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Abstract. Causal Graph Dynamics extend Cellular Automata to arbi-
trary, bounded-degree, time-varying graphs. The whole graph evolves in
discrete time steps, and this global evolution is required to have a num-
ber of physics-like symmetries: shift-invariance (it acts everywhere the
same) and causality (information has a bounded speed of propagation).
We add a further physics-like symmetry, namely reversibility.
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1 Introduction

Cellular Automata (CA) consist in a Zn grid of identical cells, each of which
may take a state among a finite set Σ. Thus the configurations are in ΣZ

n

.
The state of each cell at time t + 1 is given by applying a fixed local rule f to
the cell and its neighbours, synchronously and homogeneously across space. CA
constitute the most established model of computation that accounts for euclidean
space. They are widely used to model spatially distributed computation (self-
replicating machines, synchronization problems. . . ), as well as a great variety of
multi-agents phenomena (traffic jams, demographics. . . ). But their origin lies in
Physics, where they are commonly used to model waves or particles. And since
small scale physics is understood to be reversible, it was natural to endow them
with another, physics-like symmetry: reversibility. The study of Reversible CA
(RCA) was further motivated by the promise of lower energy consumption in
reversible computation. RCA have turned out to have a beautiful mathematical
theory, which relies on topological and algebraic characterizations in order to
prove that the inverse of a CA is a CA [16]. The other main result is that any
RCA can be expressed as a finite-depth circuits of local reversible permutations
or ‘blocks’ [18,19,12]. If one considers that physics is reversible, this entails that
RCA can indeed be implemented by physically acceptable local mechanisms —
a fact which cannot be seen directly from their local rule Σr → Σ description,
which by definition is not injective.
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Causal Graph Dynamics (CGD) [1,7,4], on the other hand, deal with a
twofold extension of CA. First, the underlying grid is extended to being an
arbitrary – possibly infinite – bounded-degree graph G. Informally, this means
that each vertex of the graph may take a state among a finite set Σ, so that
configurations are in ΣV (G), whereas the edges of the graph represent the local-
ity of the evolution: the next state of a vertex depends only upon the states of
the vertices which are at distance at most k, i.e. in a disk of radius k, for some
fixed integer k. Second, the graph itself is allowed to evolve over time. Infor-
mally, this means that configurations are in the union of ΣV (G) for all possible
bounded-degree graph G, i.e.

⋃
GΣ

V (G). This twofold generalization has led to
a model where the local rule f is applied synchronously and homogeneously on
every possible subdisk of the input graph, thereby producing small patches of the
output graphs, whose union constitutes the output graph. Figure 1 illustrates
the concept of these CA over graphs.

F

ff f

Fig. 1. Informal illustration of Causal Graph Dynamics. The entire graph evolves into
another according to a global function F . But this evolution is causal (information
propagates at a bounded speed) and homogeneous (same causes lead to same effects).
This has been shown to be equivalent to applying a local function f to every subdisk
of the input graphs, producing small output graphs whose union make up the output
graph. In this paper, we take the global approach as the starting point, in order to
prove that the inverse has the same properties. We then prove that there are local,
reversible mechanisms for implementing F .

CGD are motivated by the countless situations in which some agents interact
with their neighbours, leading to a global dynamics in which the notion of who
is next to whom also varies in time (e.g. agents become physically connected, get
to exchange contact details, move around. . . ). Indeed, several existing models
(of physical systems, computer processes, biochemical agents, economical agents,
social networks. . . ) feature such neighbour-to-neighbour interactions with time-
varying neighbourhood, thereby generalizing CA for their specific sake (e.g. self-
reproduction as [27], discrete general relativity à la Regge calculus [24], etc.).
CGD provide a theoretical framework, for these models. Some graph rewriting
models, such as Amalgamated Graph Transformations [10] and Parallel Graph
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Transformations [13,25,26], also work out rigorous ways to apply a local rewrit-
ing rule synchronously throughout a graph, albeit with a different, category-
theory-based perspective, of which the latest and closest instance is [23]. But
the topological approach that we follow and the reversibility question that we
address have not been considered in these works.

Indeed, this paper studies CGD in the reversible regime. Specific examples of
these were described in [15,20]. From a theoretical Computer Science perspective,
the point is therefore to generalize RCA theory to arbitrary, bounded-degree,
time-varying graphs. From this perspective, our main two results consist in the
generalizations of the two above-mentioned fundamental properties of RCA. The
first result states that the inverse of a CGD is also a CGD. This is a non-trivial
problem, for instance [17] implies that the radius of the inverse is unbounded:
there is no computable function h such that for any reversible CGD of radius r,
its inverse has a radius smaller than h(r). The fact that the graph is time-varying
brings up new challenges. This question was first raised in [1,7] by Dowek and one
of the authors, who proposed a first approach — we discuss the way the present
approach differs and finishes to answer this question, throughout the text. The
second result shows that Reversible CGD admit a block representation, i.e. they
can be implemented as a finite-depth circuit of local, reversible gates. This is
a non-trivial problem: the [19] construction seems inapplicable with dynamical
graphs. We manage to apply, after some work, a proof scheme which comes from
Quantum CA theory [6].

From a mathematical perspective, questions related to the bijectivity of CA
over certain classes of graphs (more specifically, whether pre-injectivity implies
surjectivity for Cayley graphs generated by certain groups [14]) have received
quite some attention. This paper on the other hand provides a context in which
to study “bijectivity upon time-varying graphs”. In particular, is it the case
that bijectivity necessarily rigidifies space (i.e. forces the conservation of each
vertex)? From this perspective, our main result is that Reversible CGD preserve
the number of vertices of all, but a finite number of, graphs. Again this question
was first raised in [1,7] by Dowek and one of the authors, who proposed a first
approach in a more stringent setting. We discuss the greater generality of the
present result within the text.

From a theoretical physics perspective, the question whether the reversibility
of small scale physics (quantum mechanics, micro-mechanical), can be reconciled
with the time-varying topology of large scale physics (relativity), is a topic of
debate and constant investigation. This paper provides a toy, discrete, classical
model where reversibility and time-varying topology coexist and interact. But
ultimately, this deep question ought to be addressed in a quantum mechanical
setting. Indeed, just like RCA were precursors to Quantum CA, this work paves
the way for Quantum CGD. Our very recent steps in this direction are available
in Pre-print [3].

This journal paper is based upon two conference proceedings [9,8]. It orga-
nized as follows. After introducing our graph model, and the axiomatic definition
of CGD, in Sections 2 and 3, we prove in Section 4 that invertible CGD conserve
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the number of vertices of almost all graphs. Section 5 then proves that invertible
CGD are reversible. Section 6 provides the block representation of Reversible
CGD. We then conclude.

2 Pointed graph modulo, paths, and operations

Why compactness? There are two main approaches to CA. The one with a local
rule, usually denoted f , is the constructive one, but CA can also be defined in
a more topological way as being exactly the shift-invariant continuous functions
from ΣZ

n

to itself, with respect to a certain metric. Through a compactness
argument, the two approaches are equivalent. This topological approach carries
through to CA over graphs.
But for this purpose, one has to make the set of graphs into an appropriate
compact metric space, which can only be done for certain pointed graph modulo
isomorphism—referred to as generalized Cayley graphs in [4]. This is worth the
trouble, as the topological characterization is one of the crucial ingredients to
prove that the inverse of a CGD is a CGD.
A contrario in [1,7], Dowek and one of the authors gave a first formalism ex-
tending of cellular automata to time-varying graphs, whose set of graphs fails
to be a compact metric space, and thus falls just short of achieving a proper
generalisation of the classical topological definition of cellular automata.
Pointed graph modulo. Basically, the pointed graphs modulo isomorphism (or
pointed graphs modulo, for short) are the usual, connected, undirected, possibly
infinite, bounded-degree graphs, but with a few additional twists:

• The set of vertices is at most countable. Each vertex is equipped with ports.
The set π of available ports to each vertex is finite.

• The vertices are connected through their ports, à la [11]: an edge is an
unordered pair {u:a, v:b}, where u, v are vertices and a, b ∈ π are ports.
Each port is used at most once: if both {u:a, v:b} and {u:a,w:c} are edges,
then v = w and b = c. As a consequence the degree of the graph is bounded
by |π|, which is crucial for compactness. We shall consider connected graphs
only.

• The graphs are rooted i.e., there is a privileged pointed vertex playing the
role of an origin, so that any vertex can be referred to relative to the origin,
via a sequence of ports that lead to it.

• The graphs are considered modulo isomorphism, so that only the relative
position of the vertices can matter.

• The vertices and edges are given labels taken in finite sets Σ and ∆ re-
spectively, so that they may carry an internal state just like the cells of a
CA.

• These labelling functions are partial, so that we may express our partial
knowledge about part of a graph.

The set of all pointed graphs modulo (see Figure 2(c)) having ports π, vertex
labels Σ and edge labels ∆ is denoted XΣ,∆,π. A thorough formalization of
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pointed graphs modulo was given in [4], and is reproduced in Appendix A.1 for
the sake of mathematical riguour. For the sake of this paper, however, Figure 2
summarizes what there is to know about the definition of pointed graphs modulo.

1

2

3

4

:a
:b

:b
:c

:c

:b

:a

:b

(a)

1

2

3

4

:a
:b

:b
:c

:c

:b

:a

:b

(b)

:a
:b

:b
:c

:c

:b

:a

:b

(c)

Fig. 2. The different types of graphs. (a) A graph G. (b) A pointed graph (G, 1). (c) A
pointed graph modulo. The latter is anonymous: vertices have no names and can only
be distinguished using the graph structure.

