

\ L

We have methanediol CH2(OH)2 and a molecule of water (oxygen O3 plus hydro-
gens H6 and H3). Note that the n, p actions are ready again and all the existing
bonds are on strong actions. So we can now reverse the reaction by getting O3

to abstract a hydrogen from H4 or H5.
Finally, let us inspect the bonds with keys 4, 5 and 7 which are broken

during this sequence of reactions. These bonds were formed prior to the reaction
starting. They are broken as a result of application of our new general prefixing
operator. This operator, in conjunction with the driving forces of the partial
charges, guides the reaction without relying on any sort of global memory or
global control. This is one the main advantages of our approach.

4.2 Other paths through the reaction

There are two other less common ways in which the hydration of formaldehyde in
water can happen. They require an additional molecule of water. The three paths
through the reaction are shown in Figure 8, now with three waters. The path
in Figure 7 is from FA | W | W | W via i2 | W | W and i3 | H3O | W where FA
stands for formaldehyde, W is water, i2 and i3 are the intermediates 2 and 3 in
Figure 7 and MD is methanediol. The other two paths start with an interaction
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{np,c4o2}

{np,h3o3} {np,h5o5}

{np,h3o3}

{np,c4o2}

{np,h5o5}

np,c4o2

{np,h7o7}

{np,h8o8}

FA | W | W | W FA | W | HO | H3O i6 | W | HO | W

i8 | HO | W

MD | HO | H3O

i2 | W | W i3 | H3O | W MD | W | W

Fig. 8. Three paths through hydration of formaldehyde. Communication keys in con-
certed transitions are omitted for clarity. The intermediates i6 and i8 are CH2O

+H and
COH3O

+H2 respectively.

of two water molecules which involves a hydrogen transfer and which leads to
FA | W | HO | H3O. The reaction now branches: either the HO interacts with the
formaldehyde, which takes us to i3 | H3O | W and then we follow the remainder
of the main path, or we can go via a more complicated sequence of reactions.
The H3O interacts with the formaldehyde, then a water molecule attaches and
finally an interaction with HO brings us to the final state. As we can see all the
reactions but one are driven by concerted actions.

We note that in this example the rates of the individual reactions, and the
overall rates achieved through the various paths, vary because of the change
of energy in the products compared to the reactants. We have decided not to
model rates at this stage but rather to concentrate on obtaining all possible valid
reactions. We also do not consider spatial arrangement of molecules.

5 Conclusion

We have introduced a reversible process calculus CCB with a novel prefixing
operator which is inspired by the mechanism of covalent bonding that allows us
to model locally controlled reversibility. We have given the calculus operational
semantics. The new operator permits us to perform pairs of concerted actions,
where the first element of the pair is a creation of a (weak) bond and the second
element is breaking one of the existing bonds. Moreover, our prefixing provides a
purely local control of computation; there is no need for an extensive memory or
global control. We have shown that the sub-calculus CCBs satisfies conservation
and causal consistency, and the full calculus satisfies several diamond properties.
CCB is more expressive than other reversible calculi as it can also model out-
of-causal order computation. We have shown that biochemical reactions with
covalent bonding can be represented naturally and faithfully thanks to our new
prefixing operator and concerted actions transitions.
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