Paths and vertices. Since we are considering pointed graphs modulo isomor-
phism, vertices no longer have a unique identifier, which may seem impractical
when it comes to designating a vertex. Two elements come to our rescue. First,
these graphs are pointed, thereby providing an origin. Second, the vertices are
connected through ports, so that each vertex can tell between its different neigh-
bours. It follows that any vertex of the graph can be designated by a sequence
of ports in (π2)∗ that lead from the origin to this vertex. For instance, say two
vertices are designated by paths u and v, respectively. Suppose there is an edge
e = {u:a, v:b}. Then, v can be designated by the path u.ab, where “.” stands for
the word concatenation. The origin is designated by ε. A thorough formaliza-
tion of paths, path equivalence, and naming conventions was given in [4], and
is reproduced in Appendix A.2 for the sake of mathematical riguour. Given a
pointed graph modulo X ∈ XΣ,∆,π, we write v ∈ X instead of v ∈ V (X).

Operations over pointed graphs modulo. Given a pointed graph modulo X, Xr

denotes the subdisk of radius r around the pointer. The pointer of X can be
moved along a path u, leading to Y = Xu. The pointer can be moved back
where it was before, leading to X = Yu, where u denotes the reverse of the path
u. We use the notation Xr

u for (Xu)r i.e., first the pointer is moved along u,
then the subdisk of radius r is taken. A thorough formalization of these basic
operations over pointed graphs modulo was given in [4], and is reproduced in
Appendix A.3 for the sake of mathematical riguour. For the sake of this paper,
however, Figure 3 illustrates the operations.

Operations over graphs non-modulo. Sometimes we still need to manipulate usual
graphs, where vertices do have names, typically in order to perform unions of
two graphs in a way that specifies their overlap. In order to be able to make
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(1a)

:a

:a :c

:a

:b

:b

:d

:a

:b

:a

:b

:c

:c

:b

:a

:c

(1b)

:a

:a :c

:a

:b

:b

:d

:a

(2a)

:a
:b

:c

:b

:b

:c

:a
:c

(2b)

:a
:b

:c

:b

:b

:c

:a
:c

(2c)

:a
:b

:c

:b

:b

:c

:a
:c

Fig. 3. Operations over pointed graphs modulo. (1) From X to X0: taking the subdisk
of radius 0. The neighbours of radius r are those vertices which can be reached in r
steps starting from the origin. But the disk of radius r, written Xr, is the subgraph
induced by the neighbours of radius r+ 1, with labellings restricted to the neighbours
of radius r and the edges between them. (2a) A pointed graph modulo X. (2b) Xab

the pointed graph modulo X shifted by ab. (2c) Xbc.ac the pointed graph modulo X
shifted by bc.ac, which also corresponds to the graph Xab shifted by cb.ac. Shifting this
last graph by cb.ac = ca.bc produces the graph (2b) again.

the union of two graphs, the graphs need to be ‘consistent’, i.e. they must not
disagree on the label of a vertex or an edge, or its connectivity through a given
port. The set of non-modulo graphs with ports π and vertex labels Σ is denoted
GΣ,∆,π. An example of such a graph is represented in Figure 2 (a). We also use
a cannonical naming function G : XΣ,∆,π → GΣ,∆,π naming each vertex of a
graph modulo X by the set of paths that lead to it. Notice that the graph G(X)
still contains the information of the position of the pointed vertex in X as this
is the only vertex having the empty path present in its name. We will also need
an operation u.G that prefixes all the vertex names in G, with u. A thorough
formalization of these basic operations over graphs non-modulo was given in [4],
and is reproduced in Appendix A.4 for the sake of mathematical riguour. For
the sake of this paper, however, Figure 4 summarizes the operations we need.
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ε db

db.acac

ba

ba.bd

:d :b

:a

:c

:b:d

:c

:a

:b:a

:b:a

ab ab.db

ab.db.acab.ac

ε

bd

:d :b

:a

:c

:b:d

:c

:a

:b:a

:b:a

(1)

ab.

ca ε

bdbd.ca

ab

ab.ac

:a :c

:b

:d

:c:a

:d

:b

:a :b

:a :b

ab ab.db

ab.db.acab.ac

ε

bd

:d :b

:a

:c

:b:d

:c

:a

:b:a

:b:a

ca ε

bdbd.ca

ab ab.db

ab.db.caab.ac

:a :c

:b

:d

:c:a

:d

:b

:d :b

:a

:c

:b:d

:c

:a

:a :b

:a :b

(2)

Fig. 4. Operation over graphs non-modulo. (1) A prefixing of a graph by the word ab..
The structure of the graph is preserved, only the names of the vertices are changed.
(2) A graph union. Here the two graphs on the left hand side intersect on vertices ε,
bd, ab and ab.ca. As the two are consistent (e.g. in both graph, vertices ε and ab are
connected along an ab edge) their union can be computed, resulting in the right hand
side graph.
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3 Causal Graph Dynamics and Invertibility

Causal Graph Dynamics. We will now recall the definition of CGD. We reproduce
the topological definition in terms of shift-invariant continuous functions, rather
than a constructive definition based on a local rule f applied synchronously
across space (Figure 1). The two were proved equivalent in [4], but for Reversible
CGD, the axiomatic approach is the right point of departure.

A crucial point in the topological characterization of CGD is the correspon-
dence between the vertices of a pointed graph modulo X, and those of its image
F (X). Indeed, on the one hand it is important to know that a given vertex u ∈ X
has become u′ ∈ F (X), e.g. in order to express shift-invariance F (Xu) = F (X)u′ ,
or to express continuity. But on the other hand since u′ is named relative to the
vertex ε of F (X), its determination requires some knowledge of F (X). Hence
the need for establishing a relation between the vertices of X and those of F (X).

The following analogy provides a useful way of tackling this issue. Say that
we were able to place a white stone on the vertex u ∈ X that we wish to
follow across evolution F . Later, by observing that the white stone is found at
u′ ∈ F (X), we would be able to conclude that u has become u′. This way of
grasping the correspondence between an image vertex and its preimage vertex
is a local, operational notion of an observer moving across the dynamics.

Definition 1 (Dynamics). A dynamics (F,R•) is given by

• a function F : XΣ,∆,π → XΣ,∆,π;
• a map R•, with R• : X 7→ RX and RX : V (X)→ V (F (X)).

Notice that the function RX can be pointwise extended to sets of vertices i.e.,
RX : P(V (X))→ P(V (F (X))) maps S to RX(S) = {RX(u) | u ∈ S}.
The intuition is that RX indicates which vertices {u′, v′, . . .} = RX({u, v, . . .}) ⊆
V (F (X)) will end up being marked as a consequence of {u, v, ...} ⊆ V (X) being
marked. Now, clearly, the set {(X,S) | X ∈ XΣ,∆,π, S ⊆ V (X)} is isomorphic to
XΣ′,∆,π with Σ′ = Σ × {0, 1}. Hence, we can define the function F ′ that maps
(X,S) ∼= X ′ ∈ XΣ′,∆,π to (F (X), RX(S)) ∼= F ′(X ′) ∈ XΣ′,∆,π, and think of a
dynamics as just this function F ′ : XΣ′,∆,π → XΣ′,∆,π.
Next, continuity is the topological way of expressing causality, i.e. bounded speed
of propagation of information:

Definition 2 (Continuity). A dynamics (F,R•) is said to be continuous if
for any X and any m ≥ 0, there exists n ≥ 0 such that for every Y , Xn = Y n

implies both

• F (X)m = F (Y )m.
• domRmX ⊆ V (Xn), domRmY ⊆ V (Y n), and RmX = RmY .

where RmX denotes the partial map obtained as the restriction of RX to the
codomain F (X)m, using the natural inclusion of F (X)m into F (X).

In the F ′ : XΣ′,∆,π → XΣ′,∆,π formalism, the two above conditions are equivalent
to just one: F ′ continuous.
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Lemma 1 (White stone). A dynamics (F,R•) is continuous if and only if its
corresponding F ′ is continuous.

Proof.

∀X ′, ∀m, ∃n /∀Y ′, [X ′
n

= Y ′
n ⇒ F ′(X ′)m = F ′(Y ′)m]

⇔ ∀D, ∀U, ∀X, ∀S ∀m, ∃n /∀Y ′,
[(Xn = Y n = D ∧ Sn = Tn = U)⇒

(F (X)m = F (Y )m = F (D)m) ∧ RmX(S) = RmY (T ) = RmD(U))]

⇔ ∀D, ∀U, ∀X, ∀S ∀m, ∃n /∀Y,
[(Xn = Y n = D ∧ Sn = Tn = U)⇒

(F (X)m = F (Y )m) ∧ RmX(S) = RmY (T ) = RmD(U))

∧ domRmX = V (U) = V (Xn) ∧ domRmY = V (U) = V (Y n)]

⇔ ∀X, ∀m, ∃n /∀Y,
[Xn = Y n ⇒ (F (X)m = F (Y )m)

∧ domRmX = V (Xn) ∧ domRmY = V (Y n) ∧ RmX = RmY ]

Recall that the reason why continuity is the topological way of expressing causal-
ity, is because it turns out to be equivalent to uniform continuity:

Definition 3 (Uniform continuity). A dynamics (F,R•) is said to be uni-
formly continuous if for any m ≥ 0, there exists n ≥ 0 such that for every X,Y ,
Xn = Y n implies both

• F (X)m = F (Y )m.
• domRmX ⊆ V (Xn), domRmY ⊆ V (Y n), and RmX = RmY .

where RmX denotes the partial map obtained as the restriction of RX to the
codomain F (X)m, using the natural inclusion of F (X)m into F (X).

In the F ′ : XΣ′,∆,π → XΣ′,∆,π formalism, the two above conditions are equivalent
to just one: F ′ uniformly continuous.
Recall also that the reason for this equivalence between continuity and uniform
continuity is the compactness of XΣ′,∆,π as a metric space, which allows for a
direct application of Heine’s theorem, as is extensively discussed in [4]. A con-
trario the formalism of [1,7] by Dowek and one of the authors lacked a compact
metric space, and such results had to be reproven by hands.
We now express the fact that the same causes lead to the same effects:

Definition 4 (Shift-invariance). A dynamics (F,R•) is said to be shift-inva-
riant if for every X, u ∈ X, and v ∈ Xu,

• F (Xu) = F (X)RX(u)

• RX(u.v) = RX(u).RXu(v).

The second condition expresses the shift-invariance of R• itself. Notice that
RX(ε) = RX(ε).RX(ε); hence RX(ε) = ε.
Finally we demand that the graphs does not expand in an unbounded manner:
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Definition 5 (Boundedness). A dynamics (F,R•) is said to be bounded if
there exists a bound b such that for any X and any w′ ∈ F (X), there exist
u′ ∈ Im(RX) and v′ ∈ F (X)bu′ such that w′ = u′.v′.

Putting these conditions together yields the topological definition of CGD:

Definition 6 (Causal graph dynamics). A CGD is a shift-invariant, con-
tinuous, bounded dynamics.

Example: inflating grid. An example of CGD is given in Figure 5. In the inflating
grid example, each vertex gives birth to four distinct vertices, such that the
structure of the initial graph is preserved, but inflated. The graph has maximal
degree 4, and set of ports π = {a, b, c, d}, its vertices are labelled black or white.

:a

:d
:c

:b

:a

:c

:c

:a

:d:b :b :d

Fig. 5. The inflating grid example. Each vertex splits into 4 vertices. The structure
of the grid is preserved. For this precise graph, all edges are connected to ports as
stipulated on the pointed vertex (port :a on top, :b on the right, :c on the bottom and
:d on the left).

Invertibility. Invertibility is imposed in the most general and natural fashion.

Definition 7 (Invertible dynamics). A dynamics (F,R•) is said to be in-
vertible if F is a bijection over XΣ,∆,π.

Example: moving head. Figure 6 is an example of invertible CGD. In this exam-
ple, a vertex, representing the head of an automaton, is moving along a path

10



graph, representing a tape. The path graph is built using ab−edges, while the
head is attached using either a cc−edge if it is travelling forward along the
ab−edges, or dd−edges if it is travelling backwards. The transformation can be
completed into a bijection over the entire set of graphs with π = {a, b, c, d}. It
then accounts for several heads, etc. The resulting transformation is continuous,
as the moving heads travel at speed one along the tape, and shift-invariant as it
is possible to build a R• operator verifying the right commutation properties.

:a :b :a :b :a :b
:c
:c

:a :b :a :b :a :b
:c
:c

:a :b :a :b :a :b
:c
:c

(1) (2) (3)

:a :b :a :b :a :b
:c
:c

:a :b :a :b :a :b

:d
:d

:a :b :a :b :a :b

:d
:d(4) (5) (6)

Fig. 6. The moving head example. In this example, a head is attached, via a cc− edge,
to a “tape” formed by ab−edges. It moves forward until it reaches the end of the line.
It then changes the attaching ports to dd and moves backwards. (1) to (6) represent
consecutive configurations.

Example: Turtle dynamics. The turtle dynamics simply oscillates between the
two pointed graphs modulo of degree 1. Figure 8 describes its associated R•
operator.

:a :a

Fig. 7. The turtle example has the two above pointed graphs modulo to oscillate
between one another. The two vertices of the RHS are shift-equivalent, i.e. pointing
the graph upon one or the other does not change the graph.

Restricting CGD. . . or extending CA? Notice that, because CGD are strictly
more powerful than CA, it can be a tricky task to associate to a given CA
a single, canonical CGD. Consider, for instance, a one-dimensional CA with
internal state in a finite set Σ. The natural set of graphs to consider would be
the complete set XΣ,∆,π, with π = {a, b}. But in this natural set not all graphs
can be interpreted as CA configurations. In CA configurations each vertex has
degree exactly 2, and each edge is of the form ab. There are two distinct ways
of tackling this issue:
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: 0 :0

X0 F (X0)

RX0

:0 :0

X1 F (X1)

RX1

Fig. 8. The R• operator associated to the turtle dynamics.

– The canonical approach is to work with a restricted CGD, that is no longer
defined on the complete set of graphs XΣ,∆,π, but on a subset of it. If this
subset is characterized by forbidding the occurrence of certain disks, then it
will still be a compact metric space, and theorems of this paper will carry
through, except perhaps that of the block representation. In the specific
case of CA, however, forbidding the occurrence of disk that have non degree
2 vertices and non ab edges amounts to just restricting to CA configura-
tions. Thus, these restricted CGD are just CA, for which we know there are
equivalent theorems [16,19,5]. This approach is canonical since it requires no
additional choice.

– The non-canonical approach is to extend CA to become a fully-defined CGD
over XΣ,∆,π. It is not clear to us at this stage whether this can always be
done whilst perserving invertibility, and keeping labels within Σ. If Σ is
allowed to be extended, then we conjecture that this is possible, via a prior
step of [5]. In any case there are many possible choices for such an extension,
this approach is non-canonical.

4 Invertibility and almost-vertex-preservation

Recall that, in general, CGD are allowed to transform the graph, not only by
changing internal states and edges, but also by creating or deleting vertices.
Since invertibility imposes information-conservation, one may wonder whether
invertible CGD are still allowed to create or delete vertices. They are, as shown
by Figure 7. One notices, however, that the RHS of this example features shift-
equivalent vertices:

Definition 8 (Shift-equivalent vertices). Let X ∈ XΣ,∆,π and let u, v ∈ X.
We say that u and v are shift-equivalent, denoted u ∼X v, if Xu = Xv. A graph
is called asymmetric if it has only trivial (i.e. size one) shift-equivalence classes.

One can show that all the shift-equivalence classes of a pointed graph modulo
have the same size. Intuitively, given two shift-equivalent vertices u, v and a third
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vertex w, since there is a path from u to w, moving from v along the same path
leads to a vertex equivalent to w.

Lemma 2 (Shift-equivalence classes isometry). Let X ∈ XΣ,∆,π be a graph.
If C1 ⊆ V (X) and C2 ⊆ V (X) are two shift-equivalence classes of X, then C1

and C2 have the same cardinality.

Proof. Consider two equivalent and distinct vertices u and v in X. Consider a
path w. The vertices u.w and v.w are distinct and equivalent. More generally,
if we have n equivalent distinct vertices v1, ..., vn, any vertex u = v1.w will be
equivalent to v2.w, ..., vn.w and distinct from all of them, hence all the equiva-
lence classes have the same cardinality. 2

Lemma 3 (Structure of symmetric graphs). Let X ∈ XΣ,∆,π be a sym-
metric graph. Then

X =
⋃
u∈T

u.G

with

– T vertex-transitive.
– V ⊆ V (X) such that ε ∈ V and {u.V }u∈T is a partition of V (X).
– G = G(X0

V ).
– w ∼ w′ if and only if w = u.v, w′ = u′.v, u, u′ ∈ T , and v ∈ G.

Proof. From symmetry there are u 6= v such that Xu = Xv. Write u
6=∼ v. This

entails u.w
6=∼ v.w, and taking w = u we have ε

6=∼ v.u. Call C the equivalence
class of ε.
[Constructing T ]. Let H be a pointed graph non-modulo such that V (H) = C.
We construct its set of edges as follows. First, for every u, v ∈ C we define the
set of straight paths between them to be

S(u, v) = {w ∈ X, |u.w = v ∧ @x, y/x.y = w ∧ u.x ∈ C}.

A path is less than another if it is shorter in length, or equal in length and
smaller lexicographically. s(u, v) is the minimal S(u, v). The left (resp. right) of
a path is the word made of every odd (resp. even) letter.

{u : left(s(u, v)), v : right(s(u, v))} ∈ E(H) ⇔ S(u, v) 6= ∅.

The pointer is at ε. That defines H and T = (̃H, ε), from X and C the equiva-
lence class of ε.

[Vertex transitivity of T] Consider u ∈ C. We can do the above procedure
starting from u and obtain a graph modulo T (u). Since u and ε are symmetric
and since the construction of H does not privilege any vertex, we have that

T (ε) = T (u). By construction we have that T (ε) = (̃H, ε) and T (u) = (̃H,u) =

(̃H, ε)u. Hence, we have that T (ε) = T (ε)u.
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[Constructing G ]. Let v /∈ C,

V =
{
v | ∀u ∈ C, s(ε, v) exists and is smaller than s(u, v)} ∪ {ε}.

Notice that X0
V is connected. Indeed, if w is a vertex along s(ε, v), then w ∈ V .

Let G = G(X0
V ). That defines G from X and C the equivalence class of ε.

Starting from some u in T instead, we would have obtained some V (u) and
some G(u). But notice that u ∈ V (T ) ⇒ u ∈ C ⇒ Xu = X implies V (u) =
u.V . Indeed, v ∈ V (ε) is equivalent to u.v ∈ V (u), because s(ε, v) minimal is
equivalent to s(u, u.v) minimal. Moreover, since for all v ∈ X, Xr

u.v = Xr
v , we

have G(u) = G(X0
V (u)) = G(X0

u.V ) = G(X0
V ) = G.

Moreover, there is always some u ∈ T that has the smallest straight path to v,
therefore every v must belong to some V (u).
Finally, every edge of X has one of its vertices in some V (u), and must therefore
belong to some G(u).
Therefore, altogether

X =
⋃
u∈T

u.G.

[ w ∼ w′ if and only if w = u.v, w′ = u′.v, u, u′ ∈ T , and v ∈ G] Consider
w ∼ w′. Consider u ∈ T such that w ∈ G(u), u′ ∈ T such that w′ ∈ G(u′).
Consider v and b′ the shortest paths equivalent to w and w. By definition, v and
v′ belong to G, and, since w ∼ w′ we have that v = v′. By minimality of v we
have that w = u.v and w′ = u′.v. Conversely if u and u′ are in T and v is in G
then u.v ∼ u′.v by construction of T .

ut

Definition 9 (Asymmetric extension). Given a finite symmetric graph X ∈
XΣ,∆,π, let V be defined as in Lemma 3. We obtain an asymmetric extension
2X by either:

– Choosing a vertex w ∈ V having a free port and connecting an extra vertex
w.e onto it.

– Or choosing vertex w ∈ V that is part of a cycle, removing an edge e of the
cycle w that was connecting w and w′, and adding the two extra vertices w.e
and w′.e, having the same label as the removed edge.

Lemma 4 (Asymetry of asymetric extension). Given a finite symmetric
graph X ∈ XΣ,∆,π, its asymmetric extension 2X is asymmetric, and |2X| ≤
|X|+ 2.

Proof. We will refer to T , V and G of Lemma 3. We call w the vertex of V upon
which edge e is added to take X into 2X.
First we prove that old symmetries are broken by the extension. Symmetries in
X were of the form u.v ∼X u′.v with u, u′ ∈ T , u 6= u′ and v ∈ G. Consider
x = v.u.w, so that u.v.x = w and u′.v.x = u′.u.w. If w had a free port we have
x.e ∈ 2Xu.v but x.e /∈ 2Xu′.v. If w had no free port we have that x.e has no
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further edge e′ 6= e in 2Xu.v, but has a further edge e′ 6= e in 2Xu′.u. In both
cases u.v 6∼2X u′.v.

Second we prove that no new symmetry has been created by the extension.
In X, u.v 6∼X u′.v′ implied the existence of two witness paths x, y ∈ X such that
at least one of the following holds

(i) The label of the vertex reached by path x is different in Xu.v from what it
is in Xu′.v′ .

(ii) The label of the last edge borrowed by path x is different in Xu.v from what
it is in Xu′.v′ .

(iii) The path x has an edge f in Xu.v but not Xu′.v′ , or the converse.
(iv) The paths x and y do not reach the same vertex in Xu.v but they do in

Xu′.v′ , or the converse.

If w is in a cycle, the witness paths can be chosen so that w is not a strict prefix
of x, y, which we do in order to garantee that x, y ∈ 2X. The existence of x as
in (i) and (ii) is clearly unaffected by the asymetric extension, because it does
not act on labels. Therefore in these cases, u.v 6∼2X u′.v′ still holds. We can
exclude those cases.
The existence of x, y as in (iii) or (iv) is also clearly unaffectected when both
u.v.x /∈ V and u′.v′.x /∈ V , because the asymetric extension only acts on V . The
case when both u.v.x ∈ V and u′.v′.x ∈ V is not problematic either, because
the symmetries of X tell us that there are x′, y′ meeting the same condition and
such that u.v.x′ /∈ V and u′.v′.x′ /∈ V , namely x′ = x.v.u′′.v.x, y′ = y.v.u′′.v.y.
We can exclude those cases.
From now on suppose, without loss of generality, that u.v.x ∈ V and u′.v′.x /∈ V .
Then, the existence of x, y as in (iii) or (iv) is clearly unaffected in the direct
(aka non-converse) subcase. But the converse subcase is not problematic either,
because the symmetries of X tell us that there are x′, y′ meeting the same con-
dition and such that u.v.x′ /∈ V and u′.v′.x′ ∈ V , namely x′ = x.v.u′.v′.x, y′ =
y.v.u′.v′.y. We covered all cases.

Moreover, we can show that creation or deletion of vertices by invertible CGD
must respect the shift-symmetries of the graph.

Lemma 5 (Invertible CGD preserves shift-equivalence classes). Let (F,R•)
be a shift-invariant dynamics over XΣ,∆,π, such that F is a bijection. Then for
any X and any u, v ∈ X, u ∼X v if and only if RX(u) ∼F (X) RX(v).

Proof. u ∼X v expresses Xu = Xv, which by bijectivity of F is equivalent to
F (Xu) = F (Xv) and hence F (X)RX(u) = F (X)RX(v). This in turn is expressed
by RX(u) ∼F (X) RX(v). 2

Lemma 6 (Invertible dynamics preserve the number of shift-equivalence
classes). Let (F,R•) be a causal graph dynamics over Xπ, such that F is a bi-
jection. Then for all finite graph X, we have |X�∼ | = |F (X)�∼ |.
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Proof. • |X�∼ | ≤ |F (X)�∼ |: Let us assume that there exists a graph X such
that |X�∼ | > |F (X)�∼ |. As F is shift-invariant, to each possible way of pointing
the graph X correspond a way of pointing the graph F (X). As there are less
ways of pointing F (X) than ways of pointing X, there must exist u and v in X
such that F (Xu) = F (Xv) and u and v non-equivalent, which contradicts the
injectivity of F .

• |X�∼ | ≥ |F (X)�∼ |: Let us assume that there exists a graph Y such that
|Y�∼ | < |F (Y )�∼ |. Let us consider the graph sequence (Y (k))k∈N, Y (k) =
F−k(Y ). The natural number sequence |Y (k)�∼ | is decreasing (else it would
contradict the first •), thus it converges and reaches its limit. More precisly,
there exists a rank n0 such that for all n > n0, |Y (n + 1)�∼ | = |Y (n)�∼ | =
|F (Y (n + 1))�∼ |. This new sequence (Y (n)) is infinite and, by bijection of F ,
|Y (n)| is unbounded. Let us extract an infinite subsequence (Y (l)) such that, for
all l, |Y (l)| > |F (Y (l))| and |Y (l + 1)| > |Y (l)|. All the graphs in this sequence
have the same number b of shift-equivalence classes.
Let r be the radius of a local rule inducing F . We can now extract a subsequence
Y (m) such that all graphs of this sequence contain exactly the same neighbor-
hoods of radius r. This is possible as there are finitely many neighbourhoods of
radius r and only b neighbourhoods to pick. As they contain the same neighbour-
hoods, f will act the same on all these graphs and thus they ought to decrease
their sizes at the same speed: |F (Y (m))| < |Y (m)| and |F (Y (m))| = α.|Y (m)|
for some α < 1 depending only on F .

We can now apply an asymetric extension on a large enough graph Y (m),
yielding an asymetric graph 2Y (m). Using the bounded inflation lemma, we can
bound the size of this graph: |F (2Y (m))| < |F (Y (m))|+C for some constant C
depending only on F . Thus we have |F (2Y (m))| < α.|Y (m)|+ C. Since α < 1,
we can derive the inequality |F (2Y (m))| < |Y (m)| = |2Y (m)| for a large enough
Y (m). This inequality contradicts the first •, thus |X�∼ | ≥ |F (X)�∼ |.

Shift-symmetry is fragile however, and can be destroyed by adding a few
vertices to a graph:

Using this fact, one can show that the cases of node creation and deletion
in invertible CGD are all of finitary nature, i.e. they can no longer happen for
large enough graphs. Indeed, by supposing a big enough graph X whose order
is changed through the application of an invertible CGD, and then looking at
what would happen to its asymetric extension 2X, we can show that this would
contradict continuity. We obtain:

Theorem 1 (Invertible implies almost-vertex-preserving). Let (F,R•)
be a CGD over XΣ,∆,π, such that F is a bijection. Then there exists a bound p,
such that for any graph X, if |V (X)| > p then RX is bijective.

Proof. When |π| ≤ 1, XΣ,∆,π is finite so the theorem is trivial. So we assume in
the rest of the proof that |π| > 1.
[Finite graphs] First we prove the result for any finite graph. By contradic-
tion, assume that there exists a sequence of finite graphs (X(n))n∈N such that
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|V (X(n))| diverges and such that for all n, RX(n) is not bijective. As this se-
quence is infinite, we have that one of the two following cases is verified for an
infinite number of n:

• RX(n) is not surjective,
• RX(n) is not injective.

• [RX(n) not surjective]. There exists a vertex v′ /∈ Im(RX(n)). Without loss of
generality, we can assume that |v′| < b where b is the bound from the bound-
edness property of F . We will now consider a particular asymetric extension of
F (X(n)), 2F (X(n)), where the chosen vertex in F (X(n)) is the furthest away
from the pointed vertex ε. Indeed, if F (X(n)) is large enough, a vertex lying at
maximal distance of ε in F (X(n)) either has a free port or is part of a cycle,
and thus is a valid vertex to perform the asymetric extension. Indeed, if this
vertex has no free port, then any of its edge can be removed without splitting
the graph, as it would contradict its maximality – therefore it is in a cycle. Now,
consider the graph Y (n) = F−1(2F (X(n))). Using uniform continuity of F−1

and R•, and the fact that |V (X(n))| is as big as we want, we have that there
exists an index n and a radius r such that Y (n)r = X(n)r and RbY (n)r = RbX(n)r .

Since F (Y (n)) is asymetric by construction, we have that |F (Y )�∼ | = |F (Y )|.
Applying lemma 6 gives us that |Y�∼ | = |F (Y )|. In particular, this means that
there are as many ways to place the pointer in Y as there are vertices in F (Y ).
Using the injectivity of F , we have that all vertices of F (Y ) are reached by RY ,
thus v′ ∈ Im(RbY (n)r ). This contradicts RbY (n)r = RbX(n)r .

• [RX(n) not injective]. There exist two vertices u, v ∈ X(n) such thatRX(n)(u) =
RX(n)(v) and u 6= v. Without loss of generality, we can assume that u = ε as F
is shift-invariant. According to lemma 5, we have that ε ∼X v.

Moreover, applying the uniform continuity of R• with m = 0, we have that
there exists a bound l such that for all graph X and all vertex v, RX(v) = ε
implies v ∈ X l.

Let us consider a asymetric extension of X(n), 2X(n), where the asymetric
extension has been performed at maximal distance from ε, by the same argument
as in the previous •. In this graph, ε and v are not shift-equivalent and thus,
R2X(n)(ε) 6= R2X(n)(v). By continuity of R•, we have that there exists a radius
r > l such that R0

2X(n)r = R0
X(n)r for a large enough n, hence R0

2X(n)r (v) =

R0
X(n)r (v) = ε, which contradicts R2X(n)(ε) 6= R2X(n)(v).

[Infinite graphs]. Now we show that the result on finite graphs can be extended
to infinite graphs, proving that for any infinite graph RX is bijective:
• [RX injective]. By contradiction. Take X infinite such that there is u 6= v
and RX(u) = RX(v). Without loss of generality we can take u = ε, i.e. v 6= ε
and RX(v) = ε. By continuity of R•, there exists a radius r, which we can take
larger than |v| and p, such that RX = RXr . Then RXr (v) = RX(v) = ε, thus
RXr is not injective in spite of Xr being finite and larger than p, leading to a
contradiction.
• [RX surjective]. By contradiction. Take X infinite such that there is v′ in F (X)
and v′ /∈ Im(RX). By boundedness, there exists u′ ∈ F (X) such that u′ lies at
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distance less than b of v′. Using shift-invariance, we can assume without loss
of generality that u′ = ε, hence, |v′| < b. By continuity of R•, there exists a
radius r, which we can take larger than p, such that the images of RX and RXr

coincide over the disk of radius b. Then, v′ /∈ Im(RX) implies v′ /∈ Im(RXr ),
thus RXr is not surjective in spite of Xr being finite and larger than p, leading
to a contradiction. 2

In [1,7], Dowek and one of the authors reached an even more restrictive result:
plain vertex-preservation. This is because their graphs are non-modulo, i.e. every
vertex has a unique name. Thus being invertible in their setting meant being
able to invert each of these names, which is more stringent. It was thus unclear
to us whether vertex-preservation was a consequence of their stringent setting,
or a more general fact.

5 Reversible Causal Graph Dynamics

A Reversible CGD (RCGD for short) is an invertible CGD whose inverse is also
a CGD:

Definition 10 (Reversible). A CGD (F,R•) is reversible if there exists S•
such that (F−1, S•) is a CGD.

Theorem 1 shows that invertible CGD are almost vertex-preserving. Notice
that vertex-preservation guarantees that the inverse of a shift-invariant dynamics
is a shift-invariant dynamics.

Lemma 7. If (F,R•) is an invertible, shift-invariant dynamics such that for
all X, RX is a bijection, then (F−1, S•) is a shift-invariant dynamics, with
SY = (RF−1(Y ))

−1.

Proof. Consider Y and u′.v′ ∈ Y . Take X and u.v ∈ X such that F (X) = Y ,
RX(u) = u′ and RX(u.v) = u′.v′. We have: F−1(Yu′) = F−1(F (X)RX(u)) =
F−1(F (Xu)) = X(RX)−1(u′) = F−1(Y )SY (u′). Moreover, take v ∈ Xu such that
RX(u.v) = RX(u).RXu

(v) = u′.v′. We have: SY (u′.v′) = (RX)−1(RX(u.v)) =
u.v = (RX)−1(u′).(RXu)−1(v′) = SY (u′).SYu′ (v

′). ut
We are now ready to prove our first main result, which states that the inverse

of a causal graph dynamics is a causal graph dynamics:

Theorem 2 (Invertible implies reversible). If (F,R•) is an invertible CGD,
then (F,R•) is reversible.

Proof. We must construct S•. For |F (X)| = |V (X)| > p, we know that RX
is bijective and we let SF (X) = R−1X . For |V (X)| ≤ p, we will proceed in two
steps. First, we will construct an appropriate SF (X) for X. Second, we will make
consistent choices for SF (X)u′

so that S• is shift invariant.

We write ũ for the shift-equivalence class of u in X, and ṽ′ for the shift-
equivalence class of v′ in F (X). For all v′ ∈ F (X), we make the arbitrary choice
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SF (X)(ṽ′) = v, where v is such that its image RX(v) is shift equivalent to v′

in F (X), i.e. RX(v) ∼F (X) v
′. For this X, we have enforced ∼-compatibility.

Then we make consistent choices for SF (X)u′
. This is obtained by demanding

that SF (X)u′
(ũ′.v′) = u.v. Indeed, this accomplishes shift-invariance because

SF (X)u′
(v′) = SF (X)u′

(u′.u′.v′) = ε.v′ = v′ implying the equality: SF (X)(u
′.v′) =

u.v = SF (X)(u
′).SF (X)u′

(v′). Moreover, SF (X)u′
is itself shift-invariant because:

SF (X)u′.v′
(w′) = SF (X)u′.v′

(u′.v′.u′.v′.w′) = u.v.u.v.w = w, and SF (X)u′
(v′) =

v implying that SF (X)u′
(v′.w′) = v.w = SF (X)u′

(v′).SF (X)u′.v′
(w′) , and ∼-

compatible because v′ ∼ w′ implies SF (X)u′
(v′) = SF (X)u′

(w′), and thus SF (X)u′
(v′) ∼

SF (X)u′
(w′).

Continuity of the constructed S• is due to the continuity of R• and the finiteness
of p.
Shift-invariance of (F−1, S•) follows from ∼-compatibility of S• and shift-inva-
riance of (F,R•), because F−1(F (X)′u) = Xv where v is such that RX(v) ∼ u′,
hence F−1(F (X)′u) = XSF (X)(u′). ut

Continuity of F−1 is directly given by the continuity of F together with the
compactness of XΣ,∆,π. Its boundedness derives either from the bijectivity of
RX for |V (X)| > p or from the finiteness of X when |V (X)| > p.

Notice that, ultimately, this result crucially relies on the compactness of
XΣ,∆,π which in turn relies on the boundedness of the degree |π| and the finite-
ness of the internal states Σ and ∆. A contrario in [1,7], Dowek and one of the
authors reached a similar result, but with a much more lengthy proof, due to
the lack of a compact metric space. Their setting was also more stringent, in
the sense their graphs are non-modulo, and thus being invertible in their setting
meant being able to invert each vertex name — which is much to ask for. It
was thus unclear to us whether reversibility was a consequence of their stringent
setting, or a more general fact, that Theorem 2 has now established.

6 Block representation of reversible causal graph
dynamics

A famous result on RCA [18], is that these admit a finite-depth, reversible circuit
form, with gates acting only locally. The result carries through to Quantum CA
[6]. In order to apply these ideas to Reversible CGD, we must first make it clear
what we mean by local operations. Afterwards, we will show that conjugating
a local operation with an RCGD still yields a local operation, and deduce the
block representation from this property.

6.1 Locality

Causal Graph Dynamics change the entire graph in one go—the word causal only
referring to the constraint that information does not propagate too fast. Local
operations, on the other hand, act just in one bounded region of the graph,
leaving all of the rest unchanged. Here is the definition of being ‘local’:
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Definition 11 (Local dynamics). A dynamics (L, S•) is r′-local if it is uni-
formly continuous and bounded, and there exists r′ such that for all X and
u′ ∈ L(X) with |u′| > r′, there exists u ∈ X such that we have both L(X)0u′ = X0

u

and for all v ∈ X0
u,SX(u.v) = u′.v.

A local operation can also be shifted to act over the region surrounding some
vertex u. The details of the next definition become apparent with Figure 9.

Definition 12 (Shifted dynamics). Consider a dynamics (L, S•) and some
u ∈ Π∗. We define Lu to be the map X 7→ (L(Xu))SXu (u) if u ∈ X, and the

identity otherwise. We define Su,X to be the map v 7→ SXu
(u).SXu

(u.v) if u ∈ X,
and the identity otherwise. We say that (Lu, Su,•) is (L, S•) shifted at u.

X

ε u
v

•u
Xu

u ε
u.v

L

L(Xu)

SXu
(u) ε

SXu
(u.v)

Lu

L(Xu)SXu (u)

ε SXu(u)

SXu(u).SXu(u.v) •SXu (u)

Fig. 9. Shifted dynamics Lu. In the bottom graph Lu(X), former vertex v has name
SXu(u).SXu(u.v).

The following two lemmas are technical and somewhat expected, but will
turn out useful next.

Lemma 8 (Bounded inflation). If (L, S•) is r′-local, then for all s there exists
s′ such that for all X and v ∈ X, if |v| ≤ s, then |SX(v)| ≤ s′.

Proof. Suppose the contrary: there exists s such that for all s′, X(s′) has some
|v(s′)| ≤ s such that |SX(v)| > s′. Since XΣ,∆,π is compact [2], X(s′) admits a
subsequence which converges to some limit X, in the sense that X(s′k)k = Xk.
For this particular X, for any s′, there is some |v(s′)| ≤ s such that |SX(v)| >
s′. This is because we can choose k so that s′k ≥ s′ and k superior to the

radius needed to determine L(X)s
′
k = L(X(s′k))s

′
k , so that |SX(v)| = |SXk(v)| =
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|SX(sk)
k(v)| = |SX(sk)(v)| > s′k ≥ s′. Thus, there exists a point of v ∈ X such

that |SX(v)| >∞, which is a contradiction.

Lemma 9. If (L, S•) is r′-local, for all t, for all u′ ∈ L(X) with |u′| > r′+t+1,
there exists u ∈ X with SX(u) = u′ such that we have:

• L(X)tu′ = Xt
u,

• ∀v ∈ Xt
u, SX(u.v) = u′.v.

Proof. Take such a u′ and consider u such that u′ = SX(u).
[First •] Since |u′| > r′ + t + 1, we have that for all v ∈ L(X)tu′ , |u′.v| > r′.
Hence, by r′-locality of L, there exists x ∈ X such that SX(x) = u′.v and such
that L(X)0u′.v = X0

x, i.e. the vertex v in L(X)tu′ , in terms of its internal states
and edges, is the same as the vertex x in X. Now, say there exists |z| = 1 such
that w = v.z ∈ L(X)tu′ , i.e. there is an edge between v and v.z in L(X)tu′ . Again
since |SX(x)| > r′, the r′-locality yields u′.v.z = SX(x).z = SX(x.z), i.e. the
edge between v and v.z v in L(X)tu′ is the same as that between x and x.z in
X. Consider v1 . . . vk = v with k ≤ t and |vi| = 1. A similar argument starting
from u′ and following these edges shows that x is at distance t of u in X, and
thus x.z is at distance t+ 1 of u in X. So the vertices x, x.v and their edge do
appear in Xt

u.
[Second •] Again take w ∈ Xt

u = L(X)tu′ . Consider w1 . . . wk = w with k ≤ t+ 1
and |wi| = 1. Since |u′| > r′ + t + 1 > r′, the r′-locality applies and yields
SX(u.w1) = SX(u).w1 = u′.w1. Similarly, since |u′.w1 . . . wi| > r′+ t+1− i > r′,
the r′-locality applies and yields SX(u.w1 . . . wi.wi+1) = SX(u.w1 . . . wi).wi+1 =
u′.w1 . . . wi.wi+1. Eventually SX(u.w) = u′.w. ut

We may wish to apply a series of local operations at different positions ui,
i.e. a circuit. However, applying a local operation may change the graph and
hence vertex names, hence some care must be taken:

Definition 13 (Product). Given a shifted dynamics (Lu, Su,•) and a dynam-
ics (M,T•), it is convenient to define their composition so as to take care of
renamings

(Lu ·M)(X) = (LTX(u))(M(X))

and similarly for the S maps:

(Su,• · T•)X(v) = (STX(u),M(X))(TX(v)).

Then,

(
∏

[u1,...,un]

L)(X) =
(
(
∏

[u2,...,un]

L) · Lu1

)
(X)

and similarly for the S maps. In order to extend to infinite products, we denote
by ur the restriction of a series u : N→ V (X) to the codomain V (Xr), and then
take the following limit:

(
∏
u

L)(X) = lim
r→∞

(
∏
ur

L)(X),

and similarly for the S maps. When the Lu commute, only the codomain of u
matters. In this case, products over sets of vertices are well-defined, e.g. (

∏
W L).
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6.2 Block representation

A famous result about RCA [18], is that they admit a finite-depth, reversible
circuit form, with gates acting only locally. The result carries through to Quan-
tum CA [6]. A crucial step towards this result is to show that conjugating a local
operation with an RCGD still yields a local operation:

Proposition 1. If (F,R•) is an RCGD and (L, S•) is a local dynamics, then
(L′, T•) is a local dynamics, with

• L′ = F−1 ◦ L ◦ F and
• TX(u) = R′F−1(L(F (X))(SF (X)(RX(u))),

where the function R′• is such that (F−1, R′•) is a CGD.

Proof. Boundedness and uniform continuity by composition. Next, suppose: L is
local, r0 is such that for all X,Y if Xr0 = Y r0 then F−1(X)0 = F−1(Y )0 (given
by uniform continuity of F−1), r2bF is such that for all X,Y if Xr2bF = Y r2bF

then F (X)2bF = F (Y )2bF (given by uniform continuity of F ), bF−1 is the bound
given by the bounded inflation lemma applied on F−1, bL is the bound given by
the boundedness of L and rL the radius of locality of L. In the two following
points, we chose a radius r′ as follow:

r′ = bF
−1

(rL + 2 +max(r0, 2bF , r2bF ))

Consider |u′| > r′.
[First •] Let us show that there exists u ∈ X such that L′(X)0u′ = X0

u. By

definition of F−1, there exists w ∈ LF (X) such that RF
−1

LF (X)(w) = u′. By

bounded inflation of F−1, we have |w| > rL and thus by locality of L, there
exists w′ ∈ F (X) such that SF (X)(w

′) = w. Finally by reversibility of F there
exists u ∈ X such that RFX(u) = w, and thus u′ = TX(u). Notice that we
have that |SF (X)R

F
X(u)| > r0 + rL + 2. Using lemma 9 with t = r0, we have:

LF (X)r0
SF (x)R

F
X(u)

= F (X)r0
RF

X(u)
= F (Xu)r0 . By definition of r0, F (Xu)r0 =

LF (X)r0
SF (x)R

F
X(u)

implies X0
u = F−1(LF (X)r0

SF (x)R
F
X(u)

)0, which leads by shift-

invariance of F−1 to X0
u = F−1(LF (X)r0)0

RF−1

LF (X)
SF (x)R

F
X(u)

. Hence X0
u =

L′(X)0u′ .
[Second •] Consider u as above and v ∈ X0

u.

TX(u.v) = RF
′

LF (X)SF (x)(R
F
X(u.v))

= RF
′

LF (X)SF (x)(R
F
X(u).RFXu

(v)) using shift-invariance of F

= RF
′

LF (X)SF (x)(R
F
X(u)).RFXu

(v) because |SF (X)R
F
X(u)| > rL + 2bF + 2

= RF
′

LF (X)(SF (x)(R
F
X(u))).RF

′

LF (X)
SF (X)(R

F
X

(u))
(RFXu

(v)) using shift-invariance of F−1

= TX(u).RF
′

LF (X)
SF (X)(R

F
X

(u))
(RFXu

(v))
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We will now show that: v = RF
′

LF (X)
SF (X)(R

F
X

(u))
(RFXu

(v)). Since |RFXu
(v)| < 2bF

by bounded inflation of F , it is enough to show:

RF
′

LF (X)
SF (X)(R

F
X

(u))

2bF
(RFXu

(v)) = v.

By definition of r2bF , we have that: if Xr2bF = Y r2bF then RF
′
(X)2bF =

RF
′
(Y )2bF . Let us show that LF (X)

r2bF

S
2bF
F (X)

(RF
X(u))

= F (Xu)r2bF . By applying

lemma 9 with t = r2bF , LF (X)
r2bF

S
2bF
F (X)

(RF
X(u))

= F (X)
r2bF
RF

X(u)
which, by shift-

invariance of F , is equal to F (Xu)r2bF . As a consequence,

RF
′

LF (X)
SF (X)(R

F
X

(u))

2bF
(RFXu

(v)) = RF
′

F (Xu)

2bF
(RFXu

(v)) = RF
′

F (Xu)
(RFXu

(v)) = v

by definition of RF
′

• ut
Second, we give ourselves a little more space so as to mark which parts of

the graph have been updated, or not.

Definition 14 (Marked pointed graph modulo). Consider the set of pointed
graphs modulo XΣ,∆,π with labels in Σ, and ports in π. Let Σ′ = Σ×{0, 1} and
π′ = π × {0, 1}. We define the set of marked pointed graphs modulo XΣ′,∆,π′ to
be the subset of XΣ′,∆,π′ such that for all u ∈ X having label (x, a), and edge
{u:(i, b), v:(j, c)} ∈ X, we have a = c. Given a graph X ∈ XΣ,∆,π, it is naturally
identified with the same graph in XΣ′,∆,π′ with all marks set to 0.

Definition 15 (Mark operation). We define the marking operation µ(.) over
labels and ports as toggling the bit in the second component:

– ∀(x, a) ∈ Σ′, µ(x, a) = (x, 1− a)
– ∀(i, a) ∈ π′, µ(i, a) = (i, 1− a)

Then, we define the mark operation µ(.) over pointed graphs modulo, as attempt-
ing to mark the pointed vertex label and its opposite ports, if this will not create
conflicts between ports. More formally, given a graph X in XΣ′,∆,π′ , we define
the mark operation, µ : XΣ′,∆,π′ → XΣ′,∆,π′ as follows:

– if ∃v, w ∈ X, i, j ∈ π′ such that {ε:i, v:j} ∈ X and {v:µ(j), w:k} ∈ X then
µ(X) = X

– else
• σµ(X)(ε) = µ(σX(ε))
• For all i, j ∈ π′, {ε:µ(i), ε:µ(j)} ∈ µ(X) if {ε:i, ε:j} ∈ X.
• For all v ∈ X with v 6= ε and i, j ∈ π′, {ε:i, v:µ(j)} ∈ µ(X) if {ε:i, v:j} ∈
X.

the rest of the graph X is left unchanged.

Remark: The set XΣ′,∆,π′ is a compact subset of XΣ′,∆,π′ .
XΣ′,∆,π′ allows for a clear distinction between marked and unmarked parts

of the graph, allowing to extend any RCGD F over XΣ,∆,π to act over XΣ′,∆,π′ ,
as usual on the unmarked part, and trivially on the marked part.
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Definition 16 (Reversible extension). Let F : XΣ,∆,π → XΣ,∆,π be an
RCGD. We say that F ′ : XΣ′,∆,π′ → XΣ′,∆,π′ is a reversible extension of F
if and only if F ′ is an RCGD, and:

• For all X ∈ XΣ×{0},π×{0}, F
′(X) = F (X).

• For all X ∈ XΣ×{1},π×{1},, F
′(X) = X.

• For all |V (X)| ≤ p and X /∈ XΣ×{0},π×{0}, F
′(X) = X, where p is that of

Theorem 1.

Proposition 2 (Reversible extension). Suppose F : XΣ,∆,π → XΣ,∆,π is an
RCGD. Then it admits a reversible extension F ′ : XΣ′,∆,π′ → XΣ′,∆,π′ .

[Proof of Proposition 2]
Proof outline. In order to define a reversible extension F ′, we first separate the
graph in two layers: the marked and unmarked layers. We then isolate the con-
nected components in each layer and express them as “shifted” graphs modulo.
Once this is done, it is easy to define F ′ as acting as F on the unmarked com-
ponents and as the identity on the other components.
Construction of a reversible extension.

We first isolate the two layers inside our graphs:

Definition 17 (Upper and lower projections). Let G be a graph in G(XΣ′,∆,π′).
We define ↓G (resp. ↑G) the lower (resp. upper) projection of G as the set of the
connected component obtained after removing all marked vertices (resp. all non-
marked vertices without used marked ports).

We then add some structure on those components:

Lemma 10 (Characterization of connected components). Given G in
G(XΣ′,∆,π′), the elements of the sets ↓G and ↑G are of the form u.Y with u ∈
L(X) and Y ∈ G(XΣ′,∆,π′).

Proof. Consider an element H of ↓G. In particular, it is a graph of GΣ′,∆,π′ .
Consider any vertex u of H. The graph u.H has a vertex having ε as name. We
can now construct the graph modulo X = ũ.H ∈ XΣ′,∆,π′ . By construction this
graph verifies u.G(X) = H. By symmetry, the same holds for components in
↑G. ut
Proposition 3 (Reversible extension). Any RCGD (F,R•) over XΣ,∆,π ad-
mits a reversible extension (F ′, R′•) over XΣ′,∆,π′ .

Proof. Let us construct such a reversible extension F ′. Let p be that of Theorem
1. For all |V (X)| ≤ p and X /∈ XΣ×{0},∆,π×{0}, we let F ′(X) = X. The rest
supposes |V (X)| > p.
Given L : XΣ,∆,π → XΣ,∆,π, we define L? : XΣ,∆,π → GΣ,∆,π as the function
G◦L. Now for all X ∈ XΣ′,∆,π′ , we define F ′(X) as the equivalence class modulo
isomorphism of the following graph pointed on ε: ⋃

C∈↑G

C

 ∪
 ⋃
u.Y ∈↓G

L0(u.F ?(P (Y )))
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where G = G(X), L0 : GΣ,∆,π → GΣ′,∆,π′ is the map that adds 0 in the label of

each vertex, and P : XΣ′,∆,π′ → XΣ,∆,π is maps that forgets about the markings.
Notice that if G ∈ GΣ×{0},π×{0} then ↑G is empty and ↓G contains a single

connected component ε.G (the graph itself), thus F ′ computes F . On the other
hand, if G ∈ GΣ×{1},π×{1} then ↓G is empty and ↑G contains ε.G only, thus F ′

computes the identity. Hence this F ′ is a good candidate for being a reversible
extension of F . It remains now to check that F ′ is causal, vertex-preserving and
reversible.
[Causal ] Shift-invariance, boundedness and continuity follow directly from the
shift-invariance, boundedness and continuity of both F and the identity.
[Reversible] Replace F by F−1 in the previous definition. ut

In order to obtain our circuit-like form for RCGD, we will proceed by re-
versible, local updates.

Definition 18 (Conjugate mark). Given a reversible extension F ′ : XΣ′,∆,π′ →
XΣ′,∆,π′ , we define the conjugate mark K : XΣ′,∆,π′ → XΣ′,∆,π′ to be the func-
tion:

K = F ′−1 ◦ µ ◦ F ′.

Notice that by Proposition 1, the local update blocks are local operations. More-
over, since they are defined as a composition of invertible dynamics, so they are.
In order to represent the whole of an RCGD, it suffices to apply these local
update blocks at every vertex.

Theorem 3 (Reversible localizability). Suppose F : XΣ,∆,π → XΣ,∆,π is
an RCGD. Then for all X ∈ Xπ,Σ,∆, we have that:

F (X) = (
∏
X

µ) · (
∏
X

K)(X)

where K = F ′−1 ◦ µ ◦ F ′ for F ′ : XΣ′,∆,π′ → XΣ′,∆,π′ a reversible extension of
F .

Proof. Let us consider a graph X ∈ XΣ,∆,π. We have:

(
∏
X

µ) · (
∏
X

K)(X) = (
∏
X

µ) · (
∏
X

F ′−1µF ′)(X)

= (
∏
X

µ) ·
(
F ′−1(

∏
X

µ)F ′

)
(X) (1)

= (
∏
X

µ) · (
∏
X

µ)F (X) (2)

= F (X).

The argument to go from (1) to (2) depends on |X|:
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– If |X| ≤ p (i.e F might change the size of X), then all the vertices in
(
∏
X µ)F ′(X) are not necessarily marked, but by definition of F ′ (third •),

F ′−1 will perform the identity over this graph.
– If |X| > p, then there is no ambiguity and (

∏
X µ)F ′(X) is simply the

graph F (X) where all vertices have been marked. Indeed, since X is in
XΣ×{0},∆,π×{0}, so is F ′(X), and so (

∏
X µ)F ′(x) is in XΣ×{1},∆,π×{1}.

Notice that the cases |X| ≤ p are finite and F is bijective, thus it just permutes
those cases. Thus, this theorem generalizes the block decomposition of reversible
cellular automata, which represents any reversible cellular automata as a circuit
of finite depth of local permutations. Here, the mark µ and its conjugate K are
the local permutations. The circuit is again of finite depth, a vertex u will be
attained by all those K that act over Xr′

u , where r′ is the locality radius of K.
Therefore, the depth is less than |π|r′ . An example of such a decomposition is
described in Figure 10.

(1)

:a :b :a :b :a :b

u

:c
:c

v

w

(2)

:a :b :a :b :a :b

u

:c
:c

v

w

(3)

:a :b :a :b :a :b

u

:c
:c

v

w

(4)

:a :b :a :b :a :b

u

:d
:d

v

w
(5)

:a :b :a :b :a :b

u

:c
:c

v

w

(6)

:a :b :a :b :a :b

u

:c
:c

v

w

(7)

:a :b :a :b :a :b

u

:c
:c

v

w

(8)

:a :b :a :b :a :b

u

:c
:c

v

w

(9)

:a :b :a :b :a :b
:c
:c

Fig. 10. Block representation of the moving head dynamics. (1) Initially, no vertices
are marked. (2) to (4) Application of Kv. First F is applied, then v is marked, followed
by the application of F−1. (5) to (7) Application of Ku. (8) The graph once every K
have been applied. The vertices just need to be unmarked by the µ’s. (9) Altogether
this implements one time step of F.

7 Conclusion

Summary of results. We have studied Reversible Causal Graph Dynamics, thereby
extending Reversible Cellular Automata results to time-varying, pointed graphs
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modulo. Pointed graphs modulo are arbitrary bounded-degree networks, with
a pointed vertex serving as the origin, and modulo renaming of vertices. Some
of these graphs have shift-equivalent vertices. We have shown that if a Causal
Graph Dynamics (CGD) is invertible, then it preserves shift-equivalence classes.
This in turn entails almost-vertex-preservation, i.e. the conservation of each ver-
tex for big enough graphs. Next, we have shown that the inverse of a CGD is a
CGD. Finally, we have proved that Reversible Causal Graph Dynamics can be
represented as finite-depth circuits of local reversible gates.

Future work. We have shown that invertible causal graph dynamics implies
almost vertex-preservation or, in other words, that beyond some finitary cases,
information conservation implies conservation of the systems that support this
information. The result could perhaps be understood as a “Matter conservation
theorem”, à la Lavoisier. Still, this cannot forbid that some ‘dark matter’ which
was there at all times, could now be made ‘visible’. We plan to follow this idea in
a subsequent work. We also wish to explore the quantum regime of these models,
as similar results where given for Quantum Cellular Automata over fixed graphs
[6]. Such results would be of interest to theoretical physics, in the sense of discrete
time versions of [21].
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A Formalism

This appendix provides formal definitions of the kinds of graphs we are using,
together with the operations we perform upon them. None of this is specicific
to the reversible case; it can all be found in [4] and is reproduced here only for
convenience.

A.1 Graphs

Vertex names. Let π be a finite set, Π = π2, and V = P(Π∗), where ‘.’ represents
concatenation of words and ε is the empty word, as usual. Each vertex of a graphs
non-modulo will be uniquely identified with a name u in V . This particular choice
of the universe of names is irrelevant until Definition 26, when it becomes natural.

Definition 19 (Graph non-modulo). A graph non-modulo G is given by

• An at most countable subset V (G) of V , whose elements are called vertices.
• A finite set π, whose elements are called ports.
• A set E(G) of non-intersecting two element subsets of V (G):π, whose ele-

ments are called edges. In other words an edge e is of the form {u:a, v:b},
and ∀e, e′ ∈ E(G), e ∩ e′ 6= ∅ ⇒ e = e′.

The graph is assumed to be connected: for any two u, v ∈ V (G), there exists
v0, . . . , vn ∈ V (G), a0, b0 . . . , an−1, bn−1 ∈ π such that for all i ∈ {0 . . . n − 1},
one has {vi:ai, vi+1:bi} ∈ E(G) with v0 = u and vn = v.

Definition 20 (Labelled graph non-modulo). A labelled graph non-modulo
is a triple (G, σ, δ), also denoted simply G when it is unambiguous, where G is
a graph, and σ and δ respectively label the vertices and the edges of G:

• σ is a partial function from V (G) to a finite set Σ;
• δ is a partial function from E(G) to a finite set ∆.

The set of all graphs with ports π is written Gπ. The set of labelled graphs with
states Σ,∆ and ports π is written GΣ,∆,π. To ease notations, we sometimes write
v ∈ G for v ∈ V (G).

We single out a vertex as the origin:

Definition 21 (Pointed graph non-modulo). A pointed (labelled) graph is
a pair (G, p) with p ∈ G. The set of pointed graphs with ports π is written
Pπ. The set of pointed labelled graphs with states Σ,∆ and ports π is written
PΣ,∆,π.

Here is when graph differ only up to renaming:

Definition 22 (Isomorphism). An isomorphism R is a function from Gπ to
Gπ which is specified by a bijection R(.) from V to V . The image of a graph G
under the isomorphism R is a graph RG whose set of vertices is R(V (G)), and
whose set of edges is {{R(u) : a,R(v) : b} | {u : a, v : b} ∈ E(G)}. Similarly,
the image of a pointed graph P = (G, p) is the pointed graph RP = (RG,R(p)).
When P and Q are isomorphic we write P ≈ Q, defining an equivalence relation
on the set of pointed graphs. The definition extends to pointed labelled graphs.
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(Pointed graph isomorphism rename the pointer in the same way as it renames
the vertex upon which it points; which effectively means that the pointer does
not move.)
Our main objects of study are pointed graphs modulo isomorphism.

Definition 23 (pointed graphs modulo). Let P be a pointed (labelled) graph

(G, p). The pointed graph modulo X is P̃ the equivalence class of P with respect
to the equivalence relation ≈. The set of pointed graphs modulo with ports π
is written Xπ. The set of labelled pointed Graphs modulo with states Σ,∆ and
ports π is written XΣ,∆,π.

A.2 Paths and vertices

When we are considering pointed graphs modulo isomorphism, vertices no longer
have a unique identifier. Still they can be designated by a sequence of ports in
(π2)∗ that leads, from the origin, to this vertex.

Definition 24 (Path). Given a pointed graph modulo X, we say that α ∈ Π∗ is
a path of X if and only if there is a finite sequence α = (aibi)i∈{0,...,n−1} of ports
such that, starting from the pointer, it is possible to travel in the graph according
to this sequence. More formally, α is a path if and only if there exists (G, p) ∈ X
and there also exists v0, . . . , vn ∈ V (G) such that for all i ∈ {0 . . . n − 1}, one
has {vi:ai, vi+1:bi} ∈ E(G), with v0 = p and αi = aibi. Notice that the existence
of a path does not depend on the choice of (G, p) ∈ X. The set of paths of X is
denoted by L(X).

Notice that paths can be seen as words on the alphabet Π and thus come with
a natural operation ‘.’ of concatenation, a unit ε denoting the empty path, and
a notion of inverse path α which stands for the path α read backwards. Two
paths are equivalent if they lead to same vertex:

Definition 25 (Equivalence of paths). Given a pointed graph modulo X,
we define the equivalence of paths relation ≡X on L(X) such that for all paths
α, α′ ∈ L(X), α ≡X α′ if and only if, starting from the pointer, α and α′ lead
to the same vertex of X. More formally, α ≡X α′ if and only if there exists
(G, p) ∈ X and v1, . . . , vn, v

′
1, . . . , v

′
n′ ∈ V (G) such that for all i ∈ {0 . . . n− 1},

i′ ∈ {0 . . . n′ − 1}, one has {vi:ai, vi+1:bi} ∈ E(G), {v′i′ :a′i′ , v′i′+1:b′i′} ∈ E(G),
with v0 = p, v′0 = p, α = (aibi)i∈{0,...,n−1}, α

′ = (a′i′b
′
i′)i∈{0,...,n′−1} and vn =

vn′ . We write α̂ for the equivalence class of α with respect to ≡X .

It is often useful to undo the modulo, i.e. to obtain a canonical instance
(G(X), ε) of the equivalence class X.

Definition 26 (Associated graph). Let X be a pointed graph modulo. Let
G(X) be the graph such that:

• The set of vertices V (G(X)) is the set of equivalence classes of L(X);

• The edge {α̂:a, β̂:b} is in E(G(X)) if and only if α.ab ∈ L and α.ab ≡X β,

for all α ∈ α̂ and β ∈ β̂.
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We define the associated graph to be G(X).

Conventions. The following are three presentations of the same mathematical
object:

• a graph modulo X,
• its associated graph G(X)
• the algebraic structure 〈L(X),≡X〉

Each vertex of this mathematical object can thus be designated by

• α̂ an equivalence class of L(X), i.e. the set of all paths leading to this vertex
starting from ε̂,

• or more directly by α an element of an equivalence class α̂ of X, i.e. a
particular path leading to this vertex starting from ε.

These two remarks lead to the following mathematical conventions, which we
adopt for convenience. In the paper:

• α̂ and α are no longer distinguished unless otherwise specified. The latter
notation is given the meaning of the former. We speak of a “vertex” α in
V (X) (or simply α ∈ X).

• It follows that ‘≡X ’ and ‘=’ are no longer distinguished unless otherwise
specified. The latter notation is given the meaning of the former. I.e. we
speak of “equality of vertices” α = β (when strictly speaking we just have

α̂ = β̂).

A.3 Operations ove pointed Graphs modulo

Subdisks. For a pointed graph (G, p) non-modulo:

• the neighbours of radius r are just those vertices which can be reached in r
steps starting from the pointer p;

• the disk of radius r, written Grp, is the subgraph induced by the neighbours
of radius r + 1, with labellings restricted to the neighbours of radius r and
the edges between them, and pointed at p.

For a graph modulo, on the other hand, the analogous operation is:

Definition 27 (Disk). Let X ∈ XΣ,∆,π be a pointed graph modulo and G its

associated graph. Let Xr be G̃rε. The graph modulo Xr ∈ XΣ,∆,π is referred to
as the disk of radius r of X. The set of disks of radius r with states Σ,∆ and
ports π is written XrΣ,∆,π.

Definition 28 (Size). Let X ∈ XΣ,∆,π be a pointed graph modulo. We say that
a vertex u ∈ X has size less or equal to r+ 1, and write |u| ≤ r+ 1, if and only
if u ∈ Xr.

Shifts are a notation for the graph where vertices are named relatively to some
other pointer vertex u.
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Definition 29 (Shift). Let X ∈ XΣ,∆,π be a pointed graph modulo and G its
associated graph. Consider u ∈ X or Xr for some r, and consider the pointed
graph (G, u), which is the same as (G, ε) but with a different pointer. Let Xu be

(̃G, u). The pointed graph modulo Xu is referred to as X shifted by u.

A.4 Operations over pointed Graphs non-modulo

Definition 30 (Shift isomorphism). Let X ∈ Xπ be a pointed graph modulo.
Let G ∈ Gπ be a graph that has vertices that are disjoint subsets of V (X) or
V (Xr) for some r. Consider u ∈ X. Let R be the isomorphism from V (X) to
V (Xu) mapping v 7→ u.v, for any v ∈ V (X) or V (Xr). Extend this bijection
pointwise to act over subsets of V (X), and let u.G to be RG. The graph u.G has
vertices that are disjoint subsets of V (Xu), it is referred to as G shifted by u.
The definition extends to labelled graphs.

We need the standard [10,22] notion of union of graphs, and for this purpose we
need a notion of consistency between the operands of the union:

Definition 31 (Consistency). Let X ∈ Xπ be a pointed graph modulo. Let
G be a labelled graph (G, σ, δ), and G′ be a labelled graph (G′, σ′, δ′), each one
having vertices that are pairwise disjoint subsets of V (X). The graphs are said
to be consistent if and only if:

(i) ∀x ∈ G∀x′ ∈ G′ x ∩ x′ 6= ∅ ⇒ x = x′,
(ii) ∀x, y ∈ G∀x′, y′ ∈ G′ ∀a, a′, b, b′ ∈ π

({x:a, y:b} ∈ E(G) ∧ {x′:a′, y′:b′} ∈ E(G′) ∧ x = x′ ∧ a = a′)
⇒ (b = b′ ∧ y = y′),

(iii) ∀x, y ∈ G∀x′, y′ ∈ G′ ∀a, b ∈ π x = x′ ⇒ δ({x:a, y:b}) = δ′({x′:a, y′:b})
when both are defined,

(iv) ∀x ∈ G∀x′ ∈ G′ x = x′ ⇒ σ(x) = σ′(x′) when both are defined.

They are said to be trivially consistent if and only if for all x ∈ G, x′ ∈ G′ we
have x ∩ x′ = ∅.
(The consistency conditions aim at making sure that both graphs “do not dis-
agree”. Indeed: (iv) means that “if G says that vertex x has label σ(x), G′ should
either agree or have no label for x”; (iii) means that “if G says that edge e has
label δ(e), G′ should either agree or have no label for e”; (ii) means that “if G
says that starting from vertex x and following port a leads to y via port b, G′

should either agree or have no edge on port x:a”. Condition (i) is in the same
spirit: it requires that G and G′, if they have a vertex in common, then they must
fully agree on its name. Remember that vertices of G and G′ are disjoint subsets
of V (X).S. If one wishes to take the union of G and G′, one has to enforce that
the vertex names are still disjoint subsets of V (X).S. Trivial consistency arises
when G and G′ have no vertex in common: thus, they cannot disagree on any of
the above.)
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Definition 32 (Union). Let X ∈ Xπ be a pointed graph modulo. Let G be a
labelled graph (G, σ, δ), and G′ be a labelled graph (G′, σ′, δ′), each one having
vertices that are pairwise disjoint subsets of V (X).S. Whenever they are con-
sistent, their union is defined. The resulting graph G ∪ G′ is the labelled graph
with vertices V (G)∪V (G′), edges E(G)∪E(G′), labels that are the union of the
labels of G and G′.
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